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Abstract: Terms related to gradients of scalar fields are introduced as scalar products into the
formulation of entropy. A Lagrange density is then formulated by adding constraints based on
known conservation laws. Applying the Lagrange formalism to the resulting Lagrange density
leads to the Poisson equation of gravitation and also includes terms being related to curvature of
space. The formalism further leads to terms possibly explaining nonlinear extensions known from
modified Newtonian dynamics approaches. The article concludes with a short discussion of the
presented methodology and provides an outlook on other phenomena, which might be tackled
using this new approach.
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1. Introduction

Recent work on entropic gravity by Erik Verlinde [1] [2] has initiated a recovery of earlier work
by the author on thermodynamics of diffuse interfaces [3] and stimulated a generalization of this
approach. The approach being depicted in the present article draws on a combination of the very
strong and fundamental concepts of entropy, of the phase-field method, and of the Lagrange
formalism. The capability of this approach to describe various aspects of gravity will eventually be
demonstrated.

The description of entropy by now has been based on the use of scalars for the probabilities @;
of the individual states i:

s =s(d) (D

Scope of the present article is to generalize the entropy formulation and to include terms related
to vectors (with options for future extension to tensors) towards a formulation:
s =s(@, VO, ;) (2)
Known conservation laws for energy E, mass M, charge Q, momentum?’), and spin_l: , each law
being formulated as function of (@i, T7)<Dl-, iDi) are then added as constraints to the variational
problem. Each constraint is associated with its own Lagrange multiplier (A,g,...) in total yielding a
free energy density f:

f = S(dji,_v)dji, Cpl)
- KE(@i,_V)@i, @l) - gM(@i,_V)@i, @1) - gQ(@i,_V)@i, @1) (3)

—Eﬁ(@i,?@i, éDl-) — HZ(ch-,T%cDi, éDi) — -« further conservation laws.

The Lagrange multipliers ¢ and h for momentum P and spin L, respectively, obviously have
to be vector valued in order to recover a scalar contribution to the overall scalar equation. Units and
scales are implicitly introduced by the Lagrange multipliers. The Lagrange multiplier A for example
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corresponds to A= ﬁ making the energy dimensionless (or giving the dimension of kT to
entropy/probability). The names of the Lagrange multipliers have been arbitrarily selected to be
similar to the names of known fundamental constants and have been assigned to the conservation
law to which they are most probably related. Relations between these constants are expected to
emerge from the Lagrange formalism being applied to above free energy density.
The Lagrange formalism is based on a free energy functional F being the volume integral of a
OF

0D;(Tt)

0— { d - d d d }f
0BG D | avade | dtom @D @

free energy density f. Its variational derivative = 0 corresponds to

Executing these derivatives provides the equations of motion of the system. The present paper
will demonstrate first results obtained when applying above scheme for mass conservation. It will
also not yet address any time dependent phenomena meaning that there will be no dependencies
on @;(#,t) considered in the Lagrange density.

2. Entropy

The proposed concept requires a formulation of entropy which comprises terms related to
vectors (and in future also time derivatives). In order to specify vectors, a reference frame
respectively a coordinate system has to be defined. In spite of any vectors (or tensors) being
introduced into the terms of the equations, the overall entropy formulation and all the probabilities
entering into the typical logarithmic terms have to remain scalars.

2.1. Scalar Entropy

Entropy has unveiled its importance in numerous fields. Some most important discoveries are
based on entropy like (i) the Boltzmann factor in energy levels of systems (ii) the Gibbs energies of
thermodynamic phases, (iii) the Shannon entropy in information systems (iv) the Hawking entropy
of black holes, (v) the Flory-Huggins polymerization entropy in polymers [4],[5], and (vi) the
crystallization entropy in metals [4],[6] to name only some of the major highlights.

All these approaches for entropy are typically based on logarithmic terms like (see e.g. [7]):

N
S=—Zq)l lnd)l (5)
i=0

It seems important to note that entropy can be interpreted as tending to smear out any contrast
between different states respectively different objects. Contrast between states/objects is reflected in
gradients of an observable property allowing distinguishing between these states/objects. Any
object can be defined as a coherent region of space, which can be distinguished from other regions
due to a contrast in at least one attribute/property. This attribute may even be the ,name” of the
object indicating that somebody — based on some criterion - has identified the region to belong to the
same object [8].

