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o 1. Introduction

10 Grassmannian chain complex of free abelian groups generated by the projective configurations of points
1 was first introduced by Suslin [1]. Suslin used two type of differential homomorphisms d and p to connect
12 these free abelian groups. In Grassmannian chain complex each square is commutative and the composition of
13 two same differential morphisms is zero [1]. Classical polylogarithmic functions had studied for many hundred
1 years, first defined by Leibniz. Dilogarithm appear in the work of Spence, Abel, Kummer, Lobachesky, Hill,
15 Roger, and Ramanujan etc but most important was the functional equation known as Abel’s five term relations.
s Trilogarithms and its group B3(F) was first introduced by Goncharov using generalized triple cross ratio of
17 six points. Goncharov also generalized polylogarithmic group as 8, (F) and generalized Bloch-Suslin complex
12 known as Goncharov’s complex. Homomorphisms between Grassmannian and Bloch-Suslin complexes for
19 Di-logarithm weight n = 2 was defined by Goncharov [2—4]. Goncharov proved that the associated digram
20 is bi-complex and commutative. Goncharov [2] also uses the duality of configurations in order to prove
21 (projected seven-term) functional equation for the trilogarithmic group B3(F) and verifies that a Complex
22 forms among Grassmannian and Goncharov’s Complexes in weight 3 is commutative. Cathelineau [5—7] defined
2s  analogy of Goncharov’s complexes in the additive (both infinitesimal and tangential) setting called Cathelineau’s
24 complexes.

s Cathelineau defined F-vector space as $8,(F), generated by four term relation and 83(F), generated by 22
26 term relations for his generalized chain complex. Siddiqui [8] found projected triple cross ratio and indicated
27 that it should be written as the ratio of two projected cross-ratios. Siddiqui [8,9] also introduced variant
2s  of Cathelineau’s complexes in both infinitesimal and tangential setting and describe their relations through
29 homomorphisms with Grassmannian chain complexes of the projective configurations for weight n = 2. Author
s also found morphisms between Grassmannian complex and Variant of Cathelineau’s infinitesimal complex for
s weight n = 3 and show that the associated diagram is commutative and bi-complex.
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s Khalid et al. [10,11] defined generalized morphisms to connect Grassmannian complex with Variant of
s Cathelineau complex up to weight n=N. Further, the author of [12,13] also generalized higher order differential
s« homomorphisms in Grassmannian complex as n'* order differential morphisms.

s section 2 presents the basic ideas and background of Grassmanian chain complexes, Polylogarithmic groups,
s Bloch-Suslin complex, Goncharov’s complex and Cathelineau’s complex for weight n. In Section 3 geometry
37 through morphisms is defined to connect Grassmannian and Cathelineau’s infinitesimal complexes from weight
s n = 2uptoweightn = 6 also it is proven that the associated diagrams are bi-complex and commutative. Section
s 4 produces generalized geometry of Grassmannian and Cathelineau’s infinitesimal complexes using generalized
s morphisms and the main result that the generalized diagram is commutative. Last section is conclusion of the
s whole work.

22 2. Preliminary and Background

P Detailed background relevant to this research will be discussed in this section. It comprises the
s Grassmannian complex, Goncharov complex, Cathelineau complex, which is very crucial for this research
s study.

w 2.1. Grassmannian Complex

Consider a free abelian group G, (n) generated by m-vectors of dimension n. Following is the
Grassmannian bicomplex

(A)
p p p
--—d>G,,+5(n+2) —d>Gn+4(n+ 2) —d>Gn+3(n+2)
p p p
d d d
o —>Gpa(n+1) —=Gpi3(n+1) —=Gua(n+1)

p p p

d d d
e Gris(n) — L Gra (1) — = Gy ()

d is called differential map given by

n

d:(q0,---0) = Y (=1)'(90; s8> Gn) (1)

i=0
and p another differential morphism called projection morphism given by

n

p: (f]O,-u,CIn) = Z(—l)i(QiVIO,-'w@iwu,Qn) (2)
i=0

« Lemma 1. The diagram (A) is bi-complex, i.e. dod = pop =0

s Proof. For proof (see [1]) O

« Lemma 2. The diagram (A) is commutative, i.e. dop = pod

so  Proof. For proof (see [1]) O
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st 2.2. Polylogarithmic Groups and its Complexes
s LetZ [Pllp /10, 1, c0}] is Z—module called free abelian group generated by [x]| € Pllp [2,14], from now F will
ss  be used as a field and F** = F — {0, 1}.

s« Definition 1. The group B(F) is called Scissor congruence group, it is factor group of Z[F**] and its subgroup
_ vl
ss  generated by Abel’s famous five term relation, [x] — [y] + [2] - [}ijc] + [%] where x # y,x,y # 0,1  ([2])

6 2.2.1. Weight 1

57 Let the group R (F) C Z[P}./{0,1,0}] generated by 3 terms relation [xy] — [x] — [y] where x,y € F*.
s Define B (F), it is factor group of Z[P}./{0, 1,00}] and Ry (F) [2]. The function 6 : B (F) — F*,[x] - xis
s an isomorphism, such that B, (F) = F*

e 2.2.2. Weight 2

The subgroup Ry(F) c Z [P]F /{0, 1, 00}] [2] generated by the cross ratio of five relations is defined as

4
RZ(F) = Z(—l)ir(qo, s @i» ey 514) (3)
i=0

where

A(q0,93)0(q1,92)
A(q0.92)2(q1.93)

r(90.91.92.93) = (4)

It is called cross ratio of four points. Define a map 6, : Z[PL /{0, 1,00}] — A2F*, defined as [x] — (1 —x) A x,
it has been proven that 6,(R»(F)) = 0 [2]. Define group B,(F) the factor group of Z[P}./{0,1,0}] /Ry (F).
Now introduce Bloch-Suslin complex

0

0—2 B,(F) N2FX 2 0
st where ¢ is an induced map defined as § : [x] — (1 — x) A x, this complex is also short exact sequence.

e 2.2.3. Weight 3
As defined in [2]

A(q0,91.93)8(q1. 92, 94) 2(q2. 90, g5)
A(qo.q1.94)8(q1. 92, 95) (92, 90, 3)

r3(qo, .- q6) =

it is a triple cross ratio 6 points. Take R3(F) C Z[P}:/{O, 1, co}] [2], defined as
6 .
R3(F) = D" (=1)"Alter3(qo, - Gis - q6) )
i=0
which is a seven term relation of triple ratio. Goncharov defines B3(F), which is quotient subgroup

Z[P},/{O, 1, 00}] /R3(F), the Goncharov’s complex in weight n = 3 is given by

B3(F) —2= B,(F) @ F* ——= A3F*
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e 2.2.4. Weight n

