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Abstract: This paper focuses on optimal sensor positioning for monitoring activities of daily living 
and investigates different combinations of features and models on different sensor positions, i.e., 
the side of the waist, front of the waist, chest, thigh, head, upper arm, wrist, and ankle. Nineteen 
features are extracted and the feature importance is measured by using the Relief-F feature 
selection algorithm. Eight classification algorithms are evaluated on a dataset collected from young 
subjects and that collected from elderly subjects, with two different experimental settings. To deal 
with different sampling rates, signals with a high data rate are down-sampled and a transformation 
matrix is used for aligning signals to the same coordinate system. The thigh, chest, side of the waist, 
and front of the waist are the best four sensor positions for the first dataset (young subjects), with 
average accuracy values being greater than 96%. The best model obtained from the first dataset for 
the side of the waist is validated on the second dataset (elderly subjects). The most appropriate 
number of features for each sensor position is reported. The results provide a reference for building 
activity recognition models for different sensor positions, as well as for data acquired from 
different hardware platforms and subject groups. 

Keywords: activity classification, activity monitoring, wearable sensors, sensor positions  
 

1. Introduction 

Body Sensor Network (BSN) has recently been an emerging technology that provides a 
platform for pervasive healthcare monitoring [1]. The technology is believed to play an important 
part in improving the quality of life for elderly people and patients. In healthcare monitoring, 
wearable sensors have been employed for several applications including energy expenditure 
estimation [2–4] and analysis [5,6], fall detection [7], fall risk assessment [8], activities of daily living 
(ADLs) classification [9,10], motor rehabilitation [11], and cardiac monitoring [12]. 

Activity recognition is particularly useful in pervasive sensing systems. For fall monitoring, 
accurate activity classification can enhance the performance of fall detection algorithms [7]. 
Recognition of lying postures, e.g., supine, lying on the right side, prone, and lying on the left side, 
is useful for developing a system for preventing pressure ulcers [13]. Accelerometers and 
gyroscopes are widely used wearable sensors for activity classification. In [14,15], seven activities, 
i.e., walking, sitting, standing, jogging, biking, walking upstairs, and walking downstairs, were 
classified using an accelerometer and a gyroscope. ADL classification using an accelerometer was 
reported to yield better performance than that using a gyroscope for all activities, except for 
walking upstairs and walking downstairs, and the overall recognition accuracy was not improved 
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with the additional use of the gyroscope. Compared to a gyroscope, an accelerometer requires less 
power [16,17] and is thus a more suitable sensor as power constraint is one of the challenging issues 
in a BSN application. Other problems and requirements for effective development of a BSN 
application can be found in [18].  
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Wrist [10, 23, 24, 
27, 30, 33, 34]
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Figure 1. Different positions for sensor placement. 

In several studies [37–39], multiple sensors have been used either to improve detection 
accuracy and/or to find an optimal placement. Although higher classification accuracy has been 
reported with the use of multiple sensors [38], multi-sensor fusion will introduce several research 
challenges as discussed in [40]. Taking usability into consideration, a smaller number of sensors is 
preferable. As depicted in Figure 1, a large variety of sensor positions have been examined in 
previous studies. In order to find an optimal sensor position, Gjoreski et al. [37] placed tri-axial 
accelerometers on subject’s chest, waist, thigh, and ankle. Several types of ADLs (e.g., lying, sitting, 
standing, sitting on the ground, sitting/lying down, standing up, and all fours on the ground) and 
falls (e.g., tripping, falling slowly, falling from a chair slowly, and falling from a chair quickly) were 
classified using statistical features, e.g., mean, root mean square, and standard deviation. With only 
one sensor, the accuracy values of 75% and 77% were achieved at the chest and waist, respectively. 
Atallah et al. [39] investigated the optimal sensor positions by placing tri-axial accelerometers on 
different parts of subjects’ bodies. Three feature selection algorithms, i.e., Relief, Simba, and 
minimum redundancy maximum relevance (mRMR), were used for measuring feature importance. 
These algorithms gave the same four highest ranked features. With only four features, kNN yielded 
reasonable results for distinguishing five levels of activities, i.e., very low, low, medium, high, and 
transactional activities. In [38], an ADL classification experiment was conducted based on five 
tri-axial accelerometers placed on the chest, waist, thigh, lower back, and ankle. Eleven types of 
features were used for classifying seven types of ADLs, i.e., lying, sitting, standing, walking, 
walking upstairs, walking downstairs, and jogging. Four machine-learning algorithms, i.e., decision 
tree (J48), naïve Bayes (NB), neural network (NN), and support vector machine (SVM), were 
evaluated by using WEKA Experimenter. With a single sensor, J48 and NB yielded the best 
accuracy values when the sensor was placed on the ankle, while SVM appeared to be the best 
classifier for all other positions. Out of the four positions, the waist was reported as the best single 
position, with the accuracy value of 97.81%. In some studies [41–43], other criteria besides accuracy 
(e.g., computation cost, power consumption, and sensor redundancy) are also considered in the 
data analysis step. The experiments in these studies involved multiple sensor nodes and beyond the 
scope of this study. 

