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Abstract: Many agonists for the estrogen receptor are known to disrupt endocrine functioning. We 
have developed a computational model that predicts agonists for the estrogen receptor ligand-
binding domain in an assay system. Our model was entered into the Tox21 Data Challenge 2014, a 
computational toxicology competition organized by the National Center for Advancing 
Translational Sciences. This competition aims to find high-performance predictive models for 
various adverse-outcome pathways, including the estrogen receptor. Our predictive model, which 
is based on the random forest method, delivered the best performance in its competition category. 
In the current study, the predictive performance of the random forest models was improved by 
strictly adjusting the hyperparameters to avoid overfitting. The random forest models were 
optimized from 4,000 descriptors simultaneously applied to 10,000 activity assay results for the 
estrogen receptor ligand-binding domain, which have been measured and compiled by Tox21. At 
this time, our model delivers the highest predictive power on estrogen receptor agonists in the 
world. Furthermore, analysis of the optimized model revealed some important features of the 
agonists, such as the number of hydroxyl groups in the molecules. 
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1. Introduction 

Estrogen receptors (ER) belong to the steroid receptor superfamily of ligand-dependent 
transcription factors [1]. Compounds related to ER activation, such as isoflavones and polycyclic 
aromatic hydrocarbons, disrupt the endocrine processes in humans and other species, severely 
affecting reproduction and growth [2,3]. Therefore, screening for ER agonists can counteract 
environmental contaminants and improve public health. Although ultra-high-throughput screening 
systems have been developed for several adverse-outcome pathways [4], experimental in vitro 
detection is limited by the vast number of screening targets. Consequently, a comprehensive assay is 
precluded by both economics and time. In contrast, predictive methods based on chemical structures 
can greatly accelerate the estimation and are expected to replace wet experimental systems. 

The National Institute of Health (NIH), Environmental Protection Agency, and Food and Drug 
Administration have collaborated to launch the Tox21 challenge, a large project targeting a variety of 
toxicity problems, including the environmental effects of ER agonists [5] [6]. The Tox21 project has 
assayed the activities of the compounds in the Tox21 10K library [4], which contains 10,000 chemicals 
for toxicity estimation. The adverse-outcome pathways selected for toxicity evaluations are the 
androgen receptor (AR), aryl hydrocarbon receptor (AhR), estrogen receptor (ER), aromatase and 
peroxisome proliferator-activated receptor (PPAR), nuclear factor (erythroid-derived-2)-like 
2/antioxidant responsive element (ARE), ATP-ase family AAA domain containing 5 (ATAD5), heat 
shock factor response element (HSE), mitochondrial membrane potential (MMP), and p53 [7]. 

One aim of the Tox21 project is to construct a predictive system based on computational 
toxicology. The Tox21 Data Challenge 2014 was organized by NIH’s National Center for Advancing 
Translational Sciences as a “cloud-sourcing” search for high-performance predictive models of 
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adverse-outcome pathways. Using computational toxicology technologies, participants competed in 
accuracy of predictive models with the biological toxic responses of compounds in the Tox21 10 K 
compound library, whose activities were known, applying the abovementioned adverse-outcome 
pathways as the training set [8]. Dr. Yoshihiro Uesawa, a winner of the 2014 challenge and a coauthor 
of the present study, constructed a predictive model for the ER-ligand binding domain (ER-LBD), 
which showed the best performance among the models submitted by the registered teams [9].  

Uesawa’s ER model was based on a machine learning method called random forest (RF). RF is 
an ensemble learning method that decides the best predictive result by majority rule of the various 
predictive results gained from many decision trees [10]. Each tree is constructed from bootstrapped 
data of the training set. This method achieves high predictive performance at low computational cost, 
even when the dataset is large or prejudiced. It also assesses the importance of the variables used in 
the construction. In the previous study, we confirmed that rigorous selection from many kinds of RF 
models significantly improved the performance of RF. However, we also observed an overfitting 
tendency [9]. In this study, we attempt to improve the predictive performance of the previous RF 
construction by a novel RF optimization technique. 

