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Abstract: Terms related to gradients of scalar fields are introduced as scalar products into the 
formulation of entropy. A Lagrange density is then formulated by adding constraints based on 
known conservation laws. Applying the Lagrange formalism to the resulting Lagrange density 
leads to the Poisson equation of gravitation and also includes terms being related to curvature of 
space. The formalism further leads to terms possibly explaining nonlinear extensions known from 
modified Newtonian dynamics approaches. The article concludes with a short discussion of the 
presented methodology and provides an outlook on other phenomena, which might be tackled 
using this new approach.  
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1. Introduction 

Recent work on entropic gravity by Erik Verlinde [1] [2] has initiated a recovery of earlier work 
by the author on thermodynamics of diffuse interfaces [3] and stimulated a generalization of this 
approach. The approach being depicted in the present article draws on a combination of the very 
strong and fundamental concepts of entropy, of the phase-field method, and of the Lagrange 
formalism. The capability of this approach to describe various aspects of gravity will eventually be 
demonstrated. 

The description of entropy by now has been based on the use of scalars for the probabilities ௜ 
of the individual states	݅:  ݏ =  (1)                                       (௜)ݏ

 
Scope of the present article is to generalize the entropy formulation and to include terms related 

to vectors (with options for future extension to tensors) towards a formulation: ݏ = ௜,ሬሬԦ௜,ሶ)ݏ ௜)	                                 (2) 
Known conservation laws for energy E, mass M, charge Q, momentum	ሬܲሬሬԦ, and spin	ܮሬሬԦ , each law 

being formulated as function of ൫௜,ሬሬԦ௜,ሶ ௜൯	are then added as constraints to the variational 
problem. Each constraint is associated with its own Lagrange multiplier (λ,g,ε,…) in total yielding a 
free energy density f:  ݂ = ൫௜,ሬሬԦ௜,ሶݏ ௜൯ −	λ	ܧ൫௜,ሬሬԦ௜,ሶ ௜൯ − ൫௜,ሬሬԦ௜,ሶܯ݃ ௜൯ − ܳ൫௜,ሬሬԦ௜,ሶ ௜൯           (3) − Ԧܿ ሬܲԦ൫௜,ሬሬԦ௜,ሶ ௜൯ − ℎሬԦܮሬԦ൫௜,ሬሬԦ௜,ሶ ௜൯ −  .ݏݓ݈ܽ	݊݋݅ݐܽݒݎ݁ݏ݊݋ܿ	ݎℎ݁ݐݎݑ݂⋯

The Lagrange multipliers cԦ and hሬԦ	for momentum PሬሬԦ and spin LሬԦ, respectively, obviously have 
to be vector valued in order to recover a scalar contribution to the overall scalar equation. Units and 
scales are implicitly introduced by the Lagrange multipliers. The Lagrange multiplier λ for example 
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corresponds to  = 	 ଵ୩୘  making the energy dimensionless (or giving the dimension of kT to 
entropy/probability). The names of the Lagrange multipliers have been arbitrarily selected to be 
similar to the names of known fundamental constants and have been assigned to the conservation 
law to which they are most probably related. Relations between these constants are expected to 
emerge from the Lagrange formalism being applied to above free energy density. 

The Lagrange formalism is based on a free energy functional F being the volume integral of a 

free energy density f. Its variational derivative  
ி

೔(௥Ԧ,௧) = 0 corresponds to         

0 = 	ቊ ߲߲௜(ݎԦ, (ݐ −	ሬሬԦ ߲߲ሬሬԦ௜(ݎԦ, (ݐ − ݐ߲߲ ߲߲ሶ ௜(ݎԦ, ቋ(ݐ ݂ (4)

Executing these derivatives provides the equations of motion of the system. The present paper 
will demonstrate first results obtained when applying above scheme for mass conservation. It will 
also not yet address any time dependent phenomena meaning that there will be no dependencies 
on ሶ ௜(ݎԦ,  .considered in the Lagrange density (ݐ

2. Entropy  

The proposed concept requires a formulation of entropy which comprises terms related to 
vectors (and in future also time derivatives). In order to specify vectors, a reference frame 
respectively a coordinate system has to be defined. In spite of any vectors (or tensors) being 
introduced into the terms of the equations, the overall entropy formulation and all the probabilities 
entering into the typical logarithmic terms have to remain scalars. 

2.1. Scalar Entropy 

Entropy has unveiled its importance in numerous fields. Some most important discoveries are 
based on entropy like (i) the Boltzmann factor in energy levels of systems (ii) the Gibbs energies of 
thermodynamic phases, (iii) the Shannon entropy in information systems (iv) the Hawking entropy 
of black holes, (v) the Flory-Huggins polymerization entropy in polymers [4],[5], and (vi) the 
crystallization entropy in metals [4],[6] to name only some of the major highlights.  