Goncharov [2] generalized the group B, (F) = Z[P}./{0,1,0}]/R,(F), where R,(F) is a kernel of the
map 6, : Z[PL] - B,_1(F) ® F*, so generalized Goncharov’s complex is given as

AFX
B,(F) S By 1 (F)@F* 5 B, 2(F)o a2 (F) S ... 5 8y(F) e Am2(F) S o (B)
e 2.3. Cathelineau’s Complexes
65 Cathlelineau [6] has defined the F- Vector space which is an infinitesimal form of Bloch groups B, (F) as
e follows
& 1. BJi(F)=F
2. B(F) = I: . where rp(F) is the kernel of 8, : F[F**] — F ® F* defined by [x] - x®x+ (1 -
x)®(1-x). Cathehneau showed that r,(F) is a sub-vector space generated by four elements [x] — [y] +

[)Xi’ + (_ xX)[1=2 2] therefore obtain a complex
Br(F) S Fep F
where 0 is an induced map defined as
d:{xnPx(x)+(1-x)(1-x) (6)

using tensor properties this map can be written as

d: (P xe(x—1)-(1-x)®(x) (7
s The functional equation in 3, (F)
69 1. A two term relation {(a); = (1 — a)z
70 2. An inversion relation {(a); = —a( ¥

7 3. A four term relation {(a), — (b)> + a( )2 + (1- a)( b>2 =0
72 4. A distribution relation (a)7' = X ;m— ] — ( (Lay)

If r,(F) is a kernel of the map defined as 6, : F[F] > B,-1 ® F* & F ® 8,1 (F) [6]. Now by taking 8,(F) the
factor group as
F[F..]

Ai(F) =775 ®)

The Cathelineau chain complex [6] for groups 3,(F) and B, (F) is given as

On 'B"*I(F)‘X)FX an—l C’)1 ,BZ(F)®A’172FX 80

F)—— "8 ® —— S FeATIFX C
ﬁn( ) F&B,- (F) F®$2(1‘")(8)/\"7317>< ( )

where 0, is given by
O [r] = M1 @r+ (1)1 =r) @ [r]n )

» Lemma3. d,_1 03d, =0 ([6])
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7 3. Geometry of Cathelineau and Grassmannian Complexes
75 3.1. Weight 2
Construct the diagram of Grassmannian and Cathelineau infinitesimal complexes for weight n = 2.
d d
Gs(3) Gs(3) G4(3) D)
Pk
d d
Gs(2) G4(2) G3(2)
1 Lf&
Bo(F) —2= F & F*
where
= . A(G0s s Git 15 -+ q2)
13+ (g0, q1.92) = A(q0s s Gis - q2) ® n (mod 3) (10)
1:0 A(CIO,---, Qi+2,---, q2)
and
(g0, 41,42.43) = (r(q0, -+ 43))2 (1n
7% Lemma 4. f12 is independent of volume formation by vectors in V5.
77 Proof. Let flz(qo,ql,qz,cn) can be written as
A(q0,93)4(q1,92)
f (a0 ar.a2.5) = ( ) (12)
! 2(q0,92)2(q1.93) /2

72 s0 by changing volume V = aV where « € field F then due to frictions the right side will remain unchanged,
7 therefore f12 is independent of volume form by vectors in V,. 0O

s Lemma 5. f12 o p is independent of length of vectors in V5.
Proof. Let f12 o p(qo, 41,42, 93, q4) can be written as

4

£ op(90.91,02,93,94) = | <r(qilqo, eer Gis ...,q4)>2 (13)

i=0

s so changing the length of vector like (g0, q1,92,93,94) = @(qo, 41,92, 43, q4) Where « € field F then due to
s ratios the difference will be zero. Therefore f12 is independent of length of vectors in V,. O

s Lemma 6. f02 is independent of volume form by vectors in V5.

Proof. Let fo2 (g0, g1, q2) can be written as

A(q1,92) ® 5(q0,92)  2(q0.91) o A(q0,92)
A(qo.q2)  2(g0.q1)  A(go.q2)  2(q1.92)

129091, 42) = (14)

s 80 if volume V = aV where « € field F then the right side will remain unchanged so f()2 is independent of
s volume form by vectors in V,. 0O
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s Lemma 7. f02 o p is independent of length of vectors in V>.
Proof.
720 p(g0r g1, a0, 43) = A(qo D2.93) o A90.91.93) _ 2(90.91.92)  A(90.91.93)
0 T c10 q1, 6]3) A(LIO,ch,f]z) ((JO q1,q3) A(QOJD,%)
a(q1.92.93) A(cn,qo,qa) A(q1.90.92) ‘X>A(q1,qo,qz)Jr
A(q1,90,93) A(ql,qo,qz) A(ql,qo 3)  2(q1.92,93)
A(Qz q1.93) o A92.90.93) _ A(42.90.91)  A(42.90.93)
2(q2.90.93) A(qz,qo,m) A(g2,90,93)  Ag2,91,93)
Ag3,q1,92) A(%,qo,qz) A(g3.90.q1) _ A(g3.90.92) (15)
A(g3,90.92) A(qz,qo,cn) A(qs 90.92)  2(g3,91,92)

&7 so by changing the length of vector like (g9, q1,42,93) = @(q0, 41,92, q3) where @ € field F then the difference

s will be zero. Therefore fo2 is independent of length of vectors in V5.

s Lemma8. fop=0.

Proof. From the above diagram take

p

f2
Gs3(2) —

G4(3)

[m]

F®F*

Assume that the four points (qo, g1, ¢2,93) € G4(3), apply map p then p(qo.q1,92,93) = (90/q1,92,93) —

(91/90-92-93) + (q2/ 90,91, q3) —

Jo © P(q0.q1. 92, 43) =1(90,92,43) @
(40, 91,92) ®
Aq1,90,93) ®
Ag2.91,93) ®

A(q2.90.q1) ®

A(g3,90,92) ®
=0

L) O

o 2(90.41.93)

2(q0,41,92)

2(q0.93.92)
A(610 q3, 611)

alg1,92.93)
alq1,q2.90)
A(g2,90.93)
A(%C]o 611)
Alg2.93.q1)
aq2,93.90)
A(g3.91.92)
a(g3.91.90)

ot Lemma9. The lower square of the diagram D is commutative.