 Different studies focused on different types of ADLs, subject groups, hardware, and 
environment settings. Evaluating an algorithm on a different subject group or hardware platform 
usually involves collecting new data. Most of the time, the classification performances are thus not 
directly comparable. However, it has been learned from previous studies that a combination of 
features obtained from feature selection algorithms and different classification models can be used 
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for discovering appropriate models and features for classifying ADLs. The main objectives of this 
paper are twofold: 

1. To investigate three different factors that affect ADL classification, i.e., sensor positions, 
features, and classification models. 

2. To explore the possibility of applying a model trained from data collected in a different 
experimental setting (e.g., a subject group, a sampling rate, and hardware). 

In this study, we focus on optimal sensor positioning for monitoring elderlies’ activities such 
as sleep postures, sitting, standing, and walking. Collecting data from elderlies (vulnerable subjects) 
has some limitations. They are uncomfortable to perform certain activities and/or are not able to 
perform certain activities for a long period of time. Walking upstairs/downstairs, for example, are 
not included in this study as many of the elderlies would require assistance to perform these 
activities and trading the classification accuracy of walking upstairs/downstairs for that of other 
activities would not benefit a monitoring system for elderlies as a whole. To address the above two 
objectives, two datasets are used. The first dataset is collected from young subjects using tri-axial 
accelerometers placed on different body parts. The second dataset is collected from elderly subjects 
using a different hardware platform and a different sampling rate. By using the data collected from 
young subjects, we first study various combinations of features and models on different sensor 
positions, and analyze how the three factors (i.e., sensor positions, features, and classification 
models) affect the ADL classification. The best obtained model is then applied on the dataset 
collected from elderly subjects.  

The paper is organized as follows: Section 2 describes the datasets used in our experiments. 
Section 3 presents data analysis techniques. Section 4 reports the experimental results and Section 5 
concludes this paper. 

2. Data Descriptions 

This study involves two datasets, i.e., DS1 for deriving appropriate combinations of features 
and activity classification models on different sensor positions and DS2 for assessing the 
performance of pre-trained models when applied on data obtained using another data collection 
scenario. Wireless ear-worn activity recognition (e-AR) sensors [44] and a BSN node [45], developed 
by Imperial College, were used for collecting DS1 and DS2, respectively. An e-AR sensor uses a 
Nordic nRF24LU1P processor, with an IEEE 802.15.4 (2.4GHz) integrated radio transceiver. A BSN 
node is based on a TI MSP430F1611 processor and equipped with a separate radio transceiver 
(Chipcon CC2420). Figure 2 shows an e-AR sensor and a BSN node, along with the coordinate 
systems of their embedded tri-axial accelerometers.   