All these approaches for entropy are typically based on logarithmic terms like (see e.g. [7]): ݏ = −෍௜ே
௜ୀ଴ ݈݊ ௜  (5)

It seems important to note that entropy can be interpreted as tending to smear out any contrast 
between different states respectively different objects. Contrast between states/objects is reflected in 
gradients of an observable property allowing distinguishing between these states/objects. Any 
object can be defined as a coherent region of space, which can be distinguished from other regions 
due to a contrast in at least one attribute/property. This attribute may even be the „name“ of the 
object indicating that somebody – based on some criterion - has identified the region to belong to the 
same object [8].  

Gradients and interfaces, i.e. measures of contrast, are thus most important to describe physical 
objects and thus should be reflected in the formulation for the entropy. For example, a sphere is an 
object having the maximum entropy for a given volume. The next section thus describes an 
approach to include gradients into the entropy formulation i.e. making the step from the “scalar” 
entropy	ݏ(௜) being based on scalar values ௜ to the “gradient” entropy also comprising gradients ∇ሬሬሬሬሬሬԦ௜. 
2.2 Entropy formulations comprising gradient terms 

The name “gradient entropy” is misleading because the value of the entropy and also the 
probabilities entering into its formulation remain scalars even if gradients are present in its 
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formulation. The choice of another name might thus be meaningful in future. The “gradient 
entropy” being described in prior work [3] aims at describing the growth of crystals using a 
phase-field approach (see section 3). Its relevant content is shortly summarized in the following. 

Classical thermodynamics are based on Gibbs formulation of the following variational problem 
ߜ :[7] ൝−෍௜ே

௜ୀ଴ ݈݊௜	 − 	൭෍௜ E௜ே
௜ୀ଴ − ௧௢௧ܧ ൱ − μ෍(௜ே

௜ୀ଴ − 1)ൡ = 0 (6)

with , μ being the Lagrange multipliers accounting for the constraints of energy and probability 
conservation. The solution of this variational problem yields the well-known relation for the 
probability of specific state ௜: 

௜	 = 	 ݁ି୉೔	/௓ ܼ = ෍݁ି୉೔	ே
௜ୀ଴  (7)

with Z being the partition function being necessary to normalize the probabilities and  = ଵ௞். It is 

interesting to note that instead of the simple variation ߜ = డడ೔ also the full variational derivative ቄ డడ೔ − ሬሬԦ డడሬሬԦ೔ቅ leads to the same result as there are no explicit dependencies on gradients in the - 

equivalent - formulation: 

 				ቊ ߲߲௜ − ሬሬԦ ߲߲ሬሬԦ௜ቋ ൝−෍௜ே
௜ୀ଴ ݈݊௜ − ൭෍௜ E௜ே

௜ୀ଴ − ௧௢௧ܧ ൱ − μ෍(௜	ே
௜ୀ଴ − 1)ൡ = 0 (8)

Replacing the logarithmic terms ௜݈݊௜ by scalar products of type aሬԦሬሬԦ௜ ln൫aሬԦሬሬԦ௜൯ drastically 
changes that situation. Under some simplifying assumptions - especially a Taylor expansion of the 
logarithmic terms - scalar products comprising gradients occur [3]:  ቊ ߲߲௜ − ሬሬԦ ߲߲ሬሬԦ௜ቋ ൝−෍|aሬԦ|ଶหሬሬԦ௜หଶே

௜ୀ଴ − ൭෍௜ E௜ே
௜ୀ଴ − ௧௢௧ܧ ൱ − μ෍(௜	ே

௜ୀ଴ − 1)ൡ = 0 (9)

The presence of such gradient terms has major consequences for the variational procedure as 
the ሬሬԦ డడሬሬԦ೔	 operator now finds a target. To physically motivate this replacement of the logarithmic 

terms by scalar products it is helpful to consider models of crystal growth as depicted in the 
following. 

Interfaces in physical systems often have a finite extension of several monolayers and therefor 
the extension of thermodynamics including sharp interfaces towards a more general 
thermodynamic description involving diffuse interfaces respectively gradients seems meaningful. 
Two discrete models describing the growth of a so called Kossel crystal, Fig.1a, will be described in 
more detail: (i) the Jackson model of faceted growth [6], Fig.1b, and (ii) the Temkin model for the 
growth of a diffuse interface [9], Fig.1c. 