Proof. Let (go,q1,92,93) € G4(2). Apply morphism d, then

d(q0.91,92.93) = (91,92, 93) —

(¢3/40-91-92) now apply fg, then

A(q0,91,93) ®
8(q1.92,93) ®
A(q1590,92) ®
8(q2,90,93) ®
Ag3,91,92) ©

A(g3,90.q1) ®

(90,92, 93) + (90.91.43) —

A(q0, 92,93
40-92-91
41,4093
41,490, 92
91,43, 92

A(q0.92.93) )
a(g0.92.91) )
A(q1,90.93) )
2(q1.90.92) )
Aq1,93.92) )
2(q1.43,90) CIO)
A(q2:91,93) )
a(q2.91.90) )
A(g3, 90, 92) )
a(g3.90.91) )
A(g3.92.91)
a(g3.92.90)

l>

A

l>l>l>l>[>

92,491,490
43,490,492
q3,40-41

A(g3,92, 91
A

l>l>

43,492,490

(90,91, 92)

now apply f02, and get 24 terms , write them in the form of 12 terms as given below.

f3od(qo, - q3) =A(q2.q3) ®

A(q1.93)
a(q1,92)

A(q1,93) ®

a(q2,93)
A(g2.q1)

+2(q1,92) ®

2(g3.92)
Alg3,q1)
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A(qo.q3) A(q2,93) A(g3.q2)
A(G2,93) @ ——— + A(q90,93) @ ————— — A(q0,42) ® —/———+
( ) A(qo,92) ( ) A(q2.90) ( ) A(g3.90)
A(q0,93) alq1,93) A(g3.q1)
A(g1.q3) ® ———= — A(q0.q3) ® ———— + A(q0,q1) ® —/————
( ) 2(qo.q1) ( ) A(q1.90) ( ) A(g3.90)
A(qo. q2) A(q1,92) A(q2. q1)
A(G1,92) @ ——— + A(90,92) @ ———— — A(90,91) ® ——— (16)
( ) A(qo.q1) ( ) A(q1,90) ( ) A(q2,90)
Take (g0.41.492.93) € G4(2) again, apply map f}, then
’ A(flo,43)A(91,Q3)>
41,492, = 17
now apply d
A(qo.93)A(q1.93) _ (2(q90.93)A(q1,43)
6Of2 (IO,QI,QZ,CB = ( _1)_
il ) A(qo.q2)A(q1.93)  \A(q0,92)2(q1,43)
(1 B A(QO,CB)A(fh,fB)) A(q0,93)2(q1, 43) (18)
A(q0,92)8(q1,93) ) 2(90,92)2(q1593)
using Siegel cross ratio properties [15] then
A(qo.93)A(q1.93) _ £(q0,91)2(q2,93)
90 f2(q0.q1,92,93) = ® -
fi(qo-a1.92.45) 2(q0.92)8(q1.93) ~ A(g0.2)2(q1,93)
A(q0,91)0(q2.93) ® A(q0.93)2(q1.93) (19)
A(qo.q2)A(q1.93) — 2(q0,92)2(q1,93)
after simplifications
2(q1.93) (92.93) 5(g3.92)
90 f1(qo, - q3) =0(q2,93) ® -a(q1,93)® +2a(g1,92)® ——=
1( ) ( ) A(ql’ ) ( ) A( 2. q ) ( ) A(q3 6]1)
a(qo,93) a(q2.93) A(613 612)
Aq2.93) ® + a(q0,93) ® ———— — A(q0. 92 ® =
) a(qo.92) ) a(g2,90) ) A(g3, 6]0)
a(q0.93) A(q1,93) Algz.q1)
A(41’43)® _A(QO’CB)@— ‘|‘A((]0,q1)
A(qo.q1) A(q1,90) a(g3,90)
a(qo,92) Alq1,92) Alq2.q1)
(g1, 92 + 2(q0.q2) ® ————= — A(q0.q1) ® ——— (20)
) 2(qo.q1) ) A(q1.90) ) A(g2.q0)

o2 From Eq.(16) and Eq.(20), it is proved that the diagram D is commutative. O

o 3.2. Weight 3 (Trilogarithm)

For this weight, connect the subcomplex of Cathelineau complex in weight 3 with the subcomplex of
Grassmannian given as

G (4) ————Go(4) : Gs(4) (E)
| | |
Ge(3) d Gs(3) d G4(3)
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where
3 : i . A(G0s s Git 15 - q3)  A(G0s s Qi 25 s G3)
£(q0,-3) = D (<1)'D(g0, 1,8 - 43) ® . A . (mod 4) (1)
i=0 A(q07~-~’4i+2’~-,q3) A(q0,~-7Qi+3w-~’q3)
and
e . 4
f13(‘I0’, ‘M) == _E(Z(_l)l(<r(qi|q07--w éh-"’ 6]4)>2® l—lA(qO’9 Qh qj’"-’ Q4>
i=0 i
=0
4
=120 s 02) © [0, i s]2)  (mod 5) (22)
i
j=0

o Lemma 10. f(? op = 0

Proof. Let (g0, q1,92,43,q4) € Gs5(4), apply map p

4

P(90-41,2,43:94) = D (=1) (41140 - Gis - 44) (23)
i=0

On applying map f3 on p(qo. 41,42, 43, 94), then

A(q0, 92593, q4) ® A(q0, 91,93, q4) A A(q0, 91,925 q4)
A(q0.91.93.94) — A(q0.91.92.94)  £(q0.91.92.93)
_ 2(90.91.92,94) ® 2(qo, 92,93, q4) A (40, 91,93, 94)
A(90,91,92,93) — A(q0,91,93,94)  8(q0,91,92,93)

fo3 o p(qos - qa) =

_ A(q4, 92,93, q0) ® A(q4, 41,93, 90) A A(q4, 41,92, q0)
A(94,91,93,.90) — A4, 91,92,90)  8(q4,91,92,93)
n 5(94:91,92.90)  2(d4:92:93:90) | 5(44,41,43.90)
(g4, q91,92.93)  A(G4.91.93.90)  A(q4.91.92.93)
=0 (24)

95 O

o Lemma 11. The lower square of the diagram E is commutative.
Proof. Let (go,4q1,92,93,94) € Gs(3) by applying map d it becomes

4
(g0, -+ 94) = ) (=1)"(g0, - Gis - 4a) (25)
i=0

l
apply map f03, then

4 4 L
j [ A A A(QO’---»Q‘+1,Q'+ls---,Q4)
fod(go,mqs) = D (=1 Y (=1)'a(qo, - 4ir 4o 94) ® —— A