Gradients and interfaces, i.e. measures of contrast, are thus most important to describe physical
objects and thus should be reflected in the formulation for the entropy. For example, a sphere is an
object having the maximum entropy for a given volume. The next section thus describes an
approach to include gradients into the entropy formulation i.e. making the step from the “scalar”
entropy s(@;) being based on scalar values @; to the “gradient” entropy also comprising gradients
Vo,

2.2 Entropy formulations comprising gradient terms

The name “gradient entropy” is misleading because the value of the entropy and also the
probabilities entering into its formulation remain scalars even if gradients are present in its
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formulation. The choice of another name might thus be meaningful in future. The “gradient

entropy” being described in prior work [3] aims at describing the growth of crystals using a

phase-field approach (see section 3). Its relevant content is shortly summarized in the following.
Classical thermodynamics are based on Gibbs formulation of the following variational problem

N N N
5{—2@ Ind; — x(ZmiEi - Etot>—u2(®i —1)}=0 ©6)
i=0 i=0 i=0

with A, pu being the Lagrange multipliers accounting for the constraints of energy and probability
conservation. The solution of this variational problem yields the well-known relation for the
probability of specific state ®;:

[7]:

N
(Dl. = e_in/Z / = z e_in (7)
i=0
with Z being the partition function being necessary to normalize the probabilities and A = % It is

interesting to note that instead of the simple variation § = % also the full variational derivative
L

{i - \7 = } leads to the same result as there are no explicit dependencies on gradients in the -

equlvalent - formulation:

N N
0
{(?CDi VD, } z D; In®; (; D, E; — Eior ) - H;(‘Di — 1)} =0 (8)

Replacing the logarithmic terms ®;In®; by scalar products of type v, ln(a_ﬁ(l)i) drastically
changes that situation. Under some simplifying assumptions - especially a Taylor expansion of the
logarithmic terms - scalar products comprising gradients occur [3]:

d N
{(?CDi aV(D} Zlal |VCD | N K(Z(D E; — Etot)‘ H;((Di - 1)} =0 (9)

The presence of such gradient terms has major consequences for the variational procedure as

the 17 =5, operator now finds a target. To physically motivate this replacement of the logarithmic

terms by scalar products it is helpful to consider models of crystal growth as depicted in the
following.

Interfaces in physical systems often have a finite extension of several monolayers and therefor
the extension of thermodynamics including sharp interfaces towards a more general
thermodynamic description involving diffuse interfaces respectively gradients seems meaningful.
Two discrete models describing the growth of a so called Kossel crystal, Fig.1a, will be described in
more detail: (i) the Jackson model of faceted growth [6], Fig.1b, and (ii) the Temkin model for the
growth of a diffuse interface [9], Fig.1c.

The Schmitz model [3], Fig.1d, extrapolates the discrete approach of Temkin into a continuum
description, where the gradient may be identified by

do
dz

with “a,” denoting the lattice spacing in z-dimension. Generalization to three dimensions then

Delta®, = &,_1 — @, = * (10)

yields V& * @ with d representing a vector characterizing the metric imposed by the underlying
crystal structure of the solid phase. The inclusion of such gradient type contributions due to diffuse
interfaces -- revealing a characteristic length scale being defined by the vector @ -- into the classical
free energy/entropy formulation of thermodynamics is highly interesting for the description of
evolving structures and introduces a length scale into thermodynamics.
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Fig. 1a): Kossel's model of a growing crystal (figure adapted

from [4]). Atoms attach to the interface in layers. The model

assumes that the atoms may only adhere on the top of already

solid atoms ('solid on solid"). A smooth transition with a

finite interface thickness can be identified when averaging

the fraction of solid atoms parallel to the interface (see fig.