The Schmitz model [3], Fig.1d, extrapolates the discrete approach of Temkin into a continuum 
description, where the gradient may be identified by  ܽݐ݈݁ܦ௡ 	= ௡ିଵ − ௡ = ݀݀ݖ ∗ ܽ௭ (10)

with “ܽ௭” denoting the lattice spacing in z-dimension. Generalization to three dimensions then 
yields ሬሬሬሬሬሬԦ 	∗ Ԧܽ with Ԧܽ representing a vector characterizing the metric imposed by the underlying 
crystal structure of the solid phase. The inclusion of such gradient type contributions due to diffuse 
interfaces -- revealing a characteristic length scale being defined by the vector Ԧܽ -- into the classical 
free energy/entropy formulation of thermodynamics is highly interesting for the description of 
evolving structures and introduces a length scale into thermodynamics.  
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Fig. 1a): Kossel's model of a growing crystal (figure adapted 

from [4]). Atoms attach to the interface in layers. The model 

assumes that the atoms may only adhere on the top of already 

solid atoms ('solid on solid'). A smooth transition with a 

finite interface thickness can be identified when averaging 

the fraction of solid atoms parallel to the interface (see fig. 

1d). 

 

 

Fig. 1b): The Jackson model [6] assumes an interface being 

restricted to a single layer separating the two bulk regions. 

The entropic term in the Jackson model reads: 

φlnφ	+	(1-φ)ln(1-φ)	  

 Fig. 1c): The Temkin model [9] assumes multiple steps 

separating the two bulk regions. The entropy of an 

intermediate layer n in this case is also defined by its adjacent 

layer n-1. The entropic term in the Temkin model reduces to 

the Jackson model in case of a single interface layer and 

reads: ෍ (୬ିଵஶ
୬ୀିஶ −୬)ln(୬ିଵ−୬)

= ෍ (Delta୬)ஶ
୬ୀିஶ ln	(Delta୬) 

 

 Fig. 1d): The Schmitz model [3] is an extension of the 

Temkin model for small step widths and approximates the 

discrete formulation of Temkin by a continuous gradient and 

by turning the sum of the individual contributions of the 

discrete layers into an integral (see text): මaሬԦሬሬԦ ln(aሬԦሬሬԦ) 
In case of multiple objects “i”, each of these objects will have an own order parameter ௜ and 

its own interface being characterized by ሬሬԦ௜  as depicted in section 3 on phase field models. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2017                   doi:10.20944/preprints201703.0136.v1

Peer-reviewed version available at Entropy 2017, 19, 151; doi:10.3390/e19040151

http://dx.doi.org/10.20944/preprints201703.0136.v1
http://dx.doi.org/10.3390/e19040151


 5 of 13 

 

Variational minimization of the resulting free energy functional for N objects comprising entropic 
terms of type  −෍aሬԦሬሬԦ௜ே

௜ୀ଴ ln(aሬԦሬሬԦ௜) (11)

recovers the phase-field equations of motion under specific, simplifying assumptions. One of these 
assumptions relates to a Taylor expansion of the aሬԦሬሬԦ௜ln	(aሬԦሬሬԦ௜)  terms, which for aሬԦሬሬԦ௜ < 1 
provides following approximation: aሬԦሬሬԦ୧ ln൫aሬԦሬሬԦ୧൯ ~ (aሬԦሬሬԦ௜ )ଶ − aሬԦሬሬԦ௜  (12)

The scalar character of the entropy has been maintained by the use of scalar products when 
inserting the gradient terms. The vector aሬԦ in this early model [3] corresponds to the lattice vector of 
the growing crystal determining the distance between individual, discrete atomic layers of the 
Temkin model. 

No such vector is a priori specified for a more generic formulation being the objective of the 
present work. Thus there is a need to specify a reference vector nሬԦ taking the role of the crystal 
lattice vector aሬԦ in the early crystallization model [3]. This vector has to be introduced as part of a 
scalar entity and the use of a scalar product thus seems mandatory. An interesting option for the 
choice of nሬԦ is the use of the scalar-triple (or parallelepipedial) product spanning a volume with 
value v along with an oriented coordinate system consisting of the three base vectors Ԧ݁௫, Ԧ݁௬, Ԧ݁௭	: 

Fig. 2: Scalar triple product: eሬԦ୸൫eሬԦ୶ × eሬԦ୷൯ = v.  The 

volume being spanned by these vectors is v. The 

diagonal vector of this coordinate system reads eሬԦ୶ +eሬԦ୷ + eሬԦ୸ = nሬԦ with its norm being	(eሬԦ௫ଶ + eሬԦ௬ଶ + eሬԦ௭ଶ)଴.ହ =หnሬሬԦห . This vector also is the normal vector to the 

tangential plane to that volume. 

A periodic repetition of this elementary finite volume may eventually span the entire space 
and can be approximated by a continuous field	nሬԦ = 	nሬԦ	(ݎԦ). For the purpose of this paper the norm of 
the vector |nሬԦ| and the volume of the parallelepiped v are considered as constant.  