P = £(40s -wor Qi 2, G425 - 94)
jitl
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A(G0s s Git25 G j 25 - G4) A A(G0s s Git35 G j 135 -+ q4) 26)
A(q07 weey gl+39 q_]+3a weey q4) A(QO, L) QI+45 QJ+47 weey q4)
Applying morphism f? on (qo, ....44) € Gs(3). then
1, & ' 4
£ (qos s qa) = - S(Z(—l)l«r(t]il%, cees Qi s 44) )2 ® 1_[ A(qo, s Gis Qs - qa)
i=0 Jj#i
Jj=0
4
- 1—[ A(CIO, seey Qi, 5]], eeey 44) ® [%|510a eeey ‘?i, eeey ‘]4]2) (27)
J#i
Jj=0
now apply map d
I,
do f] = —5( (=1)"(r(qilqos --s Gi» - q4) ® (1 = 7(qilqos -+ Gi» @ jis s G4 ) ) A
i=0
4
l_[ A(q0s - Qis @js - qa) — (1 = 1(qilqos s Gis Gy s q4)) @ (Gilq0s s Gis Gy - ga) A
i
o
4 4
l_[ A(qo, wer Gis f]j, ey q4) — 1_[ A(q(), oo Gy f]j, ey q4) ® (1 - r(q,'|C]0, wees Qs oves q4))/\
Jj#i Jj#i
j=0 j=0
(a0, s G s 04)) (28)
after using tensor, wedge and Siegel cross ratio properties [15], it becomes
3 d j z i A A A(CIO,--~,‘A]i+l,‘?j+l,-o-»Q4)
90 £(q0wqa) = D (=1) D (=1)'8(q0, s 4is s 04) ® — A
j#i i=0 A(G0s s Gi42: G425 - q4)
j=it1
A(GOs s Git2: G425 - G4) N A(G0s s Git3+ 443 - q4) 29)
A(G0s oo Qi3+ G435 -0 q4)  A(GOs s Gitdr G jtrds s G4)
o from Eq.(26) and Eq.(29) it is observed that, f3 od = o f} O
o 3.3. Weightn=4
In this weight connect the sub-complexes of Cathelineau’s infinitesimal and Grassmannian
d d
Gs(5) G7(5) Go(5) F)
lp p lp
d d
G7(4) Go(4) Gs(4)

| |

B2(F)® A2 F* @ F @ B, (F) A FX —L = F® A3F>

where

4 A o
; . A(G0scoor Qi 15 -0 q4)  A(G0s s Gig 25 G4)
fA(qo,...,Q4) = > (-1)'2(q0, > Gi» - q4)® ~ A - A
° ;) l A(qo""’ qi+2""7 q4) A(QO»”-, Cli+3,-~9 ‘I4)
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A(GOs ees Git3s ons
(g0 4it3 q4) (mod 5) 30)
A(qu s gitds - g4
and
TEE . 5
11(qos s qs5) = g( Z (=1D)'(<r(4i» 41905 s Gis @ js s q5) )2 ® l_[ A(G0s s Gis Qs -2 G5) A
%) ki
i=0 k=i+1
j=itl
5 5
l_[ A(q0s s G s Gk -5 G5) — 1_[ A(40s s Gis Qs - 45) @ [1(qi, qjlq0, -y Gis Gy - G5) ] 2®
k) ki
k=j+1 k=i+1
5 5
l_[ A(q09 (X3 q‘]’ éks eeey CIS) + l_[ A(q09 ey QJs ék, seey q5) ® [r(q19 Qqu()s eeey gh é]s ceey 5]5)]2‘8’
k) k)
k=j+1 k=j+1
5
[T 50 1on05))  (mod 6) 31)
ki
k=i+1
o Lemmal2. fjod=do f}.
Proof. Let the five points be (g0, g1, 2, 3. q4.q5) € Ge(4), now apply map d, then
5 .
(g0, q5) = ) (=1)"(40, -+ 8> - q5) (32)
i=0
now apply morphism f;
2 k : ; A(Gos ooos Qi 15 G415 -2 G5)
fAOd(qo,.--,C]s) _ (_1) (—I)ZA((IO,-~-»@'»@k--~¢]5)® ey Al ,A 5 eey A
0 kzi_l ;) ' A(qO""v qt+27 Qk+29~--, C]S)
k=it+1
A(q0s s Qit 2 Gkt25 -2 G5) A A(G0s s Qi3> G435 - G5) A A(q0s s Qi 4> k45 - G5)
A(G0s s Qit3s G35 -0 q5)  D(G0s wos Gitss Gktts s q5) A0y -os Git 5 Ght55 -0 G5)
(33)
Apply map f on (go, ....g5) € G¢(4), then
e _ 5 5
ﬁ(qo, cees QS) = 6( Z (_l)l(<r(qi’ QJ|QO’ [XE) Qi, ‘7]’ seey QS)>2 ® 1_[ A(QO’ [XT) Qi, Qk’ [ XT) CIS) A [—[ A(q(), sy
i#] k#i k#j
i=0 k=i+1 k=1
j=itl
5 5
qj9 Qk’ (23] 515) - 1_[ A(CIO’ (23] qta Qk’ (23] q5) ® [r(%, fI]|q0, eery (?1’ q‘]a ey qs)]z ® 1_[ A(q()? sy 6]7 Qk, seey q5)
k#i k#j
k=i+1 k=j+1
5 5
+ 1_[ A(q0s -+ s Gk -+ q5) ® [1(qi2 41905 > Gis s -5 G5) ]2 ® n A(q0s > Gi Qs ~~,615)) (34)
k) ki
k=it+1

k=j+1
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On applying map 0
1 < .
(90f14(q0,...,q5) = g( Z (_l)l[(”(%’a qilq0, .- Gi» §j, - q5)) ® (r(gi. qjlqo, -, §i, 4, ... q5) = 1)A
0
j=itl
5 5
1_[ A(‘IO, ceey Ql’ @k; sy 515) A l_[ A(q()? ceey q‘]’ qka ceey 415) - (1 - r(CIi’ QJ|CIO’ ceey Qz, é]v eeey q5))®
[ k]
k=i+1 k=0
5 5
(r(Qis ‘1/|610s (XX} é\]i’ 2]]’ eees qS)) A 1—[ A(QO, cees él" ‘Alkv eeey QS) A l_[ A(6]0’ (X3 QJ’ CA]k, (XX} QS)_
[2% k)
k=i+1 k=j+1
5
l_[ A(CIO, ceesy éi’ flk’ ceesy q5> ® (1 - r(qh CI]lqu cees Qi’ QJ’ cees Q5)) A r(qi9 qj|‘10, ooy éi’ éj’ eeesy qS)A
hti
Pl
5 5
1_[ A(q(), . Qj, Qs --vs q5) + 1_[ A(qo, . Qj, Qs +-es q5) ® (1 - r(qi, qjlq(), wees iy f]j, e q5))/\
k#j k#j
k=j+1 k=0
5
(00247100, 8i 0 a5) A [ | 800000 05) ) (35)
i
after using tensor,wedge, Siegel cross ratio properties and dummy indices it becomes
S : A(Gs s Qi 15 Qi 15 -5 G5)
[ A A 5 e i . 5 eeey
90 (90, w05) = D, (=D)F D (=1)'2(q0s s Gis G- G5) © — A
k#i i=0 A(G0s s Qi 22 G425 - G5)
k=i+1
A(q0s s Git2s G425 - G5) A A(q0s s §i+35 Qi35 -+ 95) N A(qos -5 Gi+as G+ -5 G5)
A(G0s s Git3s Gkt 35 s q5) DGOy weos Gitas Gkt ds s @5)  A(GOs s GitSs Qht-55 s G5)
(36)
1o Eq.(33) and Eq.(36) proves fS‘ od=20 0f14 O
w01 3.4, Weightn =135
Connect the two sub-complexes given as
d d
Go(6) Gs(6) G7(6) (©)
jﬂ P lp
d d
Gs(5) G7(5) Go(5)
I %
B2(F)® N3SF* @ F @ 8, (F) A2 FX —L~ F @ A FX
where
5 ~ ~
[ ~ A(‘IO’"-’QiJrl’“-»QS) A(CIO,M,QH»L“-,QS)
fs(qo’""qs) = (_l)lA(qO""’q"""qS)® ~ A ~
0 ;) ! A(GOy ooy Git2s s q5)  A(G0s s Qi35 s G5)
A(GOs ey Git 3y oees A(GOy s ity ooy
(90, 143, -1 q5)  £(G0. s Jids 1 G5) (mod 6) a7