1d).
(DS
?
100% 100%
) diffuse interface, e
o solid and liquid o
coexist
n
X
d)S
50% Fig. 1b): The Jackson model [6] assumes an interface being
100% N 100% restricted to a single layer separating the two bulk regions.
solid - liquid The entropic term in the Jackson model reads:
o ®In¢ + (1-9)In(1-¢)
n
X
Fig. 1c): The Temkin model [9] assumes multiple steps
rD separating the two bulk regions. The entropy of an
S
intermediate layer n in this case is also defined by its adjacent
layer n-1. The entropic term in the Temkin model reduces to
e liquid the Jackson model in case of a single interface layer and
gty s
'%”‘.‘""".ﬁ". reads: -
n
_ Z @ —O)In(®__ ~d,)
n=-o o
- Z (Delta® ) In(Deltad, )
n=-—oo
Fig. 1d): The Schmitz model [3] is an extension of the
= ?2,“ n Temkin model for small step widths and approximates the
12; () discrete formulation of Temkin by a continuous gradient and
12; by turning the sum of the individual contributions of the
iz discrete layers into an integral (see text):
2 -, .
o-l — = nZx ﬂfﬁ’deln(ﬁ’V(D)
2-101 2 3

In case of multiple objects “i”, each of these objects will have an own order parameter ®; and
its own interface being characterized by Vo, as depicted in section 3 on phase field models.
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Variational minimization of the resulting free energy functional for N objects comprising entropic
terms of type

N
- Z Vo, InGEVD,) (11)
i=0

recovers the phase-field equations of motion under specific, simplifying assumptions. One of these
assumptions relates to a Taylor expansion of the aVd;In(@V®;) terms, which for aVd; < 1
provides following approximation:

avae; In(aVe;) ~ @V, )? — 3V, (12)

The scalar character of the entropy has been maintained by the use of scalar products when
inserting the gradient terms. The vector @ in this early model [3] corresponds to the lattice vector of
the growing crystal determining the distance between individual, discrete atomic layers of the
Temkin model.

No such vector is a priori specified for a more generic formulation being the objective of the
present work. Thus there is a need to specify a reference vector 1 taking the role of the crystal
lattice vector @ in the early crystallization model [3]. This vector has to be introduced as part of a
scalar entity and the use of a scalar product thus seems mandatory. An interesting option for the
choice of 1 is the use of the scalar-triple (or parallelepipedial) product spanning a volume with
value v along with an oriented coordinate system consisting of the three base vectors é,,¢€,,é, :

Fig. 2: Scalar triple product: €,(€; x@8,) =v. The
volume being spanned by these vectors is v. The
diagonal vector of this coordinate system reads €, +
€, + €, =1 with its norm being (€% + € +€2)*° =
|ﬁ|. This vector also is the normal vector to the

tangential plane to that volume.

€x

A periodic repetition of this elementary finite volume may eventually span the entire space
and can be approximated by a continuous field i = 1 (7). For the purpose of this paper the norm of
the vector || and the volume of the parallelepiped v are considered as constant.

Terms including scalar products between the coordinate system defined by 1 and gradients of
the scalar fields ®; then - in analogy with equation (12) - read:

RV, In(BVD;) ~ VO, )% — BV (13)

3. Phase-Field Models

The overall strategy of the methodology proposed in this article comprises compiling the free
energy density from a combination of entropic terms (see previous section) and from constraints
given by conservation laws. The specification of different ®;(f,t) becomes mandatory for
describing different objects and also for formulating the constraints of mass, energy and
momentum conservation in terms of the variables @;(7, t), V&, (7, t), &,(# t) :

constraint = f(@,(7, t), Vo,(7, t), &,(F, 1)) (14)

The basis to tackle this task is provided by the phase-field method being shortly reviewed in
terms of its relevance to the scope of the present methodology.

Phase-field models have their origin in the description of phase transitions. Phase transitions
play a vital role in many areas of physics at all scales including e.g. magnetism, superconductivity,
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solidification, condensation, solid state transformations, very fundamental transitions like the
Higgs-Kibble mechanism unifying electroweak interaction, or possibly even nucleation and growth
of galaxies.