Terms including scalar products between the coordinate system defined by nሬԦ and gradients of 
the scalar fields ௜	then - in analogy with equation (12) - read: nሬԦሬሬԦ୧ ln൫nሬԦሬሬԦ୧൯ ~ (nሬԦሬሬԦ୧ )ଶ − nሬԦሬሬԦ୧  (13)

3. Phase-Field Models 

The overall strategy of the methodology proposed in this article comprises compiling the free 
energy density from a combination of entropic terms (see previous section) and from constraints 
given by conservation laws. The specification of different ୧(rԦ, t)  becomes mandatory for 
describing different objects and also for formulating the constraints of mass, energy and 
momentum conservation in terms of the variables	௜(ݎԦ, ,Ԧݎ)ሬሬԦ௜,(ݐ పሶ,(ݐ ,Ԧݎ) ݐ݊݅ܽݎݐݏ݊݋ܿ : (ݐ = ݂(௜(ݎԦ, ,Ԧݎ)ሬሬԦ௜,(ݐ పሶ,(ݐ ,Ԧݎ) (14) ((ݐ

The basis to tackle this task is provided by the phase-field method being shortly reviewed in 
terms of its relevance to the scope of the present methodology. 

Phase-field models have their origin in the description of phase transitions. Phase transitions 
play a vital role in many areas of physics at all scales including e.g. magnetism, superconductivity, 
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solidification, condensation, solid state transformations, very fundamental transitions like the 
Higgs-Kibble mechanism unifying electroweak interaction, or possibly even nucleation and growth 
of galaxies. 

Theories of phase transitions have their origin in early models of van der Waals (1893), 
Korteweg (1901), Ginzburg-Landau (1950), Cahn-Hilliard (1958), Allen-Cahn (1960), Halperin, 
Hohenberg & Ma (1977). While the early models did not include any spatial resolution, especially 
the Cahn-Hilliard equation for the first time addressed demixing phenomena in a spatially resolved 
approach. The order parameter entering into the equations was the – conserved - concentration of 
alloy elements. The Allen-Cahn equation then included the option of non-conserved order 
parameters for the first time. It seems essential to highlight, that phase transitions are best described 
by non-conserved order parameters, as for example the fraction liquid of a system will turn from 1 
to 0 in a solidification process and thus is not a conserved quantity.  

The first phase-field concept has been proposed in unpublished work by Langer [10] and was 
first publicly documented by Fix [11] and Caginalp [12]. The simulation of the evolution of complex 
3D dendritic structures using phase-field models by Kobayashi [13] marked the trigger for an 
intense use of this methodology in materials sciences. The binary transitions/ equilibria between 
two states have later been extended to multi-phase equilibria in a multi-phase-field-model [14]. 
Higher order derivatives of the order parameter eventually lead to atomic resolution of rigid 
lattices in so called phase-field crystal models [15]. Phase-field models nowadays have reached a 
high degree of maturity and found applications in describing complex microstructures in technical 
alloy systems [16]. Reviews on phase-field modelling are found e.g.in [17, 18]. 

Core of most phase-field models is the description of the evolution of the shape of an object in 
time. To describe the evolution of this shape it is necessary in a first step to mathematically describe 
the initial shape of the object, Fig.3: 

 

Fig. 3:Basic setting for the description of a complex shaped object by an order parameter. The order 
parameter field 	(rԦ, t)	takes the value 1 whereever and whenever the object is present. A diffuse 
contineous interface markes the transition from the object to the “non-object” as shown here for a 
solid object in a liquid.  

This initial shape thus is expressed as a scalar field of an “order parameter”, which is 
alternatively named “feature indicator” or most common “phase–field variable”. For the present 
objective it is sufficient to restrict the further discussion to rigid objects. Neither the evolution of 
their shape nor their motion in vacuum space will be addressed. This is the most basic use of a 
phase-field model just drawing on the definition of the “phase-field”-variable. The phase field 
description of a static object – here a sphere – being placed in vacuum is schematically depicted in 
Fig. 4: 

 

௜	 = ݁ݎℎ݁݌ݏ	݁ݎℎ݁ݓ			1 ݅ ݏ݅  ݐ݊݁ݏ݁ݎ݌
௜	 =  ݐ݊݁ݏܾܽ	ݏ݅	݅	݁ݎℎ݁݌ݏ	݁ݎℎ݁ݓ					0
଴	 =  ݐ݊݁ݏܾܽ	ݏ݅	݅	݁ݎℎ݁݌ݏ	݁ݎℎ݁ݓ					1
଴	 = ݁ݎℎ݁݌ݏ	݁ݎℎ݁ݓ				0 ݅ ݏ݅  ݐ݊݁ݏ݁ݎ݌

 