A(G0s s Qitas s q5)  B(G0s s Git5s s q5)
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and
8 _ 6
(4o, q6) = E( Z (-1)'(r(qi, 9, 91905 - Gi» G Gk - G6) )2 @ l_[ A(q0s s Gis Qs s q6) N
itk [
i=0 I=i+1
j=itl
k=i+2
6 6 6
]_[ A(q0s > 4> 1> - G6) N l_[ A(Gos s Gks 415 - q6) = H A(G0s s Gis s > G6)®
1% I#k I#i
=41 I=k—+1 I=it+1
6 6
[r(Qth,‘ZkWO,u-a‘?iansalka--"LI6)]2® 1_[ A(q09""qj7ql9""q6)/\ l_[ A(QO,-”’Qk,QI,m’Q6)+
I#] I#k
I=j+1 I=k+1
6 6
1_[ A(q0s -2 Qs Gty - q6) © [r(qis 4 9klq0s s Gis G Gics -1 G6) |2 © 1_[ A(40s - Gis Q15 -5 q6)
I#] I#i
I=j+1 I=i+1
6 6
A 1_[ A(q0s s Qs s - G6) — 1_[ A(q0s - Gk 41 - q6) @ [1(4i, 9, 9k190s 5 Gis @ Gks -2 G6) ]2
I#k I#k
=kt 2k

6 6
® 1_[ A(q(),"':qivqlv-~-’q6)/\ ]_[ A(QO,---,QJEQI,---,QQ) (m0d7)

(38)
I#i I#j
I=i+1 I=j+1
e Lemmal3. fJod=0do f}.
Proof. Let (go, ...,q¢) € G7(5) on apply map d
6 .
(g0, q6) = Y (=1)"(40, &> - q6) (39)
i=0
By applying morphism f05
0 : A(qos -+ Qi+ 1541415 -+ 96)
i AN s e Y1 B EIREES ]
f30d(qo, - q6) = Y (=)' D (=1)'1(q0s s Gis G- G6) © —— A
=i = A(G0s -+ Gi42- G 1425 - q6)
I=i+
A(‘]O, weesy Qi+2’ QI+2’ cees 616) A A(‘IO, (XX} £]i+3, ql+3a (X3 96) A
8(q0s - Git3, Q1435 -5 G6)  5(q0s s Git4s Git4s - G6)
A(qu eees éi+47 él+47 cees q6) A A(QO, [RE) QH*Ss 5]l+5, (XX} CI6) (40)
£(40s s Gitss Q15 - 46) D405 -wer Qit 65 Q1465 - G6)

Apply £ on (qo, ....q6) € G7(5)

6

6
1 ; A A
f15<LI0,,Q6) = m( Z (_1)l(<r(%,qPQk|QO7,‘b,qPQk’946)>2® 1—1 A(‘]O,---,CII"QI’-~-’¢]6)/\

ik I#i

i=0 I=i+1
Jj=i+l1
k=i+2
6 6 6
r[ A(q09 "‘7@j7ql? ""q6) /\ n A(qo’ ""qk?ql? ""q6) - n A(qo’ ""qi’ql’ "'9q6)®
I#j I#k I#i
I=j+1 I=k+1 I=i+1
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6 6
(r(qisqjs arlqo, .- @is @js Gics - G6) ]2 @ l_[ A(q0s Qs Gis -1 q6) A l—[ A(q0s s Qs s -+ 6)
I#] Ik
=1 I=k+1

6
=+ ]—[ A(‘IO,--~,@J”QI’--~,6]6>®[r(%"‘Ij’QkV]O,~~-’C7is¢7j,67k,-~~,Q6)]2® l_[ A(CIO,-nsQi,QI,u-JM)/\
I#i

o
l:;;—JH I=i+1
6 6
1_[ A(q0s - G Gis -1 6) — l_[ A(G0s s Gk> 41> - G6) © [(Gi2 9> GK1G0s - Gis G > Qs - G6) | 2®
I#k l#k
I=k+1 I=k+1
l_[ A qo" ’QI’QI" ’QG A l—l qo" séj’@l?"'sqﬁ)) (41)
I#i I#j
I=i+1 I=j+1
Apply map 0
6
1 A A A A A A
6of1 (q()’ 7‘]6 - _0( Z q”q;aCIkWO’- a‘]iy‘]ja‘]k,--~’96>®(1_r(QianJIkVIO,---J]iy‘]j’Qka
gy
=i+1
i—it2
6
v g6)) A l_[ (q0s -+ Gi» 41, -+ g6) A ﬂ A(405 45 qis -1 q6) N l_[ A(40s - ks Gis - G6)
I#i I#] Ik
1=0i+1 I=j+1 I=k+1
— (1 =r(qi, 9, 91905 - Gi» @ j» Gk> - 96) ) © (r(qis @j> Ak1GOs s Qi Qs Qis - G6) ) A
6 6 6
l_[ A(40s o Gis s -1 g6) A 1_[ A(40s sG> Gis s g6) A 1_[ A(q0s - Gk Gi1s - G6)
I#i I#] Ik
I=i+1 I=j+1 I=k+1
6 6
- l_[ A(CIO,»-~,£]1"@I’-~9‘]6)®[r(‘Ii,Qj’CIqum~~-’€1ia€1j»‘?k’-~»Q6)]2® 1—[ A(q03-~-»Qj’q13-u»Q6)/\
I#i I#j
I=i+1 I=j+1
6 6
l_[ A(CIQ,..., Qk’é\]l""’ qﬁ) + 1_[ A(QO,...,C’\]]‘, le---,%)‘g’[r(Qi,CIj,CIkVIO,--~,5Ii,5]j,@k,---,516)]2®
Ik I#]
I=k+1 I=j+1
6 6 6
l—[ A(q0s s Gis Qs -1 q6) A l_[ A(q0s s Qs Qs -1 G6) — l_[ A(q0s s Qks s - 6)®
I#i Ik I#k
I=i+1 I=k+1 I=k+1
6 6
(7(gi>49)>ax1q0+ - s @ > Gk - G6) ]2 ® 1_[ A(40s o Gis s -1 g6) A 1_[ A(qo,.--,@j,éz,.-.,qa))
I#i I#j
I=i+1 I=j+1