Theories of phase transitions have their origin in early models of van der Waals (1893),
Korteweg (1901), Ginzburg-Landau (1950), Cahn-Hilliard (1958), Allen-Cahn (1960), Halperin,
Hohenberg & Ma (1977). While the early models did not include any spatial resolution, especially
the Cahn-Hilliard equation for the first time addressed demixing phenomena in a spatially resolved
approach. The order parameter entering into the equations was the — conserved - concentration of
alloy elements. The Allen-Cahn equation then included the option of non-conserved order
parameters for the first time. It seems essential to highlight, that phase transitions are best described
by non-conserved order parameters, as for example the fraction liquid of a system will turn from 1
to 0 in a solidification process and thus is not a conserved quantity.

The first phase-field concept has been proposed in unpublished work by Langer [10] and was
first publicly documented by Fix [11] and Caginalp [12]. The simulation of the evolution of complex
3D dendritic structures using phase-field models by Kobayashi [13] marked the trigger for an
intense use of this methodology in materials sciences. The binary transitions/ equilibria between
two states have later been extended to multi-phase equilibria in a multi-phase-field-model [14].
Higher order derivatives of the order parameter eventually lead to atomic resolution of rigid
lattices in so called phase-field crystal models [15]. Phase-field models nowadays have reached a
high degree of maturity and found applications in describing complex microstructures in technical
alloy systems [16]. Reviews on phase-field modelling are found e.g.in [17, 18].

Core of most phase-field models is the description of the evolution of the shape of an object in
time. To describe the evolution of this shape it is necessary in a first step to mathematically describe
the initial shape of the object, Fig.3:

B oix 0 cquals 1 : 100% solid 0 % liquid
B - ox 0 equalso - 0% solid 100 % liquid
1 @{x, t) betweenOand1 : diffuse boundary

Fig. 3:Basic setting for the description of a complex shaped object by an order parameter. The order
parameter field @ (%,t) takes the value 1 whereever and whenever the object is present. A diffuse
contineous interface markes the transition from the object to the “non-object” as shown here for a
solid object in a liquid.

This initial shape thus is expressed as a scalar field of an “order parameter”, which is
alternatively named “feature indicator” or most common “phase—field variable”. For the present
objective it is sufficient to restrict the further discussion to rigid objects. Neither the evolution of
their shape nor their motion in vacuum space will be addressed. This is the most basic use of a
phase-field model just drawing on the definition of the “phase-field”-variable. The phase field
description of a static object — here a sphere - being placed in vacuum is schematically depicted in
Fig. 4:

@, @; =1 where sphere i is present
+00
@, =0 where sphereiis absent V= J' f o, 6)

@, =1 where sphereiisabsent v

@, =0 where sphereiis present

is the volume of the sphere i
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D =(1-d) o
.2 .2 ]-=jjf7‘2 .CD,('F,t)
D =D interface points i.e. ' J, AT
D =—D the surface of the sphere
Vo, = — v is the moment of inertia of the spher
Vv, V&, are characterized by following: f f p
AD, = —A@, o
— - mizwpiqbi(?,t)
Vo, vV, # 0 o
[E— - 1A
|V, A®, # 0 _
is the mass of the sphere
D@, % 0
+oo -
V7, = curvature O, Ind; # 0 R — I AGT
i +oo N
of interface M-, @@t
is the centroid of the sphere

Fig. 4: Some important mathematical relations related to the phase-field description of a

massive sphere

The mass of a sphere i then is given as

m; = fﬁ PG 1) 15)

It should be noted that the integral extends over the entire space and not only over covers the
domain of the sphere. The phase-field variable @; — being 0 wherever there is no sphere i — here
acts as a type of stencil selecting the domain of the sphere out of infinite space. The conservation for

a total mass of a system of N objects/spheres then is given as
+oo N

o= Y= [[[ Y .0 a9
i=0 Zoo =0

where the index i=0 refers to vacuum. Specifying the total mass as the integral of an average mass

density
+00
Mo = fff paverage (17)

allows formulating the constraint for mass conservation as follows

N
—8 Zpi@i(f:’ t) _paverage =0 (183)
i=0

In case only a maximum of two objects coexist at the same point e.g. at the interface between
vacuum and a massive object with index i, it is possible to rewrite the function @,(%,t) as (1 —
@,(1,1)) yielding:

N
8| D ABED + (1 = BT D) = Pyyerage | = O (18b)

i=1
This assumption holds everywhere and anytime as long as the massive objects are immersed in
vacuum and do not have any mutual contact with each other. The mass density of the vacuum