௜ܸ =ම௜(ݎԦ, ାஶ(ݐ
ିஶ  

ݏ݅ ℎ݁ݐ  ݅	݁ݎℎ݁݌ݏ	ℎ݁ݐ	݂݋	݁݉ݑ݈݋ݒ
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଴ = (1 −ଵ)	
ଵሶ ଶ = ଴ሶ ଶ	
ଵሶ = −଴ሶ 	

ሬሬԦଵ = 	−	ሬሬԦ଴	∆ଵ = 	−	∆଴ 

 

interface points i.e. 

the surface of the sphere 

are characterized by following: 

 

ሬሬሬሬሬሬԦ௜ ≠ 0 ∆௜ ≠ 0 
଴௜ ≠ 0 

௜݈݊௜ ≠ 0 

 

 

௜ܬ =මݎଵଶ௜௜(ݎԦ, ାஶ(ݐ
ିஶ  

ݎℎ݁݌ݏ	ℎ݁ݐ	݂݋		ܽ݅ݐݎ݁݊݅	݂݋	ݐ݊݁݉݋݉	ℎ݁ݐ	ݏ݅
݉௜ =ම௜௜(ݎԦ, ାஶ(ݐ

ିஶ  

 ݁ݎℎ݁݌ݏ	ℎ݁ݐ	݂݋	ݏݏܽ݉	ℎ݁ݐ	ݏ݅

ܴ௜ =∭ ,Ԧݎ)௜௜ݎ ∭ାஶିஶ(ݐ ௜(ݎԦ, ାஶିஶ(ݐ  

ݏ݅ ℎ݁ݐ  ݁ݎℎ݁݌ݏ	ℎ݁ݐ	݂݋	݀݅݋ݎݐ݊݁ܿ

ሬሬሬሬሬሬԦ௜หሬሬሬሬሬሬԦ௜ห = 	݊పሬሬሬԦ		 
 

ሬሬԦ	݊పሬሬሬԦ		= curvature 

of interface 

 

Fig. 4: Some important mathematical relations related to the phase-field description of a 
massive sphere  

The mass of a sphere i then is given as ݉௜ =ම௜௜(ݎԦ, ାஶ(ݐ
ିஶ  (15)

It should be noted that the integral extends over the entire space and not only over covers the 
domain of the sphere. The phase-field variable ௜ – being 0 wherever there is no sphere i – here 
acts as a type of stencil selecting the domain of the sphere out of infinite space. The conservation for 
a total mass of a system of N objects/spheres then is given as ܯ௧௢௧ =෍݉௜ே

௜ୀ଴ =ම෍௜௜(ݎԦ, ே(ݐ
௜ୀ଴

ାஶ
ିஶ  (16)

where the index i=0 refers to vacuum. Specifying the total mass as the integral of an average mass 
density  ܯ௧௢௧ =ම ௔௩௘௥௔௚௘ାஶ

ିஶ  (17)

allows formulating the constraint for mass conservation as follows −	g ൭෍௜௜(rԦ, t)୒
୧ୀ଴ − ୟ୴ୣ୰ୟ୥ୣ൱ = 0 (18a)

In case only a maximum of two objects coexist at the same point e.g. at the interface between 
vacuum and a massive object with index i, it is possible to rewrite the function ଴(rԦ, t)		as	(1 −
௜(rԦ, t))	yielding: −	g ൭෍௜௜(rԦ, t)୒

୧ୀଵ + ௩௔௖(1 −௜(rԦ, t)) − ୟ୴ୣ୰ୟ୥ୣ൱ = 0 (18b)

This assumption holds everywhere and anytime as long as the massive objects are immersed in 
vacuum and do not have any mutual contact with each other. The mass density of the vacuum 
௩௔௖will become important in view of the cosmological constant entering into the scheme in this 
way (see chapter 5). 
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4. Lagrange Formalism 

Similar to entropy also the Lagrange formalism takes a significant role in many areas of 
physics. Besides the derivation of the Boltzmann factor being depicted above, the Lagrange 
formalism is a major basis for quantum mechanics and has especially been used to derive relations 
between symmetries and conservation laws. The Noether theorems  being derived using the 
Lagrange formalism showed that invariance of physics laws under a translation implies the 
conservation of momentum or invariance under translation in time implies the conservation of 
energy. A further striking observation is that major physics laws all contain a Laplacian operator 
(resp. a Poisson type equation) somehow suggesting a common ground of all these models, which 
comprise all different length scales like gravitation, electrostatics, thermal conductivity, diffusion, 
flow, phase-field, Schrödinger equations, density functional equations and many others. Some 
operators being present in the Lagrange scheme have the property of generating Laplacian 
operators. 