The dataset DS1 was collected (using e-AR sensors) from 12 subjects (6 male and 6 female), 
aged between 23–45 years. Acceleration signals were sampled at 15 Hz and transmitted to a 
computer through a receiver board. As shown in Figure 3, the e-AR sensors were placed on eight 
different body positions, i.e., a) the side of the head, b) the upper arm, c) the wrist, d) the ankle, e) 
the chest, f) the side of the waist, g) the front of the waist, and h) the thigh. The twelve subjects were 
asked to perform a sequence of seven activities, i.e., a) sitting on a chair, b) supine, c) lying on the 
left side, d) prone, e) lying on the right side, f) standing, and g) walking, as shown in Figure 4. Each 
subject performed each activity for approximately 15 seconds.  

The dataset DS2 was collected (using a BSN node) from 48 healthy elderly subjects (20 males 
and 28 females), with an average age of 67.52 years. Acceleration signals were sampled at 50 Hz. 
The subjects were asked to perform a routine of six activities, i.e., a) sitting on a branch, b) standing, 
c) walking, d) supine, e) lying on the left side, and f) lying on the right side, which are shown in 
Figure 5, with a tri-axial accelerometer being attached only to the side of the waist. Compared to the 
activities considered in DS1, prone was excluded since it was uncomfortable for elderly subjects.  

The study was approved by the Ethical Committee for Human Research of the National 
Science and Technology Development Agency (NSTDA), Thailand (document number 0010/2558), 
and the informed consent was obtained from subjects prior to their participation. 
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Figure 2. An e-AR sensor (a) and a BSN node (b) along with their coordinate systems. 
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Figure 3. Sensor placements. 
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Figure 4. A young subject performing a sequence of 7 activities. 

a) b) c)

d) e) f)  
Figure 5. An elderly subject performing a sequence of 6 activities. 
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3. Data Analysis 

3.1. Feature Extraction 

Prior to feature extraction, data preprocessing is required. For instance, to handle different 
sampling rates, acceleration signals with a high data rate were down-sampled. To cater for different 
device coordinate systems, a transformation matrix was used for aligning signals to the same 
coordinate system. To deal with noises in acceleration signals, a median filter technique was 
employed. To cater for inter-subject and hardware variations, acceleration signals were normalized 
by subtracting the median values of signals acquired during standing. Table 1 describes the features 
used in this study along with the feature extraction functions. The functions are applied on 
normalized data using a fix-sized window of 1 second, shifted by 0.5 second at each time step. 

Table 1. List of features and their equations. 
Feature Description Equation 

F1–F3  Means along x-, y-, and z-axes 1

N

ii

N
==
x

μ  

F4–F6  Standard deviations along x-, y-, and z-axes ( )2

1

N

ii

N
==

− x μ
σ  

F7–F9  Maximum values along x-, y-, and z-axes ( )max i=M x  

F10–F12  Minimum value along x-, y-, and z-axes ( )min i=m x  

F13–F15  Differences between maximum and minimum values along x-, y-, and z-axes  Δ =m M - m  

F16  Standard deviation magnitude 2 2 2
x y zσ σ σ= + +σ  

F17–F19  Correlation between x-y, x-z, and y-z axes ab
ab

a b

r
σ

σ σ
=

 

N = number of data samples; i = data sample index;  = observation vector at i;  , ,  are standard 
deviation values along the x-, y-, and z-axes, respectively; abσ  is the covariance between axes a and b.   

3.2. Feature Selection 

Compared to other approaches to feature selection, a feature ranking approach, in general, 
requires lower computation complexity and entails a lower risk of overfitting [46]. In [39], three 
feature selection algorithms were examined, i.e., Relief, Simba, and mRMR, and it was reported that 
these algorithms yielded similar feature importance, especially for the first four highest ranked 
features. Relief-F [47], which is an extended version of Relief [48], was reported as the best feature 
selection algorithm in [49] compared to Fast Correlation Based Filter and Correlation Based Feature 
Selection. It was one of the most widely used feature selection algorithms, with low computational 
time [50] and the ability to deal with incomplete and noisy data, and can be used for evaluating 
feature quality in multi-class problems [51].  
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In this study, Relief-F was used to determine the most appropriate feature sets. The algorithm 
ranks individual features according to feature relevance scores. It randomly selects an instance R 
and finds the nearest sample H from the same class and the nearest sample M from a different class. 
Given a feature A and its feature relevance score W[A], instead of looking for the nearest sample M 
from only one different class, Relief-F searches one M for each different class C and averages their 
contributions for updating W[A] by  

