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groups generated by the projective configuration of points and Cathelineau’s infinitesimal complex of
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polylogarithmic groups is proposed. Firstly, homomorphisms for weight n = 2 up to weight n = 6 will
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be introduced to connect sub-complexes of Grassmannian and Cathelineau. Lately, generalization of these
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morphisms will be shown for weight n = N. The associated diagrams will also be proven to be commutative
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and bi-complex.
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1. Introduction9

Grassmannian chain complex of free abelian groups generated by the projective configurations of points10

was first introduced by Suslin [1]. Suslin used two type of differential homomorphisms d and p to connect11

these free abelian groups. In Grassmannian chain complex each square is commutative and the composition of12

two same differential morphisms is zero [1]. Classical polylogarithmic functions had studied for many hundred13

years, first defined by Leibniz. Dilogarithm appear in the work of Spence, Abel, Kummer, Lobachesky, Hill,14

Roger, and Ramanujan etc but most important was the functional equation known as Abel’s five term relations.15

Trilogarithms and its group B3(F) was first introduced by Goncharov using generalized triple cross ratio of16

six points. Goncharov also generalized polylogarithmic group as Bn(F) and generalized Bloch-Suslin complex17

known as Goncharov’s complex. Homomorphisms between Grassmannian and Bloch-Suslin complexes for18

Di-logarithm weight n = 2 was defined by Goncharov [2–4]. Goncharov proved that the associated digram19

is bi-complex and commutative. Goncharov [2] also uses the duality of configurations in order to prove20

(projected seven-term) functional equation for the trilogarithmic group B3(F) and verifies that a Complex21

forms among Grassmannian and Goncharov’s Complexes in weight 3 is commutative. Cathelineau [5–7] defined22

analogy of Goncharov’s complexes in the additive (both infinitesimal and tangential) setting called Cathelineau’s23

complexes.24

Cathelineau defined F-vector space as β2(F), generated by four term relation and β3(F), generated by 2225

term relations for his generalized chain complex. Siddiqui [8] found projected triple cross ratio and indicated26

that it should be written as the ratio of two projected cross-ratios. Siddiqui [8,9] also introduced variant27

of Cathelineau’s complexes in both infinitesimal and tangential setting and describe their relations through28

homomorphisms with Grassmannian chain complexes of the projective configurations for weight n = 2. Author29

also found morphisms between Grassmannian complex and Variant of Cathelineau’s infinitesimal complex for30

weight n = 3 and show that the associated diagram is commutative and bi-complex.31
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Khalid et al. [10,11] defined generalized morphisms to connect Grassmannian complex with Variant of32

Cathelineau complex up to weight n=N. Further, the author of [12,13] also generalized higher order differential33

homomorphisms in Grassmannian complex as nth order differential morphisms.34

section 2 presents the basic ideas and background of Grassmanian chain complexes, Polylogarithmic groups,35

Bloch-Suslin complex, Goncharov’s complex and Cathelineau’s complex for weight n. In Section 3 geometry36

through morphisms is defined to connect Grassmannian and Cathelineau’s infinitesimal complexes from weight37

n = 2 up to weight n = 6 also it is proven that the associated diagrams are bi-complex and commutative. Section38

4 produces generalized geometry of Grassmannian and Cathelineau’s infinitesimal complexes using generalized39

morphisms and the main result that the generalized diagram is commutative. Last section is conclusion of the40

whole work.41

2. Preliminary and Background42

Detailed background relevant to this research will be discussed in this section. It comprises the43

Grassmannian complex, Goncharov complex, Cathelineau complex, which is very crucial for this research44

study.45

2.1. Grassmannian Complex46

Consider a free abelian group Gm(n) generated by m-vectors of dimension n. Following is the
Grassmannian bicomplex

...

p

��

...

p

��

...

p

��
· · ·

d // Gn+5(n + 2) d //

p
��

Gn+4(n + 2) d //

p
��

Gn+3(n + 2)

p
��

· · ·
d // Gn+4(n + 1) d //

p
��

Gn+3(n + 1) d //

p
��

Gn+2(n + 1)

p
��

· · ·
d // Gn+3(n)

d // Gn+2(n)
d // Gn+1(n)

(A)

d is called differential map given by

d : (q0, . . . , qn) 7→
n∑

i=0

(−1)i(q0, ..., q̂i, ..., qn) (1)

and p another differential morphism called projection morphism given by

p : (q0, . . . , qn) 7→
n∑

i=0

(−1)i(qi|q0, . . . , q̂i, . . . , qn) (2)

Lemma 1. The diagram (A) is bi-complex, i.e. d ◦ d = p ◦ p = 047

Proof. For proof (see [1]) �48

Lemma 2. The diagram (A) is commutative, i.e. d ◦ p = p ◦ d49

Proof. For proof (see [1]) �50
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2.2. Polylogarithmic Groups and its Complexes51

Let Z[P1
F/{0, 1,∞}] is Z−module called free abelian group generated by [x] ∈ P1

F [2,14], from now F will52

be used as a field and F•• = F − {0, 1}.53

Definition 1. The group B(F) is called Scissor congruence group, it is factor group of Z[F••] and its subgroup54

generated by Abel’s famous five term relation, [x] − [y] + [ y
x ] − [

1−y
1−x ] + [ 1−y−1

1−x−1 ] where x , y,x, y , 0, 1 ([2])55

2.2.1. Weight 156

Let the group R1(F) ⊂ Z[P1
F/{0, 1,∞}] generated by 3 terms relation [xy] − [x] − [y] where x, y ∈ F×.57

Define B1(F), it is factor group of Z[P1
F/{0, 1,∞}] and R1(F) [2]. The function δ : B1(F) → F×, [x] → x is58

an isomorphism, such that B1(F) = F×59

2.2.2. Weight 260

The subgroup R2(F) ⊂ Z[P1
F/{0, 1,∞}] [2] generated by the cross ratio of five relations is defined as

R2(F) =
4∑

i=0

(−1)ir(q0, ..., q̂i, ..., q4) (3)

where

r(q0, q1, q2, q3) =
4(q0, q3)4(q1, q2)

4(q0, q2)4(q1, q3)
(4)

It is called cross ratio of four points. Define a map δ2 : Z[P1
F/{0, 1,∞}] → ∧2F× , defined as [x] → (1− x)∧ x,

it has been proven that δ2(R2(F)) = 0 [2]. Define group B2(F) the factor group of Z[P1
F/{0, 1,∞}]/R2(F).