The basic concept of the Lagrange formalism is based on a functional being a scalar function F 
of a variable ୧	 which itself is a function of space and time ௜ = ௜(ݎ,  and being an integral of (ݐ
a density function f.  ܨሾ௜(ݎ, ሿ(ݐ = න (ݏ݈ܾ݁ܽ݅ݎܽݒ)݂ ݎ݀ ݐ݀  (19)

The density function f is a function of a number of variables especially 
comprising	௜(ݎԦ, ,Ԧݎ)ሬሬԦ௜,(ݐ పሶ,(ݐ ,Ԧݎ) ݂  :(ݐ = ݂(௜(ݎԦ, ,Ԧݎ)ሬሬԦ௜,(ݐ పሶ,(ݐ ,Ԧݎ) ,(ݐ … . ) (20)

The fundamental Lagrange formalism allows for extensions to further variables, to higher 
order derivatives, and also to tensor fields. The present article will only consider first order 
derivatives. Setting the variation of F with respect to one of the variables ௜(ݎԦ,  to zero provides (ݐ
the corresponding Euler equation by setting the variational derivative of the function f to zero: 

ܨ
௜(ݎԦ, (ݐ 	= 	 ቊ ߲߲௜(ݎԦ, (ݐ − ሬሬԦ ߲߲ሬሬԦ௜(ݎԦ, (ݐ − ݐ߲߲ ߲߲ሶ ௜(ݎԦ, ቋ(ݐ ݂ = 0 (21)

The results are the desired equations of motion for the different	௜(ݎԦ,   .(ݐ

5. Derivation of the Gravitational Law 

The entropy for the static field as formulated in chapter 2 in Taylor approximation reads: ݏ = −෍((nሬԦሬሬԦ௜)ଶே
௜ୀ଴ − nሬԦሬሬԦ௜) = −෍nሬԦଶሬሬԦ௜ଶcosଶ൫nሬԦ,ሬሬԦ௜൯ே

௜ୀ଴ − nሬԦሬሬԦ௜ (22)

The scalar product for the square term here has been formally executed introducing a cos2 
function of the angle between the vectors nሬԦ	and	ሬሬԦ௜. When applying the Lagrange formalism, this 
cos2 function eventually will lead to a non-linear generalization of the Newton–Poisson equation as 
e.g. used in modified Newtonian dynamic (MOND) approaches [19] - [22]. Further aspects of this 
generalization are detailed and discussed in section 6. In the following, the function is first 
considered as a constant making the product		nሬሬሬԦଶcosଶ൫nሬԦ,ሬሬԦ௜൯ = 1. The overall entropy term only 
comprises terms related to ሬሬԦ௜(ݎԦ, ,Ԧݎ)and no terms related to ௜ (ݐ పሶ	݀݊ܽ	(ݐ ,Ԧݎ)  Only the gradient .(ݐ
related terms of the functional derivative in the Lagrange formalism thus become active: −ሬሬԦ ߲߲ሬሬԦ௜ ൝−෍(ሬሬԦ௜ଶே

௜ୀ଴ − nሬԦሬሬԦ௜)ൡ = 0 (23)

Executing this derivative yields: 
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ሬሬԦ൛2ሬሬԦ௜ − nሬԦൟ = 2∆௜ − ሬሬԦnሬԦ = 0 (24)

The Poisson equation can be directly identified. The divergence of the normal vector of a 
surface is the measure of the curvature of that surface. The vector nሬԦ is the diagonal of the volume 
and perpendicular to the tangential plane to that volume. The divergence of this vector ሬሬԦnሬԦ		thus is a 
measure for the curvature κ of space. 

The constraint for mass conservation - its specification being fully detailed in equations 18 a&b - 
is associated with the Lagrange Multiplier g and only depends on ୧(rԦ, t). This constraint does not 
contain any terms related to ሬሬԦ௜(ݎԦ, పሶ	݀݊ܽ	(ݐ ,Ԧݎ) ௜߲߲ :(ݐ ൝−	݃ ൭෍௜௜

ே
ଵ − ௔௩௘௥௔௚௘൱ൡ = −g୧ (25)

Overall, the following equation for the field ௜ arises when adding this constraint term (25) to 
the term for the entropy equation (24): 2∆୧ − ሬሬԦnሬԦ − g୧ = 0 (26a)

Using the special formulation for the constraint of mass conservation comprising also the 

density of the vacuum (equation 18b) generates an additional term:  2∆୧ − ሬሬԦnሬԦ + g୴ୟୡ − g୧ = 0 (26b)

Calibrating the Lagrange multiplier g to 8πG with G being the gravitational constant yields: 2∆୧ − ሬሬԦnሬԦ + 8G୴ୟୡ = 8G୧ (27)

Comparing with the cosmological constant  [23] 

 = 8G୴ୟୡܿଶ  (28)

allows rewriting to ∆୧ − 12ሬሬԦnሬԦ + ܿଶ2 = 4G୧ (29)