2. Methods 

2.1. Conformations and Descriptors 

Various descriptors were calculated by optimizing the three-dimensional structures of their 
chemical constituents, as implemented in the Tox21 Data Challenge 2014 [9]. Briefly, the SD file of 
each descriptor, which contains the chemical structure and ER-LBD assay results (active or inactive) 
of the compound, was downloaded from a homepage dedicated to the competition [8]. The three-
dimensional conformations of the chemical structures in two configurations (a charged form at 
neutral pH and an uncharged form) were calculated in the Molecular Operating Environment (MOE) 
2013.08 (Chemical Computing Group Inc., Quebec, Canada) [11]. Finally, 4071 different molecular 
descriptors were generated by MOE, MarvinView 5.12.4, and Dragon 6. 

2.2 Construction of Predictive Models 

In the previous study [9], the original training set of 8,733 chemicals and final evaluation set of 
599 chemicals were downloaded from the homepage of the Tox21 Data Challenge website [8]. The 
same data were used in the present study. The original training set was randomly divided into a 
training set (50%) for constructing the predictive model and a test set (50%) for model validation. The 
selection processes in the predictive models were constructed from the training set (50%). In our basic 
method, we applied the bootstrap-forest function in JMP Pro 12.0.1 (SAS Institute Inc., Cary, NC, 
USA) as the RF algorithm [12]. Finally, the compounds in the final evaluation set were predicted by 
the model. The evaluation indices were the predictive ability of each model in the evaluation step, 
and the area under the receiver operating characteristic curve (ROC_AUC Evaluation) (see Figure 1). 
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Figure 1. Scheme of model construction 

2.3. Effects of Descriptors 

MOE computed 369 charged and 369 uncharged forms of each molecular descriptor (738 
descriptors in total). For each descriptor group (charged, uncharged, and total), we constructed 100 
RF models and compared their average ROC-AUC evaluation values. From the results, we estimated 
the contributions of the charged and uncharged forms in the predictive performance (Figure 2). 

 

Figure 2. Charged and uncharged forms 100 random forest (RF) models were constructed for the 
charged, uncharged, and both forms of each descriptor. All models were involved in predicting the 
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activities of the estrogen receptor ligand-binding domain for the compounds in the final evaluation 
set. 100 ROC_AUC values were plotted for each group. Green lines denote the averages and their 95% 
confidence intervals. 

 
2.3.2 Number of Descriptors 

To ascertain whether the performance of our model would be improved by adding more 
descriptors, we constructed 100 RF models of the 4071 descriptors calculated by MOE, MarvinView, 
and Dragon, and compared their predictive abilities with those of RF models constructed from MOE 
descriptors (738 kinds) alone (Figure 3). 

 

Figure 3. Number of descriptors 100 RF models were constructed for both numbers of descriptors. All 
models were involved in predicting the activities of estrogen receptor ligand-binding domain for 
compounds in the final evaluation set. 100 ROC_AUC values were plotted for each group. Green lines 
denote the averages and their 95% confidence intervals. 

2.3. Effects of Hyperparameters 

To find the best combination of hyperparameters in the RF construction, we scanned two 
hyperparameters under the following conditions (10 iterations per condition): Number of Terms 
(the number of columns considered as splitting candidates at each split (range 1–1000)) and 
Maximum Splits per Tree (the maximum number of splits for each tree (range 2–400)). For each 
Number of Terms we constructed 190 models. The ROC_AUC values of all constructed models 
were then estimated on the compounds in the test set (50%) and evaluation set (Figure 4). 
Furthermore, the 190 ROC_AUC Evaluation values obtained for each Number of Terms were 
compared (Figure 5). Finally, for the models with Number of Terms = 1000, we generated scatter 
plots between Maximum Splits per Tree and the ROC_AUCs in the training set (50%) and 
evaluation set (Figure 6). 
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Figure 4. Relationship between ROC_AUC values in models constructed from the test set (50%) and 
the final evaluation set. Each point denotes the performance of the model. This figure is referred from 
[9]. 

 

Figure 5. Effects of the hyperparameter Number of Terms on the RF modeling 190 RF models were 
constructed in each group, and all models were then involved in predicting the activities of the 
estrogen receptor ligand-binding domain for compounds in the final evaluation set. Plotted are the 
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ROC_AUC values for the final evaluation set in each group. Green lines denote the averages and their 
95% confidence intervals. 