(42)

after using tensor,wedge, Siegel cross ratio properties and dummy indices it becomes

6 6 .
A(qos s Qi 1, Git 15 - G6) \

3o £2(qo, . qg) = DY (=1)a(qo, s §is Gres g6) ® SR
i )= ; =) ;,( yal l ) 8(q0, s Git2: G ji+25 -+ 96)
I=i+1

A(40s s Qit2, G425 - q6) A A(‘Io,-~-,51i+3,511+3,~--,%)/\
A(G0s s Qi3+ G143 2 46)  A(G0s oo Gitds Qitas - G6)
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A(GO,y ooy Gitds Gltay .., AGO,s ooy Git5y Gla5y oy
(90, s Gi+4s Qi - G6) R (40s -+ Gi+5 Q1455 - q6) 43)

A(q0s s Git5: 414552 96)  A(G0s s Qit6 Q165 - G6)

13 Hence Eq.(40) and Eq.(43) proves fo5 od=2300 f15 ]

104 3.5. Weightn =6

Connect the two simplicial complexes Grassmannian and Cathelineau as

Gro(7) d Go(7) d Gs(7) (H)
| | |
Go(6) d Gs(6) d G+(6)

; ’
B2(F)® M F* @ F @B, (F) A3 FX —L > F@ ASFX

where

A(Gos s Gig 15 -+ q6
A(q0s s Gig2, -5 96

A(G0s s Git 25 - G6)
A(qo, veey 5],'+3, ceey qﬁ)

f()6(q09 “"q6) = (_l)lA(qO’ "‘7@!" "‘?q6)®

-

I
=)

2

A(GOs ees Git3s ens A(GOs ees Gitdy ons A(GOs ees it-5s oens
(90 Gi+3 ‘]6)/\ (90 Gi+4 g6) \ (90 its 96) (mod 7) (ad)
A(‘]o,-~-’¢1i+4,~-~,(16) A(LIO’--~,%+5,-~-’¢]6) A((]O,~--’¢Ii+6,--~,%>
and
1/ < .
f16(110,...,97) = _E( Z (=1)°((r(qiy» Giy» Gin» 9i3190s - Gigs iy » Gin > Gig s -5 47) )2®
io=0
i12i0+1
ir=ip+2
i3=ig+1
7 7 7
1—1 A(qo’"wqio’qj7"-’q7)/\ l_[ A<q0’~-'7qi1’qj7-'-7q7)/\ 1_[ A(‘IO,-.-,Qiz’Qj»-MQﬁ/\
J#io J#i J#i2
Jj=io+1 Jj=i1+1 Jj=ih+1
7 7
1_] A(qo,...,q,‘yéjj,...,qﬁ— H A(qo,...,qio,c?j,...,qﬁ@
J#i3 J#ig
Jj=iz+1 Jj=ip+1
7
[7(qig» Giy» Gin» 9i31G0s -+ i Giy » Qi iy - G7) |2 @ l_[ A(q0s - Giy» G js s q7) N
et
JET
7 7 7
l_[ A(qo,...,f]iz,fjj,...,q7)A l_[ A(qo,...,f]i3,f]j,...,q7)—|— l_[ A(qo,...,f],'],f]j,...,qﬂ@
J#i J#i3 J#i
Jj=ir+1 Jj=liz+1 Jj=i1+1
7
(7 (qig» Giy » Gin» Gi1G0s -+ i Giy » Qi iy - G7) |2 ® l_[ A(q0s - Gig» G js - q7) N
J#i
j:io?&-l
7 7
l_[ A(qo,...,@iz,fjj,...,cn)/\ l_[ A(qo,...,qi3,@j,...,q7)
J#i J#i3

Jj=ir+1 Jj=iz+1
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7
- 1_[ A(CIO, eeey qiz, E]\]a sy CI7) ® [r(qi()’ Qil s qiza 61i3|(10, seey qio’ Qil s qiza 5]1'3» ceey q7)]2®
i
j:jizlil
7 7 7
n A(‘]O, 7ql()’q]7- ’q7 /\ 1_[ qO" $qi2’g2’"-’q7) A 1—1 A(q()"-'7qi3’qj7""q7)
J#io J#i J#i3
':i0+l Jj=i1+1 j=iz+1
+ ﬂ (905 s Qi3+ Qjis - q7) ® [F(Gig» iy » Gin> 451905 > Gigs Qi Qins iy - 47) | 2®
i+
j:ji;il
7 7
l_l (QO’- ,%O,C]p- ’q7 A l_[ qu' 9qi1’q19- 7q7 A 1_[ qO" ’Qiz:Qj,--w(ﬁ))
J#ip J#i J#in
Jj=io+1 Jj=i1+1 Jj=ih+1
(mod 8) (45)
ws Lemmal4. fSod =do f7.
Proof. Let (qo, ...,q7) € Gg(6) on applying map d
7
(g0, +97) = D (=1)"(g0, - Gis - 47) (46)
i=0
Now apply map f£
o) = Y (1) Y (1) 8ty 2 i)
9 seey - 9 cees Yy ey ~ ~
‘ J#EI i=0 / A(q()’s qi+2s CIj+2,---, Q7)
j=itl
A(Gos s Git2- G425 - q7) A A(G0s s Git 35 G j 43> -2 q7) A(GOs oor Gitds G4 ds -0 q7) \
A(CIO, weey i'\]i-‘r?n L?j+37 oo q7) A(qo’ ooy Qi+4’ Qj+4’ ey q7) A(QO’ ey QH*S’ Qj+5’ ceesy q7)
A(GOs oor Gitds G455 - q7) . A(G0s > Qi 62446 - q7) )
A(G0s s Git 6 Gj+65q7)  A(GOs s GitT5Gj+75 -+ q7)
Apply f8 on (qo. ... q7) € Gg(6), then
1/ < .
f16 (qu ey q7) = _B( Z (_1)10 (<r(61i0, qi»4ir» C]i3|f10, fEE) £1i09 @il B ‘?iza é\11.37 cees 617)>2®
io=0
l]lil'()+1
ip=ip+2
iz=ip+1
7
l_l (CIO’ 7qlo’q]7' 7q7 A l_[ q0,~--,%1,q1,- ’q7 A l_[ qO" ’QiZ:Qj,--~,q7>A
J#io J#i J#ip
Jj=io+1 Jj=i1+1 Jj=ih+1
7 7
l_[ A(‘]O’ EEEEY éi:;’ @19 (XX} 47) - l_[ A(q07 EEEEY qio’ QJ3 ceey CI7)®
J#i3 J#io
J=i3+1 J=io+1