Neglecting curvature κ of space (i.e. setting ሬሬԦnሬԦ = 0) and setting  = 0 this equation becomes 
identical with the Poisson equation of gravitation i.e. with classical Newton’s law ∆଴ = 4 G଴ (30)

In a first summary the application of the Lagrange scheme to the gradient-entropy terms as 
depicted in the present paper obeying the constraint of mass conservation in a strikingly direct 
derivation has led to 

• the Poisson equation of gravity (Newton’s law) 
• a term related to curvature of space (which probably can be related to Einstein’s general 

theory of relativity) 
• a term introducing the mass density of vacuum (which seems related to the cosmological 

constant) 
• terms related to a nonlinear generalization of the Newton–Poisson equation as used in 

modified Newtonian dynamic (MOND) approaches [19]-[22]. 
These MOND terms will be discussed in more detail in the following chapter. 

6. Modified Newtonian Dynamics 

Formulations and equations in Modified Newtonian Dynamics (MOND) approaches [19 -22] 
are constructed based on experimental findings and are made to fit the experimental observations 
especially on velocity distributions in galaxies. These approaches do not draw on dark matter as the 
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basis for the description of the observed behavior. In spite of successfully describing the 
experimental observations, the MOND formulations are under controversial discussion as they still 
lack a deeper theoretical framework for their derivation from fundamental principles. The present 
work indicates a possible approach towards a deeper understanding of the background of the 
empirical MOND equations. 

This chapter aims to elucidate relations of the proposed approach to the modified Newtonian 
dynamics (MOND) being already shortly indicated in chapter 2. Recovering the equation for the 
gradient entropy from chapter 2 including also the curvature related term reads: (nሬԦሬሬԦ)ଶ − nሬԦሬሬԦ = nሬԦଶሬሬԦଶcosଶ() − nሬԦሬሬԦ
 

 (31a) 

with the angle between space diagonal nሬԦ and the gradient of the scalar field ሬሬԦ being denoted as 
. The variational derivative then looks as follows: 

ሬሬԦ ∂∂ሬሬԦ ቄnሬԦଶሬሬԦଶcosଶ() − nሬԦሬሬԦቅ = 0 

 

ሬሬԦ ൜2nሬԦଶcosଶ()ሬሬԦ	 + 2nሬԦଶሬሬԦଶcos()sin() ∂∂ሬሬԦ− nሬԦൠ = 0 

 
which, with 
 nሬԦଶ = constant = 1	, 													cosଶ() = 1	– 	sinଶ(), 2cos()sin() = sin(2), and												sinଶ() = 	 tanଶ()1 + tanଶ() 
leads to 

 2∆	 − 2ሬሬԦ ቊ tanଶ()1 + tanଶ()ሬሬԦቋ + ሬሬԦ 	൜ሬሬԦଶsin(2) ∂∂ሬሬԦൠ 		− 		ሬሬԦ ሬ݊Ԧ 					= 0	 
 "Newton"									 − "MOND_I"												 + "ܫܫ_ܦܱܰܯ" −  		"݊݅݁ݐݏ݊݅ܧ"

(32 a)

(32 b)

(32 c)

 
For small angles of  with sin(2) ~ 0 and tan2() ~ 0 the classical Newton-Poisson equation is 

recovered, while for angles of   approaching  2ൗ  the MOND terms generate additional 
contributions. In both cases the curvature related term persists. The MOND Eulerian [20] for 
comparison reads  

ሬሬԦ ቊμ ቆหሬሬԦหܽ଴ ቇሬሬԦቋ (33)

with μ(x) being “….an as-yet unspecified function (known as the "interpolating function"), and a0 is a 
new fundamental constant (a0~10-8 cms-2) which marks the transition between the Newtonian and 
deep-MOND regimes. Agreement with Newtonian mechanics requires μ(x) → 1 for x >> 1, and 
consistency with astronomical observations requires μ(x) → x for x << 1. Beyond these limits, the 
interpolating function is not specified by the theory, although it is possible to weakly constrain it 
empirically……” [20]. Examples for the MOND interpolation function are the “standard” [22] and 
the “simple” [24] interpolation functions: 

 μ(ݔ) = 1√ݔ + ଶݔ 		ሾ݀ݎܽ݀݊ܽݐݏሿ ݎ݋ μ(ݔ) = 1ݔ + ݔ ሾ݈݁݌݉݅ݏሿ (34)

The term ୲ୟ୬మ()ଵା୲ୟ୬మ() corresponds to the square of the “standard” interpolation function when 

setting x = tan(). Setting x = tanଶ() directly yields the “simple” interpolation function.  
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In spite of these similarities with the MOND type formulations there are also obvious 
differences like (i) the persisting, original Newton term, (ii) the negative sign of the MOND_I term, 
(iii) the new, additional term denoted as MOND_II, (iv) the 	ሬሬԦnሬԦ	 term likely to be related to 
“Einstein” curvature, or (v) the " term”, see equation (29). 