[ ] [ ] ( )
( )

( ) ( )( ), ( ( ))( ), ( )
,

C class R

P C A R A M CA R A H
W A W A

n n≠

× Δ Δ  = − +   

where n is the number of instances used for approximating the probabilities; given a sample x, 
Δ(A(R), A(x)) is the difference between the value of the feature A of the instance R and the value of 
that of x; class(R) denotes the class to which R belongs; and M(C) and P(C) denote the nearest sample 
in the class C and the probability of the class C, respectively.  

3.3. Classification Algorithms 

The following classification algorithms are used in this study. 

• Bayesian network (BN) [52]: BN is a directed acyclic graphical model describing relationships 
between features and classes. Each node in a graph corresponds to a feature and a directed edge 
between two nodes represents a causal relationship between them. By observing feature values 
and the class of each element in the set of data samples, one can construct such a network and 
use it to compute the probability of each class given an unseen sample. The class with the 
highest probability will be assigned to the sample. In our experiment, conditional probability 
tables are estimated by using a simple estimator and network structures are learned from the 
data distribution by using the K2 search algorithm along with Bayesian scores. 

• Naïve Bayes (NB) [53]: NB is a simple Bayes’ theorem-based probabilistic classifier with 
independent assumptions among features.  

• Pruned decision tree (J48) [54]: J48 is a Java implementation of the C4.5 decision tree algorithm. 
C4.5 determines “information gain” of each feature by comparing entropies of the data before 
and after considering the feature. C4.5 tries to construct a decision tree in which each node tests 
a feature value. Although the algorithm is proved to be very useful, features with many 
possible values could lead to overfitting. This problem could often be resolved by pruning some 
branches of the tree. 

• Partial-tree rule learning (PART) [55]: PART uses the C4.5 decision algorithm to create a set of 
classification rules. However, unlike the ordinary C4.5, PART does not expand (or grow) a tree 
from the root to leaf nodes. It uses only a partially created tree that contains nodes with the 
lowest entropy to generate a set of rules. The instances covered by the created rules are then 
removed from the dataset. The process is repeated until all instances are covered. 

• Instance-based learning [56]: Instead of building a classification model, an instance-based 
learning algorithm uses a set of given data as part of the classifier. The idea is built around an 
algorithm called k nearest neighbor (kNN). kNN treats each sample as a point in an 
M-dimensional space, where each dimension corresponds to one feature. It is assumed that 
elements of the same class should be close to each other (since they have similar properties, i.e., 
similar feature values). To classify an unseen sample, kNN finds k nearest data samples (or 
“neighbors”) and assigns the majority class of those samples to it.  

• Multi-layered perceptron [57]: Sometimes referred to as neural network (NN), the algorithm 
classifies data samples using a layered structure (network) of small processing units, i.e., 
perceptrons. A perceptron takes in multiple inputs and produces a single output using a simple 
calculation function. Each input is associated with a computational weight. To classify a data 
sample, perceptrons in the first layer consider feature values of the samples and forward the 
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output results to those in the next layer. Each perceptron in a subsequent layer produces an 
output by considering the results obtained from all perceptrons in its previous layer along with 
their corresponding weights. The process is repeated until the last layer is reached. A class is 
assigned to an unseen data sample based on the results of the last layer. The network can be 
trained to adapt itself to solve specific problems, by continually adjusting the weight of each 
input to each perceptron. 