P,qcWill become important in view of the cosmological constant entering into the scheme in this

way (see chapter 5).
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4. Lagrange Formalism

Similar to entropy also the Lagrange formalism takes a significant role in many areas of
physics. Besides the derivation of the Boltzmann factor being depicted above, the Lagrange
formalism is a major basis for quantum mechanics and has especially been used to derive relations
between symmetries and conservation laws. The Noether theorems being derived using the
Lagrange formalism showed that invariance of physics laws under a translation implies the
conservation of momentum or invariance under translation in time implies the conservation of
energy. A further striking observation is that major physics laws all contain a Laplacian operator
(resp. a Poisson type equation) somehow suggesting a common ground of all these models, which
comprise all different length scales like gravitation, electrostatics, thermal conductivity, diffusion,
flow, phase-field, Schrodinger equations, density functional equations and many others. Some
operators being present in the Lagrange scheme have the property of generating Laplacian
operators.

The basic concept of the Lagrange formalism is based on a functional being a scalar function F
of a variable ®; which itself is a function of space and time @; = @,(r,t) and being an integral of
a density function f.

Flo,(r,t)] = f f(variables) dr dt (19)

The density function f is a function of a number of variables especially
comprising @, (7, t), V&, (7, t), d,(%, t):

f = f(@,G0), Va7, 0), &,# D), ...) (20)

The fundamental Lagrange formalism allows for extensions to further variables, to higher
order derivatives, and also to tensor fields. The present article will only consider first order
derivatives. Setting the variation of F with respect to one of the variables @;(7,t) to zero provides
the corresponding Euler equation by setting the variational derivative of the function f to zero:

OF { d > d d d } F=0
> = SN = 5~ Ar A = = 21
50,0 o@D aveGe 0tadG o @
The results are the desired equations of motion for the different @;(7, t).

5. Derivation of the Gravitational Law

The entropy for the static field as formulated in chapter 2 in Taylor approximation reads:
N N
— — - 2 — —
s=— Z((HVCDi)Z —nV®,) = — Z n2VO; cos?(R, V@) — IVD; (22)
i=0 i=0
The scalar product for the square term here has been formally executed introducing a cos?
function of the angle between the vectors N and V@;. When applying the Lagrange formalism, this
cos?function eventually will lead to a non-linear generalization of the Newton-Poisson equation as
e.g. used in modified Newtonian dynamic (MOND) approaches [19] - [22]. Further aspects of this
generalization are detailed and discussed in section 6. In the following, the function is first
considered as a constant making the product H2cos?(ii, V®;) = 1. The overall entropy term only
comprises terms related to T7)Q>i (#,t) and no terms related to @;(7,t) and @,(7,t). Only the gradient
related terms of the functional derivative in the Lagrange formalism thus become active:

N
— d — 2 —
—‘7—::—— -:E: VO, —'KVHD' = 0 23
AP ) (23)

Executing this derivative yields:
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V{2VD; — 1} = 240, - Vi = 0 (24)

The Poisson equation can be directly identified. The divergence of the normal vector of a
surface is the measure of the curvature of that surface. The vector 1 is the diagonal of the volume
and perpendicular to the tangential plane to that volume. The divergence of this vector Vi thusis a
measure for the curvature x of space.

The constraint for mass conservation - its specification being fully detailed in equations 18 a&b -
is associated with the Lagrange Multiplier g and only depends on ®;(¥,t). This constraint does not
contain any terms related to Vo,(7,t) and O,7, t):

N
0
a@i {_ 9 (Z pi Cpi B paverage)} = _gpi (25)
1

Overall, the following equation for the field ®; arises when adding this constraint term (25) to
the term for the entropy equation (24):

2A0; — Vi —gp, =0 (26a)

Using the special formulation for the constraint of mass conservation comprising also the
density of the vacuum (equation 18b) generates an additional term:

200; — Vi +gp,, . —gp, =0 (26b)

Calibrating the Lagrange multiplier g to 8nG with G being the gravitational constant yields:
200; — Vi + 81Gp, . = 87Gp, 27)

Comparing with the cosmological constant A [23]
8nGp, vac
allows rewriting to
1_, Cc2A