It eventually seems most interesting to elaborate a relation and a physical interpretation for the 
angle  between the gradient of the potential ሬሬԦ and the direction of diagonal vector nሬԦ of the 
underlying coordinate system. A possible geometric interpretation in 2 dimensions is depicted in 
figure 5: 

 
Figure 5: Proposed explanation for a change in direction of the normal vector of space leading to an 
angle  which increases with increasing radius R (see text) 

The area A(R) of a small segment between R and R+dr being bounded by the angle α0 reads ܣ(ܴ) = (35) ݎ଴ܴ݀ߙ
Postulating this area A of the parallelepiped with diagonal nሬԦ to be constant when increasing 

the radius R by dr requires dr = ′ 1R (36)

with	ᇱ being a proportionality constant with dimensions [L2]. The tangent of the angle  between 
radial direction and the diagonal of the parallelepiped can then be approximated as a function of R 
by tan൫(ܴ)൯ = ݎ଴ܴ݀ߙ = ଴ߙ

ᇱ ܴଶ = ܴଶ


 (37)

with  = ᇲ஑బ  being a yet undefined constant probably related to the a0 parameter in MOND 

approaches, which indicates the transition between Newtonian and MOND regimes. In spite of 
being most interesting, it is beyond the scope of the present article to further elucidate the origin and 
interpretation of this angle and/or the value of .  

In summary following equation for gravity could be obtained when formally performing the 
scheme being proposed in this article to its full depth: 2∆	 − 2ሬሬԦ ቊ tanଶ()1 + tanଶ()ሬሬԦቋ + ሬሬԦ ൜ሬሬԦଶsin(2) ∂∂ሬሬԦൠ − ሬሬԦnሬԦ = 8G୧ − cଶ (38)

This equation comprises a combination of terms similarly – at least in a qualitative way - 
appearing in a number of other theories on gravitation. In its simplest approximation i.e. for 

 = 0	, ሬሬԦ ሬ݊Ԧ = 0 ,  = 0 (39)
this equation - being derived from a mere entropic approach - clearly recovers the classical 
Newtonian law. All other terms remain subject to future discussions.  

7. Summary and Future Perspectives 

The approach for the description of gravity being described in the present article is based on (i) 
an entropy formulation comprising scalar products of gradients of a scalar field with (ii) the 
diagonal vector of a volume element, (iii) a field description of objects being based on this scalar 
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field, and (iv) a formulation of the constraint for mass conservation in terms of this scalar field. 
Performing (v) the Lagrange formalism onto the resulting formulations in a strikingly direct 
derivation has led to 

• the Poisson equation of gravity (Newton’s law) 
• a term related to curvature of space (which probably can be related to Einstein’s general 

theory of relativity) 
• a term introducing the mass density of vacuum (which seems related to the cosmological 

constant) 
• terms related to a nonlinear generalization of the Newton–Poisson equation as used in 

modified Newtonian dynamic (MOND) approaches 
The resulting formulation suggests a co-existence resp. a superposition of different types of 

models being currently intensely discussed. A deeper investigation and interpretation of the 
presented approach by the respective communities thus seems worth some effort. It should be noted 
that the present paper has only touched a subset of an overall scheme, which may be extended into 
several directions being depicted in the following table:  

 Lagrange 

derivative 

entropy term Conserved 

quantity 

Lagrange multipliers 

established  

procedures 

߲߲௜ ݏ(௜) energy scalar (λ) 

this  

work 

߲߲௜ ݏ൫௜,ሬሬԦ௜൯ 
mass scalar (g) 


߲߲௜ ݏ൫௜,ሬሬԦ௜൯ 

future 

topics 

ݐ߲߲ ߲߲ሶ ௜ ݏ൫௜,ሬሬԦ௜,ሶ ௜൯ mass, energy, 

charge, 

momentum, spin 

scalars: (λ,g,ε,…) 

vectors: Ԧܿ and ℎሬԦ 
tensor type 

formulations 

….  
 

energy- 
momentum 

tensor, charge, 
spin 

..to be continued.… 

Especially the mass constraint being investigated in the present article can and should be 
replaced by the energy-momentum tensor in a relativistic formulation. A number of further, open 
questions remain to be tackled, such as (i) the origin and interpretation of the angle ϕ in the 
formulations, (ii) the origin and interpretation of the length scale [L2] being introduced by the scalar 
products (iii) a careful comparison with other theories, (iv) a comparison with experimental 
observations and many others.  

The appealing simplicity of the approach provides an interesting, new and alternative view on 
things and perhaps even a better understanding of phenomena in future, which seems to make it 
worth to be further exploited. 
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