• Support vector machine (SVM) [58]: SVM is a supervised machine learning algorithm which 
can be used for both classification or regression analysis. Its basic principle is to define decision 
boundaries between a set of objects having different class memberships by constructing hyper 
planes in a multidimensional space. In our experiment, SVM is trained by applying a sequential 
minimal optimization algorithm with a polynomial kernel being used as a support vector. 

In our experiments, we set the number k of neighbors for instance-based learning to 1 and 3. The 
performance of the eight algorithms, i.e., BN, NB, J48, PART, 1NN, 3NN, NN, and SVM, are 
compared. The classification models were developed in Java using WEKA API with their default 
parameters.  

4. Results 

4.1. Validation Using DS1 (Young Subjects) 

Table 2 shows the ranks of the 19 features obtained by applying the Relief-F feature selection 
algorithm to DS1. A smaller number indicates a better feature rank. The top two features used for 
all positions are the mean and the maximum values along the upward axis (F3 and F9). Considering 
the top four features, the maximum value along x-axis (F7) and the minimum values along the 
upward axis (F12) are the next most commonly used features, followed by the mean along the 
x-axis (F1). The correlation across the three axes (F17, F18, and F19) are the three lowest ranked 
features for all sensor positions. Since the number of subjects in DS1 is 12, six-fold cross validation 
was used to evaluate the eight classification algorithms. For each fold, the models were trained 
based on data acquired from ten subjects and evaluated on the data acquired from the two 
remaining unseen subjects. For each integer f such that 1 ≤ f ≤ 19, Figure 6 shows the average 
accuracy values of the eight classification algorithms across all sensor positions when the top f 
features for each sensor position were used. With only one feature, the accuracy values are 
relatively low for all sensor positions. The values can be improved by increasing the number of 
features. As there is no significant improvement on classification accuracy with further additional 
features, five to seven features are considered to be appropriate. The accuracy values of different 
classification algorithms across the eight sensor positions are shown in Figure 7. Table 3 
summarizes the model settings with the best classification accuracy across different sensor 
positions. The thigh yields the highest accuracy value of 99%, using 1NN with five features. NB is 
the best model for the side of the waist, front of the waist, chest, head, and ankle, with accuracy 
values of 98.34%, 96.45%, 98.50%, 86.38%, and 90.70%, respectively. 3NN and NN are the best 
models for the upper arm and wrist, with the accuracy values of 80.83% and 80.60%, respectively. 

Table 2. The feature rankings obtained from Relief-F on DS1.
 

Position 
Feature ranks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Side waist F3 F9 F7 F10 F1 F11 F2 F8 F12 F16 F4 F5 F14 F15 F6 F13 F18 F19 F17
Front waist F3 F7 F1 F9 F12 F11 F10 F2 F8 F16 F6 F15 F4 F14 F13 F5 F19 F17 F18

Chest F3 F9 F8 F11 F2 F12 F7 F1 F10 F14 F5 F15 F6 F16 F13 F4 F18 F17 F19
Thigh F9 F3 F1 F7 F2 F8 F11 F10 F12 F16 F4 F13 F5 F6 F15 F14 F17 F19 F18
Head F3 F9 F12 F2 F7 F8 F11 F1 F10 F6 F15 F16 F4 F13 F14 F5 F17 F18 F19

Upper arm F3 F9 F12 F2 F11 F8 F1 F7 F10 F16 F6 F13 F15 F4 F14 F5 F17 F18 F19
Wrist F3 F9 F7 F12 F1 F2 F11 F10 F8 F16 F6 F15 F4 F13 F5 F14 F17 F18 F19
Ankle F9 F3 F1 F12 F7 F2 F10 F11 F8 F16 F6 F15 F4 F5 F13 F14 F18 F19 F17
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Figure 6. The average accuracy of the eight classification models across all sensor positions on DS1. 