 

Figure 6. Effects of the hyperparameter Maximum Splits per Tree on the RF modeling ROC_AUC 
values of the training set (50%) and final evaluation set are plotted in blue and red, respectively. Large 
Maximum Splits per Tree introduced model overfitting. The predictive ability was optimized for 
Maximum Splits per Tree = 6. 
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2.5. Statistical Treatment 

Significant differences in the means were tested by an unpaired Student’s t-test and one-way 
ANOVA, followed by least-significant difference analysis. All analyses, including the ROC_AUC 
calculations, were performed in JMP-Pro. The significance level was set to P < 0.05. 

3. Results Discussion 

3.1 Effects of Descriptors 
Integrated descriptors from both charged and uncharged forms improved the predictive ability 

of the RF models, relative to descriptors from unilateral forms (Figure 2). Varying the charge 
conditions increased the diversity of the information in the RF models. Increasing the number of 
descriptors from 738 (calculated by MOE alone) to 4071 (calculated by three software programs, 
MOE, Dragon and MarvinView) also improved the predictive ability of the RF models (Figure 3). On 
the other hand, feature selections based on the known importance of each descriptor during the RF-
modeling failed to improve the model performance (data not shown). These observations suggest 
that a large number of descriptors are advantageous for our models’ performance. 
 
3.2 Effects of Hyperparameters 

The AUC values in the test set (50%) and the final evaluation set were not simply correlated; 
rather, there was an optimal point at which the AUC of the test set (50%) corresponded to the highest 
AUC of the evaluation model (Figure 4). This point was emphasized in our previous paper [9]. In the 
competition, model selection was optimized using the AUC values in the test set (50%) because the 
AUCs between the test set (50%) and the training set (50%) showed good linear correlation [9]. Next, 
we analyzed the true performance of our models on the final evaluation set [9] (see Figure 4).  

All further investigations in the current study were performed on the final evaluation set. In a 
scanning search for the Number of Terms hyperparameter, the best predictive model was obtained 
at Number of Terms = 1000 (Figure 5). A scanning search for the predictive capabilities of Maximum 
Splits per Tree under restricted conditions, with Number of Terms = 1000, was also performed (Figure 
6). RF models with high Maximum Splits per Tree were found to overfit the training set. The optimal 
predictive ability of the models was obtained for Maximum Splits per Tree = 6 (Figure 6). We inferred 
that we could regulate the overfitting by lowering the optimal point of Maximum Splits per Tree; that 
is, by restricting the tree growth. 
 
3.3 Discrimination potential of improved models 

Figure 7 shows the ROC curves that evaluate the discrimination capacities of the new predictive 
model and the best model in the Tox21 Data Challenge 2014. The ROC-AUC values for the 
compounds with ER-LBD activities in the final evaluation test set were 86.6% and 82.7% in the present 
and previous models, respectively. In addition, the ROC between sensitivity and 1-specificity was 
better balanced in the present model than in the previous model. Overall, the predictive performance 
of the present model surpasses that of the previous model.  

Fig 7. ROC curves for predicting ER-LBD-activating compounds in the newly proposed model 
(left) and the previous best model in the Tox21 Data Challenge 2014 ROC-AUCs and hyperparameter 
values in the models are also described. 
 
3.4 Most important descriptors 

The importance of the descriptors used in constructing the present model was calculated from 
their split rankings (count of each descriptor usage when partitioning the decision trees in the RF 
modeling) and G2 values (chi-squared values of the likelihood-ratios) [13]. The descriptor rankings 
in 100 RF models under the optimized hyperparameter conditions are listed in Table 1. The top-
ranking ER-LBD activator was SpMin 1_Bh(m). The topological shape, nArOH and number of OH 
groups bound to the aromatic rings might contribute to the activity of this compound in the ER-LBD 
assay [14]. 
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Table 1. Most important descriptors Listed are the top 10 ranked descriptors in the RF modeling, 
determined from the split and G2 rankings. 

 

4. Conclusions 

We constructed a new predictive model with higher discrimination ability for estrogenic 
compounds than our previous best model, which was submitted to the Tox21 Data Challenge 2014. 
It means that we had to succeed to deliver the highest predictive power on estrogenic compounds in 
the world. The best conditions for the RF modeling regulated the overfitting of the test set (50%). This 
regulation was found to be important in the RF model constructions. Furthermore, the model 
analyses revealed that in compounds such as SpMin 1_Bh(m), interactions with ER were facilitated 
by the structural and physicochemical properties of the compounds and the number of phenolic OH 
groups. This modeling approach will be useful for predicting the toxicity of compounds and 
producing new drugs and chemicals. 
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