(7 (qig» Giy» Gin» 9i5190s - i Giy » Qi iy - q7) |2 ®

7

]_[ A4 s Gins Gjs -n q7) A l_[

J#i2
Jj=ia+1

J#i3
j=lis+1

7
J#i
J=ir+1

A(q()s eeey Qi] b qj? cee q7)/\

q()s- 5%335115- ,517 + l_[ A(QO,- ,szCI],- ,617)

J#i
Jj=ii+l

d0i:10.20944/preprints201703.0098.v1
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7
(7(ig» Giy > Gin> 931905 -+ Gig»> Qi Qi iy > -+ 97) |2 © 1—[ A(G0s s Gigs G - q7) A
J#io
=g+l
7 7
n A(‘]O, 7q12’q]7- ’q7 /\ 1_[ qO" $qi3’qj7-'-’q7)
J#i J#i3
Jj=ir+1 Jj=i3+1
7
- l_[ A(QO,-‘-, qiz7 qja“" q7> ® [r(in’ qi17qi2’ qi3|q0""7 Qio’ qh?qiz’ gi39"" q7)]2®
J#iy
Jj=ih+1
7 7 7
l_l (QO’- ,%O,C]p- ’q7 A l_[ qu' 9qi2’q27"'7q7)/\ l—l A(q()""7qi3aqj7""q7)
J#io J#i J#i3
j:i()+l Jj=i1+1 Jj=iz+1
+ l—[ (905 s Qi3+ Qjis s q7) @ [ (Gig» iy » Gin> 951905 > Gigs Qi Qins iy - G7)]2®
J#i3
J=izt1
7 7
l_[ A(qu ,on,q/’- ,417 /\ l_[ 410,- ’qi|96j9- ,CI7 A 1_[ q09- ,qi27éj5'"sq7>)
J#ip J#iy J#ip
Jj=ip+1 Jj=i1+1 Jj=ir+1
(48)

Apply map 0 and all properties, then

7 ~ ~
A A A(QO»~~-,51'+ls‘1'+1»~--,Q7)
6of1 q0, -- ,Q7 Z ( ]Z q(),. ,qi,q]'...,q7)®A( Al. Aj‘ )/\
JEi i=0 405 ---> 4i+259 j+25 --- 47
Jj=i+l1
A(G0s s Git2: @202 7)) A(G0s s §i43: G35 0 q7) £(G0s oor it G ss 1 G7) A

A

>

(9o, ) )
(q07 eeey QL+35 q‘]+37 sy q7) A(QO, eeey QZ+47 q1+49 sy q7) A(LIO, eeey ql+57 q]+59 seey q7)
(90> > Qit4>Gj155-2q7)  D(GOs s Qit6> A jr6 -+ G7)
( ) )

— — (49)
405 -+ 4i+65 9 j+65 s 47 A(q(), s Gi+754 j+75 > 47

>

s Hence Eq.(47) and Eq.(49) proves f06 op=2do fl6 |

w7 4. Generalized Geometry ( Weight n = N)

For generalization, construct the generalized diagram by connecting the two sub-complexes using
generalized morphisms.

Guis(n—+1) d Guis(n—+1) d Gua(n+1) (N>2) (D
Gus3(n) 4 Gui2(n) 4 Gus1(n)

P s

B2(F) ® N"2F* @ F @ B, (F) A3 F* —L s F@ An=1 X

where

~ A(q()’"'s qi+ls"-9 CIn) A(QO»“-, gl’JrZ""s Qn)
15(qos s qn) A q0s s Gis oy Gn) ® ~ A = A
0 " Z ( ' n> A(q()a"" Qi+2,--~, Qn> A(q()?"" (/Ii+3,~~-, Qn)
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A 5 seny qi g saey A LR} Gitn— LA A >t Jitn- e
(40 Git3 ) 2o Jitn=2 ) , Ago ditn-1 n) (mod n+1)
A(qo,...,qi+4,...,qn) A(qo,...,qi+n_1,...,qn) A(QO,...,Qi+n,...,Qn)

(50)
and
1 n+1 )
11(q0, -snt1) = (_I)N"CZ Z (=1 (Gigs -oor Gin31G0s -oes Qg -+ i3 -+ G 1) )2®
io=0
ill:OioJrl
ir=ip+2
in_3=io+n-3
n+1 n+1
1_[ A(q(), ey Qio’ (’f]j, vy Q1 ) A 1_[ A(qo, ey Qil’ Qj, vy Q1 ) ANAN
J#io J#i
Jj=ip+1 j=i1+1
n+1 n+1
A(G0s oo Qi3> Qs o Gny1) — ]—[ A(G0s s Qigs G jo oo Gt 1)®
J#in-3 J#io
mj=iy_3+1 J=ip+1
n+1
[r(qio, ey qin_3|qo, ey @,’0, ey L’i,’n_3, vy Q41 )]2 ® l_[ A(c]o, ey c?,'l, @j, ey q,,_H)
j#i
i
n+1
A A 1_[ A(G0s oo Qi3> Gjis - Gny1 )+
j¢in73
J=1+in-3
n+1
(—l)nJrl l_[ A(qo, ey Q,‘n_3, éjjv ~--¢]n+1) ® [r(qio, ey qin_3|q0, ey flio, ey qin—S’ ey
J#in-3
J=1+in-3
n+1 n+1
qn+1 )]2 ® l_[ A(qo, . Qio’ @j, . qn_H) VANAN 1—[ A(qo, . c?in_z, @j, ey q,,_H) (mod n+2)
J#ip JEin-2
Jj=io+1 J=1+in-1
(51)
ws Theorem 1. The lower square of the generalized diagram I is commutative.
Proof. Let (qo, ...,qn+1) € Gny2(n) and apply map d, then
n+1 )
A0, 1) = Y (~1) (G0 i 1) (52
i=0
Apply map fJ on d(qo, ..., gn+1), then
n+1 n+1 N N
; i A(G0s s Git 15 G415 o Gnt1)
fnod q0; .-, 4 1) — _1 J _1 IA q()s'--sqi’qisan 1 ® ~ ~ A
0 ( " ) Z ( ) Z( ) ( v " ) A(Clo,-.-,611'+2,61j+2,---,61n+1)