 

  

  

  

  

Figure 7. Accuracy of different classification algorithms across all sensor positions. 
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Table 3. Settings with highest accuracy for different sensor positions. 
Position Number of 

features 
Best 

algorithm 
Accuracy

Side waist 10 NB 98.34 
Front waist 11 NB 96.45 

Chest 10 NB 98.50 
Thigh 5 1NN 99.00 
Head 12 NB 86.38 

Upper arm 17 3NN 80.83 
Wrist 6 NN 80.60 
Ankle 7 NB 90.70 

 
Table 4. Best algorithms for different number of features and sensor positions. 

Position 
Feature ranks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Side waist NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB 
Front waist BN NB NB NB NN 3NN SVM SVM SVM NB NB NB SVM SVM SVM SVM SVM SVM SVM

Chest NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB 
Thigh BN BN 3NN 3NN NN NN 1NN NN NN 1NN 1NN 1NN 1NN 1NN 1NN 1NN NN NN NN 
Head NB NB NB 3NN 1NN NB NB NB NN NB NB NB NB NB NB NB NB NB NB 

Upper arm NB NB NB 3NN NN 3NN 3NN 3NN SVM 3NN 3NN 3NN 3NN 3NN 3NN 3NN 3NN SVM SVM
Wrist NN NN 3NN 3NN 3NN NN NN PART NN NN SVM NN SVM SVM SVM SVM SVM NN NN 
Ankle NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB 
 

Table 4 shows the best algorithms versus different number of features and sensor positions. For 
all sensor positions except for the thigh, upper arm, and wrist, the best algorithms do not change 
when more than 12 features are used. It is well known that the best classification algorithm is 
data-dependent. The algorithm that occurs most often for a sensor position can be regarded as a 
generally suitable algorithm for that sensor position. From the results, NB is a generally suitable 
algorithm for the side of the waist, chest, head, and ankle, while 1NN, 3NN, and NN are generally 
suitable algorithms for the thigh, upper arm, and wrist, respectively. Apart from the front of the 
waist, the generally suitable algorithms are also the algorithms that yield best classification 
accuracy shown in Table 3. For the front of the waist, although SVM occurs most often as the best 
algorithm, it occurs only when more than the top six features are used. When a fewer number of 
features are used, NB is considered as a generally suitable algorithm for this position. Figure 8 
summarizes the frequency that different algorithms appear as the best models across all 
experimental settings. In general, NB is considered as the best algorithm for this dataset, followed 
by SVM, 3NN, and NN. 
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Figure 8. The number of occurrences of the eight classification algorithms in Table 4.  
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The class-specific accuracy values for the best models shown in Table 3 are detailed in Table 5. 
The limbs, i.e., the upper arm and wrist, are not suitable positions since they yield low accuracy for 
several activities (with the average accuracy being less than 85%). Average accuracy values greater 
than 96% are obtained from four sensor positions, i.e., the side of the waist, front of the waist, chest, 
and thigh. Lying postures are most difficult to classify when sensors are placed on the limbs, i.e., 
the upper arm, wrist, and ankle. When different subjects perform the same lying posture, their limb 
positions may be different. Sitting is most difficult to classify when a sensor is placed on the head; it 
is often misclassified as standing when a subject is sitting upright. Although the thigh appears to be 
the position that yields the highest average accuracy in this experiment, users may sit with different 
positions of their legs in realistic scenarios. In many other related works [10,39,59–61], a common 
suggestion is to place the sensor at the waist as this location is less affected by peripheral body 
motions than upper or lower limbs. In terms of usability, wearing a sensor at the waist is more 
comfortable compared to the thigh, particularly for elderlies.  

 
Table 5. The ADL classification results obtained from the best models on DS1.

