Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays

Version 1 : Received: 14 March 2017 / Approved: 15 March 2017 / Online: 15 March 2017 (00:48:12 CET)

A peer-reviewed article of this Preprint also exists.

Hu, C.; Wang, J.; Tian, W.; Zeng, T.; Wang, R. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays. Sensors 2017, 17, 598. Hu, C.; Wang, J.; Tian, W.; Zeng, T.; Wang, R. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays. Sensors 2017, 17, 598.

Abstract

MIMO (multiple-input multiple-output) radar provides much more flexibility than the traditional radar for its ability to realize far more observation channels than the actual number of T/R (transmit and receive) elements. Designing the array of MIMO imaging radar, the commonly used virtual array theory generally assumes that all elements are placed on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, resulting in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation, leading to inevitable high grating lobes in the imaging result of near-field edge points of the scene observed by common MIMO array. To tackle these problems, this paper derives the relationship between target’s PSF (point spread function) and pattern of T/R arrays, by which the design criterion of near-field imaging MIMO array is presented. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by simulations and an experiment.

Keywords

MIMO radar; MIMO imaging; Near-field imaging; Height difference between T/R arrays; Grating lobes

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.