Now introduce Bloch-Suslin complex

0 δ // B2(F)
δ // ∧2F× δ // 0

where δ is an induced map defined as δ : [x]2 → (1 − x) ∧ x, this complex is also short exact sequence.61

2.2.3. Weight 362

As defined in [2]

r3(q0, ..., q6) =
4(q0, q1, q3)4(q1, q2, q4)4(q2, q0, q5)

4(q0, q1, q4)4(q1, q2, q5)4(q2, q0, q3)

it is a triple cross ratio 6 points. Take R3(F) ⊂ Z[P1
F/{0, 1,∞}] [2], defined as

R3(F) =
6∑

i=0

(−1)iAlt6r3(q0, ..., q̂i, ..., q6) (5)

which is a seven term relation of triple ratio. Goncharov defines B3(F), which is quotient subgroup
Z[P1

F/{0, 1,∞}]/R3(F), the Goncharov’s complex in weight n = 3 is given by

B3(F)
δ // B2(F) ⊗ F× δ // ∧3F×
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2.2.4. Weight n63

Goncharov [2] generalized the group Bn(F) = Z[P1
F/{0, 1,∞}]/Rn(F), where Rn(F) is a kernel of the

map δn : Z[P1
F ] → Bn−1(F) ⊗ F×, so generalized Goncharov’s complex is given as

Bn(F)
δ
−→ Bn−1(F) ⊗ F×

δ
−→ Bn−2(F) ⊗ ∧2(F)

δ
−→ . . .

δ
−→ B2(F) ⊗ ∧n−2(F)

δ
−→

∧nF×

2 − torsion
(B)

2.3. Cathelineau’s Complexes64

Cathlelineau [6] has defined the F- Vector space which is an infinitesimal form of Bloch groups Bn(F) as65

follows66

1. β1(F) = F67

2. β2(F) =
F[F••]
r2(F)

. where r2(F) is the kernel of ∂2 : F[F••] → F ⊗ F× defined by [x] → x ⊗ x + (1 −
x) ⊗ (1− x). Cathelineau showed that r2(F) is a sub-vector space generated by four elements [x] − [y] +
x[ y

x ] + (1 − x)[ 1−y
1−x ] therefore obtain a complex

β2(F)
∂
−→ F ⊗F F×

where ∂ is an induced map defined as

∂ : 〈x〉2 7→ x ⊗ (x) + (1 − x) ⊗ (1 − x) (6)

using tensor properties this map can be written as

∂ : 〈x〉2 7→ x ⊗ (x − 1) − (1 − x) ⊗ (x) (7)

The functional equation in β2(F)68

1. A two term relation 〈a〉2 = 〈1 − a〉269

2. An inversion relation 〈a〉2 = −a〈 1
a 〉270

3. A four term relation 〈a〉2 − 〈b〉2 + a〈 b
a 〉2 + (1 − a)〈 1−b

1−a 〉2 = 071

4. A distribution relation 〈a〉m2 =
∑
ζm=1

1−am

1−aζ 〈ζa〉272

If rn(F) is a kernel of the map defined as δn : F[F] → βn−1 ⊗ F× ⊕ F ⊗Bn−1(F) [6]. Now by taking βn(F) the
factor group as

βn(F) =
F[F••]
rn(F)

(8)

The Cathelineau chain complex [6] for groups βn(F) and Bn(F) is given as

βn(F)
∂n

−−−−−−−→
βn−1(F)⊗F×

⊕
F⊗Bn−1(F)

∂n−1
−−−−−−−−→ · · ·

∂1
−−−−−−−→

β2(F)⊗∧n−2F×
⊕

F⊗B2(F)⊗∧n−3F×

∂0
−−−−−−−→ F ⊗ ∧n−1F× (C)

where ∂n is given by

∂n : [r] 7−→ 〈r〉n−1 ⊗ r + (−1)n−1(1 − r) ⊗ [r]n−1 (9)

Lemma 3. ∂n−1 ◦ ∂n = 0 ([6])73
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3. Geometry of Cathelineau and Grassmannian Complexes74

3.1. Weight 275

Construct the diagram of Grassmannian and Cathelineau infinitesimal complexes for weight n = 2.

G6(3)
d //

p
��

G5(3)
d //

p
��

G4(3)

p
��

G5(2)
d // G4(2)

d //

f 2
1
��

G3(2)

f 2
0
��

β2(F)
∂ // F ⊗ F×

(D)

where

f 2
0 : (q0, q1, q2)→

2∑
i=0

(−1)i4(q0, ..., q̂i, ..., q2) ⊗
4(q0, ..., q̂i+1, ..., q2)

4(q0, ..., q̂i+2, ..., q2)
(mod 3) (10)

and

f 2
1 (q0, q1, q2, q3) = 〈r(q0, ..., q3)〉2 (11)

Lemma 4. f 2
1 is independent of volume formation by vectors in V2.76

Proof. Let f 2
1 (q0, q1, q2, q3) can be written as77

f 2
1 (q0, q1, q2, q3) =

〈
4(q0, q3)4(q1, q2)

4(q0, q2)4(q1, q3)

〉
2

(12)

so by changing volume V = αV where α ∈ field F then due to frictions the right side will remain unchanged,78

therefore f 2
1 is independent of volume form by vectors in V2. �79

Lemma 5. f 2
1 ◦ p is independent of length of vectors in V2.80

Proof. Let f 2
1 ◦ p(q0, q1, q2, q3, q4) can be written as

f 2
1 ◦ p(q0, q1, q2, q3, q4) =

4∑
i=0

〈
r(qi|q0, ..., q̂i, ..., q4)

〉
2

(13)

so changing the length of vector like (q0, q1, q2, q3, q4) = α(q0, q1, q2, q3, q4) where α ∈ field F then due to81

ratios the difference will be zero. Therefore f 2
1 is independent of length of vectors in V2. �82

Lemma 6. f 2
0 is independent of volume form by vectors in V2.83

Proof. Let f 2
0 (q0, q1, q2) can be written as

f 2
0 (q0, q1, q2) =

4(q1, q2)

4(q0, q2)
⊗
4(q0, q2)

4(q0, q1)
−
4(q0, q1)

4(q0, q2)
⊗
4(q0, q2)

4(q1, q2)
(14)

so if volume V = αV where α ∈ field F then the right side will remain unchanged so f 2
0 is independent of84

volume form by vectors in V2. �85
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Lemma 7. f 2
0 ◦ p is independent of length of vectors in V2.86

Proof.

f 2
0 ◦ p(q0, q1, q2, q3) =

4(q0, q2, q3)

4(q0, q1, q3)
⊗
4(q0, q1, q3)

4(q0, q1, q2)
−
4(q0, q1, q2)

4(q0, q1, q3)
⊗
4(q0, q1, q3)

4(q0, q2, q3)
−

4(q1, q2, q3)

4(q1, q0, q3)
⊗
4(q1, q0, q3)

4(q1, q0, q2)
+
4(q1, q0, q2)