 
Position 

Activities
Average 

Sitting Supine Lying left Prone Lying right Standing Walking 
Side waist 94.05 99.79 100.00 97.50 99.79 97.27 100.00 98.34 
Front waist 93.63 99.66 94.06 98.61 90.48 98.69 100.00 96.45 

Chest 92.72 100.00 100.00 100.00 99.83 97.14 99.81 98.50 
Thigh 93.97 99.28 100.00 100.00 100.00 100.00 99.78 99.00 
Head 35.20 99.05 99.18 89.09 94.50 88.40 99.26 86.38 

Upper arm 92.59 71.65 84.90 49.79 69.30 98.50 99.11 80.83 
Wrist 77.25 78.24 72.59 58.42 80.45 98.45 98.77 80.60 
Ankle 97.61 79.91 87.71 80.31 93.42 98.82 97.13 90.70 

4.2. Validation Using DS2 (Elderly Subjects) 

Feature ranking in the dataset DS2 and the possibility of applying a classifier trained from DS1 
to DS2 were next investigated. Acceleration signals in DS2 were collected at a sampling rate of  
50 Hz using a BSN node placed only on the side of the waist. The signals were down-sampled to 
approximately 15 Hz. A median filter technique was used to eliminate noise. To ensure that features 
extracted from the two devices are comparable, the coordinate system of the BSN node was aligned 
with that of an e-AR sensor. After the matrix transformation, the Relief-F feature selection algorithm 
was applied to DS2. Table 6 compares the ranks of the 19 features obtained from DS1 when a sensor 
was placed on the side of the waist (cf. the first row of Table 2) and those obtained from DS2. At the 
side of the waist, the most appropriate number of features is ten (cf. Table 3). According to Table 6, 
all the ten highest ranked features for DS1 also appear among the ten highest ranked features for 
DS2. Six ADL types are common to DS1 and DS2 (cf. Section 2), i.e., sitting, standing, walking, 
supine, lying on the left side, and lying on the right side. Figure 9 shows the average accuracy 
values of the eight classification models for these six common ADL types when the top f features 
were used for each integer f such that 1 ≤ f ≤ 19. Except for the case when the top three and the top 
six features are used, the average accuracy values on DS1 and DS2 are almost the same. Based on 
Table 6 and Figure 9, it is expected that the top ten features used in the best model at the side of the 
waist for DS1 are also appropriate for DS2.  

Table 6. The feature rankings obtained from Relief-F on DS1 and DS2 for the side of the waist. 

Dataset 
Feature ranks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
DS1 F3 F9 F7 F10 F1 F11 F2 F8 F12 F16 F4 F5 F14 F15 F6 F13 F18 F19 F17
DS2 F3 F12 F9 F10 F7 F1 F11 F2 F8 F16 F14 F5 F13 F4 F15 F6 F19 F18 F17
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Figure 9. Comparison of average accuracy using feature ranking obtained from DS1 and DS2. 

 
The best model at the side of the waist for DS1, i.e., NB, is validated on DS2 by using the top 

ten features derived from DS1 for the side of the waist. Table 7 shows the ADL classification results. 
The accuracy values of all ADL types are greater than 92%. The average accuracy is 95.77%, which 
is only slightly lower than the average accuracy obtained on DS1 using the same model and 
features (98.34%, cf. the first row of Table 3).  

 
Table 7. The ADL classification results on DS2 using NB with the top ten features derived from DS1. 

Activities
Average 

Sitting Standing Walking Supine Ling left Lying right
96.03 96.78 100.00 94.32 92.04 95.43 95.77 