A(Di - EVI’I + T = 4TCGpi (29)

Neglecting curvature « of space (i.e. setting Vi = 0) and setting A = 0 this equation becomes
identical with the Poisson equation of gravitation i.e. with classical Newton’s law
AD, = 41 Gp, (30)
In a first summary the application of the Lagrange scheme to the gradient-entropy terms as
depicted in the present paper obeying the constraint of mass conservation in a strikingly direct
derivation has led to
e the Poisson equation of gravity (Newton’s law)
e a term related to curvature of space (which probably can be related to Einstein’s general
theory of relativity)
e a term introducing the mass density of vacuum (which seems related to the cosmological
constant)
e terms related to a nonlinear generalization of the Newton-Poisson equation as used in
modified Newtonian dynamic (MOND) approaches [19]-[22].
These MOND terms will be discussed in more detail in the following chapter.

6. Modified Newtonian Dynamics

Formulations and equations in Modified Newtonian Dynamics (MOND) approaches [19 -22]
are constructed based on experimental findings and are made to fit the experimental observations
especially on velocity distributions in galaxies. These approaches do not draw on dark matter as the
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basis for the description of the observed behavior. In spite of successfully describing the
experimental observations, the MOND formulations are under controversial discussion as they still
lack a deeper theoretical framework for their derivation from fundamental principles. The present
work indicates a possible approach towards a deeper understanding of the background of the
empirical MOND equations.

This chapter aims to elucidate relations of the proposed approach to the modified Newtonian
dynamics (MOND) being already shortly indicated in chapter 2. Recovering the equation for the
gradient entropy from chapter 2 including also the curvature related term reads:

— — — 2 —
(MV®D)? —0VO = 12V cos?(@) — nVD (31a)

with the angle between space diagonal T and the gradient of the scalar field V& being denoted as
¢. The variational derivative then looks as follows:

— d — 2 s
V——{12Vd cos?(¢) —nVD| =0 (32 a)
pe () }
v )ow2 2 Y, N ; 6(p A
V{Zn cos“(@)V® + 2n*V® cos(@)sin(Q) —— — n} =0 (32 b)
ovVd
which, with
n? = constant = 1, cos?(p) = 1 - sin?(o),
tan?
2cos(@)sin(@) = sin(2¢), and sin?(¢p) = H—TIEZ(P()@
leads to
—( tan’(p) - — (=2 L0 =
20D — 2V{———F——VOD V iVOD sin(2p) ——¢t — V =0
(i o) +¥ [Fa'sinzo 22} - v 320
"Newton" — "MOND_I" + "MOND_II" — "FEinstein"

For small angles of ¢ with sin(2¢) ~ 0 and tan?(¢) ~ 0 the classical Newton-Poisson equation is
recovered, while for angles of ¢ approaching 7/, the MOND terms generate additional
contributions. In both cases the curvature related term persists. The MOND Eulerian [20] for

comparison reads
—( (IVo|\<
Vip(—)Vo (33)
Qo

with p(x) being “....an as-yet unspecified function (known as the "interpolating function"), and aois a
new fundamental constant (ao~10% cms2) which marks the transition between the Newtonian and
deep-MOND regimes. Agreement with Newtonian mechanics requires p(x) — 1 for x >> 1, and
consistency with astronomical observations requires p(x) — x for x << 1. Beyond these limits, the
interpolating function is not specified by the theory, although it is possible to weakly constrain it
empirically......” [20]. Examples for the MOND interpolation function are the “standard” [22] and
the “simple” [24] interpolation functions:

X

[standard] or u(x) = T+ =

ux) = ﬁ [simple] (34)

The term tan®(¢)
1+tan2 ()

setting x = tan(¢). Setting x = tan?(¢) directly yields the “simple” interpolation function.

corresponds to the square of the “standard” interpolation function when
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In spite of these similarities with the MOND type formulations there are also obvious
differences like (i) the persisting, original Newton term, (ii) the negative sign of the MOND_I term,
(iii) the new, additional term denoted as MOND_II, (iv) the Vi term likely to be related to
“Einstein” curvature, or (v) the "A term”, see equation (29).