4(q1, q0, q3)
⊗
4(q1, q0, q3)

4(q1, q2, q3)
+

4(q2, q1, q3)

4(q2, q0, q3)
⊗
4(q2, q0, q3)

4(q2, q0, q1)
−
4(q2, q0, q1)

4(q2, q0, q3)
⊗
4(q2, q0, q3)

4(q2, q1, q3)
−

4(q3, q1, q2)

4(q3, q0, q2)
⊗
4(q3, q0, q2)

4(q3, q0, q1)
+
4(q3, q0, q1)

4(q3, q0, q2)
⊗
4(q3, q0, q2)

4(q3, q1, q2)
(15)

so by changing the length of vector like (q0, q1, q2, q3) = α(q0, q1, q2, q3) where α ∈ field F then the difference87

will be zero. Therefore f 2
0 is independent of length of vectors in V2. �88

Lemma 8. f 2
0 ◦ p = 0.89

Proof. From the above diagram take

G4(3)
p // G3(2)

f 2
0 // F ⊗ F×

Assume that the four points (q0, q1, q2, q3) ∈ G4(3), apply map p then p(q0, q1, q2, q3) = (q0/q1, q2, q3) −

(q1/q0, q2, q3) + (q2/q0, q1, q3) − (q3/q0, q1, q2) now apply f 2
0 , then

f 2
0 ◦ p(q0, q1, q2, q3) =4(q0, q2, q3) ⊗

4(q0, q1, q3)

4(q0, q1, q2)
− 4(q0, q1, q3) ⊗

4(q0, q2, q3)

4(q0, q2, q1)
+

4(q0, q1, q2) ⊗
4(q0, q3, q2)

4(q0, q3, q1)
− 4(q1, q2, q3) ⊗

4(q1, q0, q3)

4(q1, q0, q2)
+

4(q1, q0, q3) ⊗
4(q1, q2, q3)

4(q1, q2, q0)
− 4(q1, q0, q2) ⊗

4(q1, q3, q2)

4(q1, q3, q0)
+

4(q2, q1, q3) ⊗
4(q2, q0, q3)

4(q2, q0, q1)
− 4(q2, q0, q3) ⊗

4(q2, q1, q3)

4(q2, q1, q0)
+

4(q2, q0, q1) ⊗
4(q2, q3, q1)

4(q2, q3, q0)
− 4(q3, q1, q2) ⊗

4(q3, q0, q2)

4(q3, q0, q1)
+

4(q3, q0, q2) ⊗
4(q3, q1, q2)

4(q3, q1, q0)
− 4(q3, q0, q1) ⊗

4(q3, q2, q1)

4(q3, q2, q0)

= 0

�90

Lemma 9. The lower square of the diagram D is commutative.91

Proof. Let (q0, q1, q2, q3) ∈ G4(2). Apply morphism d, then

d(q0, q1, q2, q3) = (q1, q2, q3) − (q0, q2, q3) + (q0, q1, q3) − (q0, q1, q2)

now apply f 2
0 , and get 24 terms , write them in the form of 12 terms as given below.

f 2
0 ◦ d(q0, ..., q3) =4(q2, q3) ⊗

4(q1, q3)

4(q1, q2)
− 4(q1, q3) ⊗

4(q2, q3)

4(q2, q1)
+ 4(q1, q2) ⊗

4(q3, q2)

4(q3, q1)
−
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4(q2, q3) ⊗
4(q0, q3)

4(q0, q2)
+ 4(q0, q3) ⊗

4(q2, q3)

4(q2, q0)
− 4(q0, q2) ⊗

4(q3, q2)

4(q3, q0)
+

4(q1, q3) ⊗
4(q0, q3)

4(q0, q1)
− 4(q0, q3) ⊗

4(q1, q3)

4(q1, q0)
+ 4(q0, q1) ⊗

4(q3, q1)

4(q3, q0)
−

4(q1, q2) ⊗
4(q0, q2)

4(q0, q1)
+ 4(q0, q2) ⊗

4(q1, q2)

4(q1, q0)
− 4(q0, q1) ⊗

4(q2, q1)

4(q2, q0)
(16)

Take (q0, q1, q2, q3) ∈ G4(2) again, apply map f 2
1 , then

f 2
1 (q0, q1, q2, q3) =

〈
4(q0, q3)4(q1, q3)

4(q0, q2)4(q1, q3)

〉
2

(17)

now apply ∂

∂ ◦ f 2
1 (q0, q1, q2, q3) =

4(q0, q3)4(q1, q3)

4(q0, q2)4(q1, q3)
⊗

(
4(q0, q3)4(q1, q3)

4(q0, q2)4(q1, q3)
− 1

)
−(

1 −
4(q0, q3)4(q1, q3)

4(q0, q2)4(q1, q3)

)
⊗
4(q0, q3)4(q1, q3)

4(q0, q2)4(q1, q3)
(18)

using Siegel cross ratio properties [15] then

∂ ◦ f 2
1 (q0, q1, q2, q3) =

4(q0, q3)4(q1, q3)

4(q0, q2)4(q1, q3)
⊗
4(q0, q1)4(q2, q3)

4(q0, q2)4(q1, q3)
−

4(q0, q1)4(q2, q3)

4(q0, q2)4(q1, q3)
⊗
4(q0, q3)4(q1, q3)

4(q0, q2)4(q1, q3)
(19)

after simplifications

∂ ◦ f 2
1 (q0, ..., q3) =4(q2, q3) ⊗

4(q1, q3)

4(q1, q2)
− 4(q1, q3) ⊗

4(q2, q3)

4(q2, q1)
+ 4(q1, q2) ⊗

4(q3, q2)

4(q3, q1)
−

4(q2, q3) ⊗
4(q0, q3)

4(q0, q2)
+ 4(q0, q3) ⊗

4(q2, q3)

4(q2, q0)
− 4(q0, q2) ⊗

4(q3, q2)

4(q3, q0)
+

4(q1, q3) ⊗
4(q0, q3)

4(q0, q1)
− 4(q0, q3) ⊗

4(q1, q3)

4(q1, q0)
+ 4(q0, q1) ⊗

4(q3, q1)

4(q3, q0)
−

4(q1, q2) ⊗
4(q0, q2)

4(q0, q1)
+ 4(q0, q2) ⊗

4(q1, q2)

4(q1, q0)
− 4(q0, q1) ⊗

4(q2, q1)

4(q2, q0)
(20)

From Eq.(16) and Eq.(20), it is proved that the diagram D is commutative. �92

3.2. Weight 3 (Trilogarithm)93

For this weight, connect the subcomplex of Cathelineau complex in weight 3 with the subcomplex of
Grassmannian given as