j=i+1 i=0
A(QO»~~-,€1i+2,51j+2,~--361n+1) A A(qo,--~,2]i+3,@j+3,-~-»Qn+l) A A
A(‘IO» ) Qi+3’ QJ+37 ) anrl) A(LIO, eeey qi+4a q‘]+4’ eeey ‘In+1)
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A(G0s oos Qitn=1G jn=15 o Gnt1) A(G0s o-os Qiens Gjtns s Gnt1) (53)
A(G0s s Qitns Gjtns oos Gnt1) A(G0s -os Qitnt15 @ jtnt1s s Gnr1)
Apply morphism f' on (qo, ..., gn+1) € Gpy2(n), then
1 n+1 )
fln(QO,, Qn+1) = (_I)NnC2 Z (_1)lo(<r(qi09"-s Clin_3|q0»~--, @l‘()’-"s CAIi,,_3,~--, Qn+l)>2®
ip=0
i]l:0i0+1
ir=ig+2
in_3=ig+n-3
n+1 n+1
1—[ A(qo’ e ‘?io’ q]’ e q"+1) A 1_[ A(qo’ e qip gjv eeey anrl) AN
J#io J#i
j=io+1 j=i+1
ntl n+1
1_[ A(QO’--'7Qin,3,Qja~-~»Qn+l) - 1_[ A(CIOa"-’Qiovqj"~'7Qn+l)®
J#in-3 J#io
mj=in_3+1 J=io+1
n+1
[r(qiov-"’ qin,3|q09'"7 qioa'"’ qin,39'"7 Qn+1)]2® 1_[ A(qO""a qh’qj?'"’ Qn-i-l)
L
j:ji1l41>1
n+1
AR, 1_[ A(QOa--w‘?in_g,éjj’n-,Qn-&-l)"f'
J#in-3
J=1+in-3
n+1
(—1)"+1 1_[ A(qo, s Gin3- 45 ...an) ® [r(qio, ooy @i 3105 s Gigs s Qi35 +oos
j¢in—3
J=14in-3
n+1 n+1
qn+1)]2 ® l—[ A(q(), ey q,-o, f]j, ey qn+1) AN A 1_[ A(q(), ey glinfz’ L’}j,
J#io J#in-2
j=ig+1 j=1+in
s Gt )) (mod n+2) (54)

apply map 0, it becomes

1 n+1
n _ N
90 fi(qoani) = (DY D)
2 ip=0
i1 =ig+1
ih=ip+2
in_3=io+n-3
(L = 7(Gigs s Giyy_31G05 s Gigs +vs Giyy_3 -+» Gn1) A
n+1 n+1
AN A(q(),...,qil,éj,...,qn_;,_l) VANVAN
J#i J#in-3
Jj=i1+1

J=in-3+1

(—l)io (r(q,-o, oo Qi3 |q0, . @,‘O, ey f],‘n_3, e qntl )®

n+1

1_[ A(G0s -+ Gigs G s Gnt1)
J#io

J=ig+1

A(q07 E) gin_y QJ’ - qn+1 )_
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(1 - r(qio, e q,-n_3|q0, e f],’o, e f],‘n_3, e qn+1)) ® l”(qio, e ql-n_3|q(), e 6750’ e E]in—y e
n+1 n+l1
qn+1) A l_[ A(q(), ey f]io, Qj, ey qn+1) A l_[ A(q(), . f]il, (’jj, ey qn+1) VAVAN
J#io J#i
Jj=ig+1 j=i+1
n+1 n+1
1_[ A(LIO"--, qin,:qu?""qn*‘rl) - l_l A(qO’-"’Qil’flj,"-,C]n+1)®
J#in-3 J#i
J=in3 1 j=iH
(1 - r(in? eeey ‘Ii,,,3|q0, ey qioa ey 2]in,3, ey Qn+1)) A r(qio; sy C[i,,,3|q09 () éioa (R3] @in73’ cees
‘In+1)
n+1 n+1
A 1_[ A(q()” qioséj’-"sqn-i-l) A A l_[ A(CIOa---,CA]i,,_3,@j,-~-sCIn+1)
J#io J#in-3
Jj=io+1 j=1+in3
+
n+1
+1 N A A N
(-1)" l_[ A(G0s s Qi3> Qs - Gnt1) @ (1= F(Gigs +oos Gy 31905 s Gigs s Qi3 ---
'j¢in—'3
J=1+in-3
n+1
7qn+1)> /\r(Qios---’CIi,,_3|CI0,~-~,Qi0,---,5]in_3,~-~,Qn+l)) A 1_[ A(qo,""qioséj,"'squ‘rl)
J#io
j=ig+1
n+l
SV [ (R CTRS T T ) (55)
jiin—Z
J=1+in—2

now apply all properties of wedge, tensor, Siegel and dummy indices, it becomes

00 a0 te) = 3 (10D (1) 8t idyass) & 2ttt 1)
05 - +1) = - - 05 -sYqisqjs--5 +1 = =
: ! j=i+1 i=0 v " A(qo’~--sQi+2st+2’--~,qn+1>

A(QO, cees Qi-‘rz’ Qj+2’ ce qnt-1 ) A A(QD? ooy Qi+3, Qj-‘r:% e gn+1 )
A(CIO, ceey Qi+3» 9]4»3’ ceey 51n+1) A(QO» ceey éi+49 gj+4a ceey anrl)
A(LIO, ceey Qi+n—l, qurn—ls ceey ‘In+l) A A(qo, ceey (?ier (?j+n, ceey CIn—i-l)

TANAN

- ~ = = (56)
A(CIO, s itns qj+n’ (XX} ‘]n+1) A(q()’ s qitn+1, Qj+n+1, (EX) anrl)
10 So from Eq.(53) and Eq.(56) and using dummy indices, theorem 1 is hence proved. O
1o 5. Conclusion
11 In this study the generalization of morphisms f and f" are presented to connect Cathelineau infinitesimal

12 and Grassmannian chain complexes for generalized geometry. This work will play significant role in the fields
13 of Algebraic K-theory, Chain complexes, Algebraic Topology, Homological Algebra and Polylogarithmic group
114 thCOI‘y.

115 Conflicts of Interest: The authors declare no conflict of interest.
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