4.3. Comparison with a Transfer Learning Method 

A transfer learning was defined as the ability to extend what has been learned in one context to 
new contexts [62]. A summary of several existing works on activity recognition using transfer 
learning can be found in [63]. A recent work that is closely related to our study is presented in [64], in 
which three different asynchronous data mapping (ADM) algorithms, i.e., brute force ADM 
(BFADM), clustering-based ADM (CADM), and motif-based ADM (MADM), were introduced for 
supporting knowledge transfer in wearable systems. Tri-axial accelerometers (embedded in 
smartphones) with four different sampling rates, i.e., 50, 100, 150, and 200 Hz, were used for activity 
recognition. Nine young subjects were asked to perform six types of ADLs, i.e., walking, sitting, 
standing, walking downstairs, walking upstairs, and biking, while wearing eight smartphones (two 
phones for each sampling rate) on their waists. Three experiments were conducted, i.e., inter-subject, 
inter-device, and inter-model. The inter-subject experiment used data collected from eight subjects 
to train classification models and evaluated them with the remaining subject. The inter-device and 
inter-model experiments used data collected from one phone to train models, which were then 
tested using signals from another phone with the same sampling rate and signals from that with a 
different sampling rate, respectively. The classification models were trained and tested based on 
normalized cross-correlation with the resulting values lying between -1 and 1. Three classification 
algorithms were used, i.e., kNN, decision tree, and random forest. Among the three mapping 
algorithms, BFADM yielded the highest accuracy using random forest. It was concluded in [64] that 
the recognition accuracy of their approach could be affected by sampling frequency variation, device 
variation, and subject variation. In addition, cross-correlation is a poor measure to capture subject 
variation. Another limitation of their approach is the ability to handle static activities, especially 
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when device orientations are different (since it relies on signal motifs, which are subsequences that 
occur repeatedly in time series). In our study, we use signal resampling to handle the difference in 
sampling frequency, data normalization to handle inter-subject variation, and data transformation to 
handle the difference in sensor orientations. Table 8 compares the experimental settings and 
classification accuracy in our study with those in [64]. 

 

 Table 8. Comparison between our work and the work presented in [64]. 
 Our study Saeedi et al.’s study 

No. of subjects 12 young subjects 

48 elderly subjects 

9 young subjects  

Sensor 3D accelerometers 3D accelerometers 

Sampling rate 15 and 50 Hz 50, 100, 150, and 200 Hz 

Features 19 features, with Relief-F feature 

selection algorithm 

Signal similarity 

Window size 1 second (shifted by 0.5 second) 2 seconds (shifted by 0.5 second) 

Sensor 

placements 

Side waist, front waist, chest, 

thigh, head, upper arm, wrist, and 

ankle 

Waist 

Activities Sitting, supine, lying on the left 

side, prone, lying on the right side, 

standing, and walking 

Walking, sitting, standing, 

walking downstairs, walking 

upstairs, and biking 

Classifiers BN, NB, J48, PART, kNN, NN, and 

SVM  

kNN, decision tree, and 

random forest 

Accuracy 98.34% (side waist, using NB with 

10 features) 

~85% (with random forest) 

 

5. Conclusions  

This study presents an analysis of optimal settings for activity classification in terms of sensor 
positions, features, and classifiers, and assesses the possibility of applying a trained model on data 
acquired from a different experimental scenario. Focusing on monitoring basic activities performed 
by elderlies, only four lying postures, sitting, standing, and walking are considered.  

In the first experiment, activity classification was performed on a dataset collected from young 
subjects using e-AR sensors attached to eight different parts of subjects’ bodies, i.e., the side of the 
waist, front of the waist, chest, thigh, head, upper arm, wrist, and ankle. Nineteen features were 
extracted and their importance was measured by using the Relief-F feature selection algorithm. 
Different combinations of features and eight classification algorithms on different sensor positions 
were investigated. For each sensor position, the best classification model and the most appropriate 
features were reported. The mean and the maximum values along the upward axis were the top 
two common features used for all sensor positions. Among the eight positions, the side of the waist, 
front of the waist, chest, and thigh were the optimal sensor positions. NB outperforms other 
classifiers for most feature combinations. The NB algorithm with ten to eleven features was the best 
model for the side of the waist, front of the waist, and chest, while the 1NN algorithm with five 
features was the best model for the thigh. 
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In the second experiment, the dataset was collected from elderly subjects using a BSN node 
placed on the side of the waist. To process the signals from different environment settings, signals 
with high sampling rate were down-sampled and coordinate systems were aligned to the same 
direction. The experimental results show that the best model derived from the young-subject 
dataset can still perform with high classification accuracy when applied on the elderly-subject 
dataset. This demonstrates that data collection effort could be saved when a new hardware 
platform is developed, i.e., classification models obtained from a previous data collection scenario 
could be applicable on a new hardware platform, provided that appropriate data preprocessing has 
been performed. 
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