G7(4)
d //

p
��

G6(4)
d //

p
��

G5(4)

p
��

G6(3)
d // G5(3)

d //

f 3
1
��

G4(3)

f 3
0
��

β2(F) ⊗ F× ⊕ F ⊗B2(F)
∂ // F ⊗ ∧2F×

(E)
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where

f 3
0 (q0, ..., q3) =

3∑
i=0

(−1)i4(q0, ..., q̂i, ..., q3) ⊗
4(q0, ..., q̂i+1, ..., q3)

4(q0, ..., q̂i+2, ..., q3)
∧
4(q0, ..., q̂i+2, ..., q3)

4(q0, ..., q̂i+3, ..., q3)
(mod 4) (21)

and

f 3
1 (q0, ..., q4) = −

1
3

( 4∑
i=0

(−1)i(〈r(qi|q0, ..., q̂i, ..., q4)〉2 ⊗
4∏

j,i
j=0

4(q0, ..., q̂i, q̂ j, ..., q4)

−

4∏
j,i
j=0

4(q0, ..., q̂i, q̂ j, ..., q4) ⊗ [qi|q0, ..., q̂i, ..., q4]2

)
(mod 5) (22)

Lemma 10. f 3
0 ◦ p = 094

Proof. Let (q0, q1, q2, q3, q4) ∈ G5(4), apply map p

p(q0, q1, q2, q3, q4) =
4∑

i=0

(−1)i(qi|q0, ..., q̂i, ..., q4) (23)

On applying map f 3
0 on p(q0, q1, q2, q3, q4), then

f 3
0 ◦ p(q0, ..., q4) =

4(q0, q2, q3, q4)

4(q0, q1, q3, q4)
⊗
4(q0, q1, q3, q4)

4(q0, q1, q2, q4)
∧
4(q0, q1, q2, q4)

4(q0, q1, q2, q3)

−
4(q0, q1, q2, q4)

4(q0, q1, q2, q3)
⊗
4(q0, q2, q3, q4)

4(q0, q1, q3, q4)
∧
4(q0, q1, q3, q4)

4(q0, q1, q2, q3)

.

.

.

−
4(q4, q2, q3, q0)

4(q4, q1, q3, q0)
⊗
4(q4, q1, q3, q0)

4(q4, q1, q2, q0)
∧
4(q4, q1, q2, q0)

4(q4, q1, q2, q3)

+
4(q4, q1, q2, q0)

4(q4, q1, q2, q3)
⊗
4(q4, q2, q3, q0)

4(q4, q1, q3, q0)
∧
4(q4, q1, q3, q0)

4(q4, q1, q2, q3)

= 0 (24)

�95

Lemma 11. The lower square of the diagram E is commutative.96

Proof. Let (q0, q1, q2, q3, q4) ∈ G5(3) by applying map d it becomes

d(q0, ..., q4) =
4∑

i=0

(−1)i(q0, ..., q̂i, ..., q4) (25)

apply map f 3
0 , then

f 3
0 ◦ d(q0, ..., q4) =

4∑
j,i

j=i+1

(−1) j
4∑

i=0

(−1)i4(q0, ..., q̂i, q̂ j..., q4) ⊗
4(q0, ..., q̂i+1, q̂ j+1, ..., q4)

4(q0, ..., q̂i+2, q̂ j+2, ..., q4)
∧
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4(q0, ..., q̂i+2, q̂ j+2, ..., q4)

4(q0, ..., q̂i+3, q̂ j+3, ..., q4)
∧
4(q0, ..., q̂i+3, q̂ j+3, ..., q4)

4(q0, ..., q̂i+4, q̂ j+4, ..., q4)
(26)

Applying morphism f 3
1 on (q0, ..., q4) ∈ G5(3). then

f 3
1 (q0, ..., q4) = −

1
3

( 4∑
i=0

(−1)i(〈r(qi|q0, ..., q̂i, ..., q4)〉2 ⊗
4∏

j,i
j=0

4(q0, ..., q̂i, q̂ j, ..., q4)

−

4∏
j,i
j=0

4(q0, ..., q̂i, q̂ j, ..., q4) ⊗ [qi|q0, ..., q̂i, ..., q4]2

)
(27)

now apply map ∂

∂ ◦ f 3
1 = −

1
3

( 4∑
i=0

(−1)i(r(qi|q0, ..., q̂i, ..., q4) ⊗ (1 − r(qi|q0, ..., q̂i, q̂ j, ..., q4))∧

4∏
j,i
j=0

4(q0, ..., q̂i, q̂ j, ..., q4) − (1 − r(qi|q0, ..., q̂i, q̂ j, ..., q4)) ⊗ r(qi|q0, ..., q̂i, q̂ j, ..., q4)∧

4∏
j,i
j=0

4(q0, ..., q̂i, q̂ j, ..., q4) −
4∏

j,i
j=0

4(q0, ..., q̂i, q̂ j, ..., q4) ⊗ (1 − r(qi|q0, ..., q̂i, ..., q4))∧

r(qi|q0, ..., q̂i, ..., q4)
)

(28)

after using tensor, wedge and Siegel cross ratio properties [15], it becomes

∂ ◦ f 3
1 (q0, ..., q4) =

4∑
j,i

j=i+1

(−1) j
4∑

i=0

(−1)i4(q0, ..., q̂i, q̂ j..., q4) ⊗
4(q0, ..., q̂i+1, q̂ j+1, ..., q4)

4(q0, ..., q̂i+2, q̂ j+2, ..., q4)
∧

4(q0, ..., q̂i+2, q̂ j+2, ..., q4)

4(q0, ..., q̂i+3, q̂ j+3, ..., q4)
∧
4(q0, ..., q̂i+3, q̂ j+3, ..., q4)

4(q0, ..., q̂i+4, q̂ j+4, ..., q4)
(29)

from Eq.(26) and Eq.(29) it is observed that, f 3
0 ◦ d = ∂ ◦ f 3

1 �97

3.3. Weight n = 498

In this weight connect the sub-complexes of Cathelineau’s infinitesimal and Grassmannian

G8(5)
d //

p
��

G7(5)
d //

p
��

G6(5)

p
��

G7(4)
d // G6(4)

d //

f 4
1
��

G5(4)

f 4
0
��

β2(F) ⊗ ∧2F× ⊕ F ⊗B2(F) ∧ F× ∂ // F ⊗ ∧3F×

(F)

where

f 4
0 (q0, ..., q4) =

4∑
i=0

(−1)i4(q0, ..., q̂i, ..., q4)⊗
4(q0, ..., q̂i+1, ..., q4)

4(q0, ..., q̂i+2, ..., q4)
∧
4(q0, ..., q̂i+2, ..., q4)

4(q0, ..., q̂i+3, ..., q4)
∧
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4(q0, ..., q̂i+3, ..., q4)