It eventually seems most interesting to elaborate a relation and a physical interpretation for the
angle ¢ between the gradient of the potential V® and the direction of diagonal vector & of the
underlying coordinate system. A possible geometric interpretation in 2 dimensions is depicted in
figure 5:

Figure 5: Proposed explanation for a change in direction of the normal vector of space leading to an
angle ¢ which increases with increasing radius R (see text)

The area A(R) of a small segment between R and R+dr being bounded by the angle o reads
A(R) = agRdr (35)
Postulating this area A of the parallelepiped with diagonal 1 to be constant when increasing
the radius R by dr requires

d /1 36
r=o—

- (36)
with ¢’ being a proportionality constant with dimensions [L?]. The tangent of the angle ¢ between
radial direction and the diagonal of the parallelepiped can then be approximated as a function of R
by

agR  a, R?
tan(p(R)) = ——=—R%?=—
(#(R)) dr o o

with o = Z— being a yet undefined constant probably related to the ao parameter in MOND
0

(37)

approaches, which indicates the transition between Newtonian and MOND regimes. In spite of
being most interesting, it is beyond the scope of the present article to further elucidate the origin and
interpretation of this angle and/or the value of .

In summary following equation for gravity could be obtained when formally performing the
scheme being proposed in this article to its full depth:

tan? (o)
1+ anZ(e)

This equation comprises a combination of terms similarly — at least in a qualitative way -

— — — (= 2 a —
200D — zv{ vcp} 4V {vcp sin(2) ﬁ—(:D} — Vi =8nGp, —c2A  (38)

appearing in a number of other theories on gravitation. In its simplest approximation i.e. for

p=0, Vi=0, A=0 (39)
this equation - being derived from a mere entropic approach - clearly recovers the classical
Newtonian law. All other terms remain subject to future discussions.

7. Summary and Future Perspectives

The approach for the description of gravity being described in the present article is based on (i)
an entropy formulation comprising scalar products of gradients of a scalar field with (ii) the
diagonal vector of a volume element, (iii) a field description of objects being based on this scalar


http://dx.doi.org/10.20944/preprints201703.0136.v1
http://dx.doi.org/10.3390/e19040151

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2017 d0i:10.20944/preprints201703.0136.v1

12 0f 13

field, and (iv) a formulation of the constraint for mass conservation in terms of this scalar field.
Performing (v) the Lagrange formalism onto the resulting formulations in a strikingly direct
derivation has led to
e the Poisson equation of gravity (Newton’s law)
e a term related to curvature of space (which probably can be related to Einstein’s general
theory of relativity)
e a term introducing the mass density of vacuum (which seems related to the cosmological
constant)
e terms related to a nonlinear generalization of the Newton—Poisson equation as used in
modified Newtonian dynamic (MOND) approaches
The resulting formulation suggests a co-existence resp. a superposition of different types of
models being currently intensely discussed. A deeper investigation and interpretation of the
presented approach by the respective communities thus seems worth some effort. It should be noted
that the present paper has only touched a subset of an overall scheme, which may be extended into
several directions being depicted in the following table:

Lagrange entropy term Conserved Lagrange multipliers
derivative quantity
established 0
procedures 09, s(®) energy scalar (\)
a —
this 09, s(@ V)
= mass scalar
work 7 0 s(@, V) (9)
AV,
mass, energy,
9 9 (cD Vo c'D) h 9 scalars: (A,g,€,...)
At s\ D, V&, b; charge, -
0o L v 9 ) vectors: ¢ and h
future momentum, spin
toDi energy-
opi1Cs
P tensor type momentum _
formulations tensor, charge, ..to be continued....
spin

Especially the mass constraint being investigated in the present article can and should be
replaced by the energy-momentum tensor in a relativistic formulation. A number of further, open
questions remain to be tackled, such as (i) the origin and interpretation of the angle ¢ in the
formulations, (ii) the origin and interpretation of the length scale [L?] being introduced by the scalar
products (iii) a careful comparison with other theories, (iv) a comparison with experimental
observations and many others.

The appealing simplicity of the approach provides an interesting, new and alternative view on
things and perhaps even a better understanding of phenomena in future, which seems to make it
worth to be further exploited.
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