4(q0, ..., q̂i+4, ..., q4)
(mod 5) (30)

and

f 4
1 (q0, ..., q5) =

1
6

( 5∑
i, j
i=0

j=i+1

(−1)i(〈r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)〉2 ⊗
5∏

k,i
k=i+1

4(q0, ..., q̂i, q̂k, ..., q5)∧

5∏
k, j

k= j+1

4(q0, ..., q̂ j, q̂k, ..., q5) −
5∏

k,i
k=i+1

4(q0, ..., q̂i, q̂k, ..., q5) ⊗ [r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)]2⊗

5∏
k, j

k= j+1

4(q0, ..., q̂ j, q̂k, ..., q5) +
5∏

k, j
k= j+1

4(q0, ..., q̂ j, q̂k, ..., q5) ⊗ [r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)]2⊗

5∏
k,i

k=i+1

4(q0, ..., q̂i, q̂k, ..., q5)
)

(mod 6) (31)

Lemma 12. f 4
0 ◦ d = ∂ ◦ f 4

1 .99

Proof. Let the five points be (q0, q1, q2, q3, q4, q5) ∈ G6(4), now apply map d, then

d(q0, ..., q5) =
5∑

i=0

(−1)i(q0, ..., q̂i, ..., q5) (32)

now apply morphism f 4
0

f 4
0 ◦ d(q0, ..., q5) =

5∑
k,i

k=i+1

(−1)k
5∑

i=0

(−1)i4(q0, ..., q̂i, q̂k..., q5) ⊗
4(q0, ..., q̂i+1, q̂k+1, ..., q5)

4(q0, ..., q̂i+2, q̂k+2, ..., q5)
∧

4(q0, ..., q̂i+2, q̂k+2, ..., q5)

4(q0, ..., q̂i+3, q̂k+3, ..., q5)
∧
4(q0, ..., q̂i+3, q̂k+3, ..., q5)

4(q0, ..., q̂i+4, q̂k+4, ..., q5)
∧
4(q0, ..., q̂i+4, q̂k+4, ..., q5)

4(q0, ..., q̂i+5, q̂k+5, ..., q5)

(33)

Apply map f 4
1 on (q0, ..., q5) ∈ G6(4), then

f 4
1 (q0, ..., q5) =

1
6

( 5∑
i, j
i=0

j=i+1

(−1)i(〈r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)〉2 ⊗
5∏

k,i
k=i+1

4(q0, ..., q̂i, q̂k, ..., q5) ∧
5∏

k, j
k= j+1

4(q0, ...,

q̂ j, q̂k, ..., q5) −
5∏

k,i
k=i+1

4(q0, ..., q̂i, q̂k, ..., q5) ⊗ [r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)]2 ⊗
5∏

k, j
k= j+1

4(q0, ..., q̂ j, q̂k, ..., q5)

+
5∏

k, j
k= j+1

4(q0, ..., q̂ j, q̂k, ..., q5) ⊗ [r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)]2 ⊗
5∏

k,i
k=i+1

4(q0, ..., q̂i, q̂k, ..., q5)
)

(34)
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On applying map ∂

∂ ◦ f 4
1 (q0, ..., q5) =

1
6

( 5∑
i, j
i=0

j=i+1

(−1)i
[
(r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)) ⊗ (r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5) − 1)∧

5∏
k,i

k=i+1

4(q0, ..., q̂i, q̂k, ..., q5) ∧
5∏

k, j
k=0

4(q0, ..., q̂ j, q̂k, ..., q5) − (1 − r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5))⊗

(r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)) ∧
5∏

k,i
k=i+1

4(q0, ..., q̂i, q̂k, ..., q5) ∧
5∏

k, j
k= j+1

4(q0, ..., q̂ j, q̂k, ..., q5)−

5∏
k,i

k=i+1

4(q0, ..., q̂i, q̂k, ..., q5) ⊗ (1 − r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)) ∧ r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5)∧

5∏
k, j

k= j+1

4(q0, ..., q̂ j, q̂k, ..., q5) +
5∏

k, j
k=0

4(q0, ..., q̂ j, q̂k, ..., q5) ⊗ (1 − r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5))∧

r(qi, q j|q0, ..., q̂i, q̂ j, ..., q5) ∧
5∏

k,i
k=i+1

4(q0, ..., q̂i, q̂k, ..., q5)
])

(35)

after using tensor,wedge, Siegel cross ratio properties and dummy indices it becomes

∂ ◦ f 4
1 (q0, ..., q5) =

5∑
k,i

k=i+1

(−1)k
5∑

i=0

(−1)i4(q0, ..., q̂i, q̂k..., q5) ⊗
4(q0, ..., q̂i+1, q̂k+1, ..., q5)

4(q0, ..., q̂i+2, q̂k+2, ..., q5)
∧

4(q0, ..., q̂i+2, q̂k+2, ..., q5)

4(q0, ..., q̂i+3, q̂k+3, ..., q5)
∧
4(q0, ..., q̂i+3, q̂k+3, ..., q5)

4(q0, ..., q̂i+4, q̂k+4, ..., q5)
∧
4(q0, ..., q̂i+4, q̂k+4, ..., q5)

4(q0, ..., q̂i+5, q̂k+5, ..., q5)

(36)

Eq.(33) and Eq.(36) proves f 4
0 ◦ d = ∂ ◦ f 4

1 �100

3.4. Weight n = 5101

Connect the two sub-complexes given as

G9(6)
d //

p
��

G8(6)
d //

p
��

G7(6)

p
��

G8(5)
d // G7(5)

d //

f 5
1
��

G6(5)

f 5
0
��

β2(F) ⊗ ∧3F× ⊕ F ⊗B2(F) ∧2 F× ∂ // F ⊗ ∧4F×

(G)

where

f 5
0 (q0, ..., q5) =

5∑
i=0

(−1)i4(q0, ..., q̂i, ..., q5) ⊗
4(q0, ..., q̂i+1, ..., q5)

4(q0, ..., q̂i+2, ..., q5)
∧
4(q0, ..., q̂i+2, ..., q5)

4(q0, ..., q̂i+3, ..., q5)

4(q0, ..., q̂i+3, ..., q5)

4(q0, ..., q̂i+4, ..., q5)
∧
4(q0, ..., q̂i+4, ..., q5)

4(q0, ..., q̂i+5, ..., q5)
(mod 6) (37)
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and

f 5
1 (q0, ...,q6) =

1
10

( 6∑
i, j,k
i=0

j=i+1
k=i+2

(−1)i(〈r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)〉2 ⊗
6∏

l,i
l=i+1

4(q0, ..., q̂i, q̂l, ..., q6)∧

6∏
l, j

l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ∧
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) −
6∏

l,i
l=i+1

4(q0, ..., q̂i, q̂l, ..., q6)⊗

[r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2 ⊗
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ∧
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6)+

6∏
l, j

l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ⊗ [r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2 ⊗
6∏

l,i
l=i+1

4(q0, ..., q̂i, q̂l, ..., q6)

∧

6∏
l,k

l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) −
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) ⊗ [r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2

⊗

6∏
l,i

l=i+1

4(q0, ..., q̂i, q̂l, ..., q6) ∧
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6)
)

(mod 7) (38)

Lemma 13. f 5
0 ◦ d = ∂ ◦ f 5

1 .102

Proof. Let (q0, ..., q6) ∈ G7(5) on apply map d

d(q0, ..., q6) =
6∑

i=0

(−1)i(q0, ..., q̂i, ..., q6) (39)

By applying morphism f 5
0

f 5
0 ◦ d(q0, ..., q6) =

6∑
l,i

l=i+1

(−1)l
6∑

i=0

(−1)i4(q0, ..., q̂i, q̂l..., q6) ⊗
4(q0, ..., q̂i+1, q̂l+1, ..., q6)

4(q0, ..., q̂i+2, q̂ jl+2, ..., q6)
∧

4(q0, ..., q̂i+2, q̂l+2, ..., q6)

4(q0, ..., q̂i+3, q̂l+3, ..., q6)
∧
4(q0, ..., q̂i+3, q̂l+3, ..., q6)

4(q0, ..., q̂i+4, q̂l+4, ..., q6)
∧

4(q0, ..., q̂i+4, q̂l+4, ..., q6)

4(q0, ..., q̂i+5, q̂l+5, ..., q6)
∧
4(q0, ..., q̂i+5, q̂l+5, ..., q6)

4(q0, ..., q̂i+6, q̂l+6, ..., q6)
(40)

Apply f 5
1 on (q0, ..., q6) ∈ G7(5)

f 5
1 (q0, ..., q6) =

1
10

( 6∑
i, j,k
i=0

j=i+1
k=i+2

(−1)i(〈r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)〉2 ⊗
6∏

l,i
l=i+1

4(q0, ..., q̂i, q̂l, ..., q6)∧

6∏
l, j

l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ∧
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) −
6∏

l,i
l=i+1

4(q0, ..., q̂i, q̂l, ..., q6)⊗
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[r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2 ⊗
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ∧
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6)

+
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ⊗ [r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2 ⊗
6∏

l,i
l=i+1

4(q0, ..., q̂i, q̂l, ..., q6)∧

6∏
l,k

l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) −
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) ⊗ [r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2⊗

6∏
l,i

l=i+1

4(q0, ..., q̂i, q̂l, ..., q6) ∧
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6)
)

(41)

Apply map ∂

∂ ◦ f 5
1 (q0,..., q6) =

1
10

( 6∑
i, j,k
i=0

j=i+1
k=i+2

(−1)i(r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6) ⊗ (1 − r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k,

..., q6)) ∧
6∏

l,i
l=0i+1

4(q0, ..., q̂i, q̂l, ..., q6) ∧
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ∧
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6)

− (1 − r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)) ⊗ (r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6))∧

6∏
l,i

l=i+1

4(q0, ..., q̂i, q̂l, ..., q6) ∧
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ∧
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6)

−

6∏
l,i

l=i+1

4(q0, ..., q̂i, q̂l, ..., q6) ⊗ [r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2 ⊗
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6)∧

6∏
l,k

l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) +
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6) ⊗ [r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2⊗

6∏
l,i

l=i+1

4(q0, ..., q̂i, q̂l, ..., q6) ∧
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6) −
6∏

l,k
l=k+1

4(q0, ..., q̂k, q̂l, ..., q6)⊗

[r(qi, q j, qk |q0, ..., q̂i, q̂ j, q̂k, ..., q6)]2 ⊗
6∏

l,i
l=i+1

4(q0, ..., q̂i, q̂l, ..., q6) ∧
6∏

l, j
l= j+1

4(q0, ..., q̂ j, q̂l, ..., q6)
)
(42)

after using tensor,wedge, Siegel cross ratio properties and dummy indices it becomes

∂ ◦ f 5
1 (q0, ..., q6) =

6∑
l,i

l=i+1

(−1)l
6∑

i=0

(−1)i4(q0, ..., q̂i, q̂l..., q6) ⊗
4(q0, ..., q̂i+1, q̂l+1, ..., q6)

4(q0, ..., q̂i+2, q̂ jl+2, ..., q6)
∧

4(q0, ..., q̂i+2, q̂l+2, ..., q6)

4(q0, ..., q̂i+3, q̂l+3, ..., q6)
∧
4(q0, ..., q̂i+3, q̂l+3, ..., q6)

4(q0, ..., q̂i+4, q̂l+4, ..., q6)
∧
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4(q0, ..., q̂i+4, q̂l+4, ..., q6)

4(q0, ..., q̂i+5, q̂l+5, ..., q6)
∧
4(q0, ..., q̂i+5, q̂l+5, ..., q6)

4(q0, ..., q̂i+6, q̂l+6, ..., q6)
(43)

Hence Eq.(40) and Eq.(43) proves f 5
0 ◦ d = ∂ ◦ f 5

1 �103

3.5. Weight n = 6104

Connect the two simplicial complexes Grassmannian and Cathelineau as

G10(7)
d //

p
��

G9(7)
d //

p
��

G8(7)

p
��

G9(6)
d // G8(6)

d //

f 6
1
��

G7(6)

f 6
0
��

β2(F) ⊗ ∧4F× ⊕ F ⊗B2(F) ∧3 F× ∂ // F ⊗ ∧5F×

(H)

where

f 6
0 (q0, ..., q6) =

6∑
i=0

(−1)i4(q0, ..., q̂i, ..., q6) ⊗
4(q0, ..., q̂i+1, ..., q6)

4(q0, ..., q̂i+2, ..., q6)
∧
4(q0, ..., q̂i+2, ..., q6)

4(q0, ..., q̂i+3, ..., q6)

4(q0, ..., q̂i+3, ..., q6)

4(q0, ..., q̂i+4, ..., q6)
∧
4(q0, ..., q̂i+4, ..., q6)

4(q0, ..., q̂i+5, ..., q6)
∧
4(q0, ..., q̂i+5, ..., q6)

4(q0, ..., q̂i+6, ..., q6)
(mod 7) (44)

and

f 6
1 (q0, ..., q7) = −

1
15

( 7∑
i0=0

i1=i0+1
i2=i0+2
i3=i0+1

(−1)i0(〈r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)〉2⊗

7∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7) ∧
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7) ∧
7∏

j,i2
j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7)∧

7∏
j,i3

j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7) −
7∏

j,i0
j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7)⊗

[r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2 ⊗
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7)∧

7∏
j,i2

j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7) ∧
7∏

j,i3
j=li3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7) +
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7)⊗

[r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2 ⊗
7∏

j,i0
j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7)∧

7∏
j,i2

j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7) ∧
7∏

j,i3
j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7)
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−

7∏
j,i2

j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7) ⊗ [r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2⊗

7∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7) ∧
7∏

j,i1
j=i1+1

4(q0, ..., q̂i2 , q̂2, ..., q7) ∧
7∏

j,i3
j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7)

+
7∏

j,i3
j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7) ⊗ [r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2⊗

7∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7) ∧
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7) ∧
7∏

j,i2
j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7)
)

(mod 8) (45)

Lemma 14. f 6
0 ◦ d = ∂ ◦ f 6

1 .105

Proof. Let (q0, ..., q7) ∈ G8(6) on applying map d

d(q0, ..., q7) =
7∑

i=0

(−1)i(q0, ..., q̂i, ..., q7) (46)

Now apply map f 6
0

f 6
0 ◦ d(q0, ..., q7) =

7∑
j,i

j=i+1

(−1) j
7∑

i=0

(−1)i4(q0, ..., q̂i, q̂ j..., q7) ⊗
4(q0, ..., q̂i+1, q̂ j+1, ..., q7)

4(q0, ..., q̂i+2, q̂ j+2, ..., q7)
∧

4(q0, ..., q̂i+2, q̂ j+2, ..., q7)

4(q0, ..., q̂i+3, q̂ j+3, ..., q7)
∧
4(q0, ..., q̂i+3, q̂ j+3, ..., q7)

4(q0, ..., q̂i+4, q̂ j+4, ..., q7)

4(q0, ..., q̂i+4, q̂ j+4, ..., q7)

4(q0, ..., q̂i+5, q̂ j+5, ..., q7)
∧

4(q0, ..., q̂i+4, q̂ j+5, ..., q7)

4(q0, ..., q̂i+6, q̂ j+6, ..., q7)
∧
4(q0, ..., q̂i+6, q̂ j+6, ..., q7)

4(q0, ..., q̂i+7, q̂ j+7, ..., q7)
(47)

Apply f 6
1 on (q0, ..., q7) ∈ G8(6), then

f 6
1 (q0, ..., q7) = −

1
15

( 7∑
i0=0

i1=i0+1
i2=i0+2
i3=i0+1

(−1)i0(〈r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)〉2⊗

7∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7) ∧
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7) ∧
7∏

j,i2
j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7)∧

7∏
j,i3

j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7) −
7∏

j,i0
j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7)⊗

[r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2 ⊗
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7)∧

7∏
j,i2

j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7) ∧
7∏

j,i3
j=li3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7) +
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7)⊗
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[r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2 ⊗
7∏

j,i0
j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7)∧

7∏
j,i2

j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7) ∧
7∏

j,i3
j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7)

−

7∏
j,i2

j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7) ⊗ [r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2⊗

7∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7) ∧
7∏

j,i1
j=i1+1

4(q0, ..., q̂i2 , q̂2, ..., q7) ∧
7∏

j,i3
j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7)

+
7∏

j,i3
j=i3+1

4(q0, ..., q̂i3 , q̂ j, ..., q7) ⊗ [r(qi0 , qi1 , qi2 , qi3 |q0, ..., q̂i0 , q̂i1 , q̂i2 , q̂i3 , ..., q7)]2⊗

7∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., q7) ∧
7∏

j,i1
j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., q7) ∧
7∏

j,i2
j=i2+1

4(q0, ..., q̂i2 , q̂ j, ..., q7)
)
(48)

Apply map ∂ and all properties, then

∂ ◦ f 6
1 (q0, ..., q7) =

7∑
j,i

j=i+1

(−1) j
7∑

i=0

(−1)i4(q0, ..., q̂i, q̂ j..., q7) ⊗
4(q0, ..., q̂i+1, q̂ j+1, ..., q7)

4(q0, ..., q̂i+2, q̂ j+2, ..., q7)
∧

4(q0, ..., q̂i+2, q̂ j+2, ..., q7)

4(q0, ..., q̂i+3, q̂ j+3, ..., q7)
∧
4(q0, ..., q̂i+3, q̂ j+3, ..., q7)

4(q0, ..., q̂i+4, q̂ j+4, ..., q7)

4(q0, ..., q̂i+4, q̂ j+4, ..., q7)

4(q0, ..., q̂i+5, q̂ j+5, ..., q7)
∧

4(q0, ..., q̂i+4, q̂ j+5, ..., q7)

4(q0, ..., q̂i+6, q̂ j+6, ..., q7)
∧
4(q0, ..., q̂i+6, q̂ j+6, ..., q7)

4(q0, ..., q̂i+7, q̂ j+7, ..., q7)
(49)

Hence Eq.(47) and Eq.(49) proves f 6
0 ◦ p = ∂ ◦ f 6

1 �106

4. Generalized Geometry ( Weight n = N )107

For generalization, construct the generalized diagram by connecting the two sub-complexes using
generalized morphisms.

Gn+3(n + 1) d //

p
��

Gn+3(n + 1) d //

p
��

Gn+2(n + 1)

p
��

Gn+3(n)
d // Gn+2(n)

d //

f 6
1
��

Gn+1(n)

f n
0
��

β2(F) ⊗ ∧n−2F× ⊕ F ⊗B2(F) ∧n−3 F× ∂ // F ⊗ ∧n−1F×

(N ≥ 2) (I)

where

f n
0 (q0, ..., qn) =

n∑
i=0

(−1)i4(q0, ..., q̂i, ..., qn) ⊗
4(q0, ..., q̂i+1, ..., qn)

4(q0, ..., q̂i+2, ..., qn)
∧
4(q0, ..., q̂i+2, ..., qn)

4(q0, ..., q̂i+3, ..., qn)
∧
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4(q0, ..., q̂i+3, ..., qn)

4(q0, ..., q̂i+4, ..., qn)
∧ ...∧

4(q0, ..., q̂i+n−2, ..., qn)

4(q0, ..., q̂i+n−1, ..., qn)
∧
4(q0, ..., q̂i+n−1, ..., qn)

4(q0, ..., q̂i+n, ..., qn)
(mod n+1)

(50)

and

f n
1 (q0, ...,qn+1) = (−1)N 1

nC2

( n+1∑
i0=0

i1=i0+1
i2=i0+2

.

.

.
in−3=i0+n−3

(−1)i0(〈r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)〉2⊗

n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1) ∧
n+1∏
j,i1

j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., qn+1) ∧ ...∧

n+1∏
j,in−3

m j=in−3+1

4(q0, ..., q̂in−3 , q̂ j, ..., qn+1) −
n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1)⊗

[r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)]2 ⊗
n+1∏
j,i1

j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., qn+1)

∧ ...∧
n+1∏

j,in−3
j=1+in−3

4(q0, ..., q̂in−3 , q̂ j, ..., qn+1)+

.

.

.

(−1)n+1
n+1∏

j,in−3
j=1+in−3

4(q0, ..., q̂in−3 , q̂ j, ...qn+1) ⊗ [r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ...,

qn+1)]2 ⊗
n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1) ∧ ...∧
n+1∏

j,in−2
j=1+in−1

4(q0, ..., q̂in−2 , q̂ j, ..., qn+1) (mod n+2)

(51)

Theorem 1. The lower square of the generalized diagram I is commutative.108

Proof. Let (q0, ..., qn+1) ∈ Gn+2(n) and apply map d, then

d(q0, ..., qn+1) =
n+1∑
i=0

(−1)i(q0, ..., q̂i, ..., qn+1) (52)

Apply map f n
0 on d(q0, ..., qn+1), then

f n
0 ◦ d(q0, ..., qn+1) =

n+1∑
j=i+1

(−1) j
n+1∑
i=0

(−1)i4(q0, ..., q̂i, q̂ j, ..., qn+1) ⊗
4(q0, ..., q̂i+1, q̂ j+1, ..., qn+1)

4(q0, ..., q̂i+2, q̂ j+2, ..., qn+1)
∧

4(q0, ..., q̂i+2, q̂ j+2, ..., qn+1)

4(q0, ..., q̂i+3, q̂ j+3, ..., qn+1)
∧
4(q0, ..., q̂i+3, q̂ j+3, ..., qn+1)

4(q0, ..., q̂i+4, q̂ j+4, ..., qn+1)
∧ ...∧
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4(q0, ..., q̂i+n−1, q̂ j+n−1, ..., qn+1)

4(q0, ..., q̂i+n, q̂ j+n, ..., qn+1)
∧

4(q0, ..., q̂i+n, q̂ j+n, ..., qn+1)

4(q0, ..., q̂i+n+1, q̂ j+n+1, ..., qn+1)
(53)

Apply morphism f n
1 on (q0, ..., qn+1) ∈ Gn+2(n), then

f n
1 (q0, ..., qn+1) = (−1)N 1

nC2

( n+1∑
i0=0

i1=i0+1
i2=i0+2

.

.

.
in−3=i0+n−3

(−1)i0(〈r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)〉2⊗

n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1) ∧
n+1∏
j,i1

j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., qn+1) ∧ ...∧

n+1∏
j,in−3

m j=in−3+1

4(q0, ..., q̂in−3 , q̂ j, ..., qn+1) −
n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1)⊗

[r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)]2 ⊗
n+1∏
j,i1

j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., qn+1)

∧ ...∧
n+1∏

j,in−3
j=1+in−3

4(q0, ..., q̂in−3 , q̂ j, ..., qn+1)+

.

.

.

(−1)n+1
n+1∏

j,in−3
j=1+in−3

4(q0, ..., q̂in−3 , q̂ j, ...qn+1) ⊗ [r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ...,

qn+1)]2 ⊗
n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1) ∧ ...∧
n+1∏

j,in−2
j=1+in−1

4(q0, ..., q̂in−2 , q̂ j,

..., qn+1)
)

(mod n+2) (54)

apply map ∂, it becomes

∂ ◦ f n
1 (q0, ..., qn+1) = (−1)N 1

nC2

( n+1∑
i0=0

i1=i0+1
i2=i0+2

.

.

.
in−3=i0+n−3

(−1)i0(r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)⊗

(1 − r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1) ∧
n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1)

∧

n+1∏
j,i1

j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., qn+1) ∧ ...∧
n+1∏

j,in−3
j=in−3+1

4(q0, ..., q̂in−3 , q̂ j, ..., qn+1)−
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(1 − r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)) ⊗ r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ...,

qn+1) ∧
n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1) ∧
n+1∏
j,i1

j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., qn+1) ∧ ...∧

n+1∏
j,in−3

j=in−3+1

4(q0, ..., q̂in−3 , q̂ j, ..., qn+1) −
n+1∏
j,i1

j=i1+1

4(q0, ..., q̂i1 , q̂ j, ..., qn+1)⊗

(1 − r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)) ∧ r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ...,

qn+1)

∧

n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1) ∧ ...∧
n+1∏

j,in−3
j=1+in−3

4(q0, ..., q̂in−3 , q̂ j, ..., qn+1)

+

.

.

.

(−1)n+1
n+1∏

j,in−3
j=1+in−3

4(q0, ..., q̂in−3 , q̂ j, ...qn+1) ⊗ (1 − r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ...

, qn+1)) ∧ r(qi0 , ..., qin−3 |q0, ..., q̂i0 , ..., q̂in−3 , ..., qn+1)) ∧
n+1∏
j,i0

j=i0+1

4(q0, ..., q̂i0 , q̂ j, ..., qn+1)

∧ ...∧
n+1∏

j,in−2
j=1+in−2

4(q0, ..., q̂in−2 , q̂ j, ..., qn+1)
)

(55)

now apply all properties of wedge, tensor, Siegel and dummy indices, it becomes

∂ ◦ f n
1 (q0, ..., qn+1) =

n+1∑
j=i+1

(−1) j
n+1∑
i=0

(−1)i4(q0, ..., q̂i, q̂ j, ..., qn+1) ⊗
4(q0, ..., q̂i+1, q̂ j+1, ..., qn+1)

4(q0, ..., q̂i+2, q̂ j+2, ..., qn+1)
∧

4(q0, ..., q̂i+2, q̂ j+2, ..., qn+1)

4(q0, ..., q̂i+3, q̂ j+3, ..., qn+1)
∧
4(q0, ..., q̂i+3, q̂ j+3, ..., qn+1)

4(q0, ..., q̂i+4, q̂ j+4, ..., qn+1)
∧ ...∧

4(q0, ..., q̂i+n−1, q̂ j+n−1, ..., qn+1)

4(q0, ..., q̂i+n, q̂ j+n, ..., qn+1)
∧

4(q0, ..., q̂i+n, q̂ j+n, ..., qn+1)

4(q0, ..., q̂i+n+1, q̂ j+n+1, ..., qn+1)
(56)

So from Eq.(53) and Eq.(56) and using dummy indices, theorem 1 is hence proved. �109

5. Conclusion110

In this study the generalization of morphisms f n
0 and f n

1 are presented to connect Cathelineau infinitesimal111

and Grassmannian chain complexes for generalized geometry. This work will play significant role in the fields112

of Algebraic K-theory, Chain complexes, Algebraic Topology, Homological Algebra and Polylogarithmic group113

theory.114
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