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Abstract: Underwater Sensor Networks (UWSNs) can enable a broad range of applications 
such as resource monitoring, disaster prevention, and navigation-assisted. It is especially 
relevant for sensor nodes location in UWSNs. Global Positioning System (GPS) is not suitable 
for using in UWSNs because of the underwater propagation problems. Hence some 
localization algorithms based on the precise time synchronization between sensor nodes have 
been proposed which are not feasible for UWSNs. In this paper, we propose a localization 
algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). 
TP-TSFLA contains two phases, namely, range-based estimation phase and range-free 
evaluation phase. In the first phase, we address a time synchronization-free localization 
scheme base on the Particle Swarm Optimization (PSO) algorithm to decrease the localization 
error. In the second phase, we propose a Circle-based Range-Free Localization Algorithm 
(CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information 
through the first phase. In the second phase, sensor nodes which are localized in the first 
phase act as the new anchor nodes to help realize localization. Hence in this algorithm, we 
use a small number of mobile beacons to help achieve location without any other anchor 
nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA by 
designing a coordinate adjustment scheme is updated. The simulation results show that 
TP-TSFLA can achieve a relative high localization ratio without time synchronization. 

Keywords: Underwater sensor networks; synchronization-free; range-free; particle swarm 
optimization  

 

1. Introduction 

Underwater Sensor Networks (UWSNs) are usually composed of some autonomous and 
individual sensor nodes [1], which can sense data, perform computations intelligently, and 
forward information. Sensor nodes are spatially distributed in UWSNs with some sensing work 
to obtain water-related properties such as mass, temperature and pressure data [2]. UWSNs 
usually arrange many sensor nodes to monitor the underwater environment through the 
underwater acoustic communication to exchange the node location information and other data. 
UWSNs can be applied to many areas such as disaster early warning, pollutant control, marine 
resource exploration and maritime military. 

The coordinates of the node location information In UWSNs are necessary to provide users 
with an efficient testing service. Therefore, underwater sensor node positioning can be regarded 
as the foundation and core for UWSNs. How to accurately estimate the position of the 
underwater node in UWSNs is of great research significance. Many researchers have reported 
the research results of localization. In outdoor environments, GPS-based positioning systems 
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are used most and have good performance. In the indoor environment, RF-based or VLC-based 
positioning systems have attracted many researchers. However, they all not feasible to apply to 
UWSNs. RF signals only at low frequencies of about 30-300Hz can be used in the UWSNs, while 
requiring large antennas or high transmission power [3]. Optical signals are also subject to 
underwater attenuation and scattering [4]. Fortunately, the frequency of sound waves is little 
between 10Hz and 1MHz [1], which can provide small bandwidth but with long wavelengths. 
Therefore acoustics can be used to relay information over kilometers [5].  

Underwater localization usually requires some objects with known locations (anchors) and 
objects to be localized (unknown nodes) [6]. The location information of anchors can be 
obtained through a variety of methods. In [7], the authors divide the localization scheme of 
UWSNs into two phases, namely the position-related information collection phase and the 
position estimation phase. In the first phase, position-related information such as the distance, 
angle, and hop count between each other or the anchor point is measured by the node. In the 
second phase, the localization algorithms are performed by the localized nodes or locally 
calculated by them. Conventional localization algorithms use the distance or angle 
measurements between the anchor and the unknown nodes to estimate the location of 
unknown nodes. Some positioning schemes do not require an anchor node and use the 
connection information to obtain the location of unknown nodes [8] [9]. The deployment of 
UWSNs is still a challenging task because of the limitations of computing power, cost, memory, 
transmission range and most of the lifetime of any single sensor [1]. A large number of anchor 
nodes can provide greater coverage and higher accuracy but may add cost. Therefore, how to 
decrease the number of anchor nodes or to achieve anchor-free localization is still a research 
direction. Moreover, the battery resources are limited to shorten the operation time. Thus, an 
effective strategy can guarantee the system performance with the low energy consumption. 
Many factors, such as water temperature, signal attenuation, dynamics, noise, may affect the 
performance. 

The time synchronization is directly assumed in many localization schemes. However, it is 
not feasible in the real UWSNs. Then how to lose the time synchronization requirement or to 
develop a synchronization-free algorithm is a direction to solve this problem. In this paper, 
basing on the time synchronization-free localization using mobile beacons (we called it as TSFL) 
[10], we provide the Two-phase Time Synchronization-Free Algorithm (TP-TSFLA). TP-TSFLA 
can be divided into two phase, namely, range-based estimation phase (Phase I) and range-free 
evaluation phase (Phase II). In Phase I, we improve the TSFL algorithm based on the PSO 
algorithm to decrease the localization error. In Phase II, we propose a range-free algorithm to 
locate the unlocalized sensor nodes. Only sensor nodes which cannot be localized in Phase I can 
be processed in Phase II. In this phase, the localized sensor nodes are looked like the new 
anchor nodes to help realize localization. The unlocalized sensor node actively initiates a 
localization request, then the localized sensor node within the transmission range of the 
unlocalized sensor node can receive the request and respond their coordinate to the unlocalized 
node. Then the unlocalized sensor node starts a Circle-based Range-Free Localization 
Algorithm (CRFLA) to locate itself. Besides, a coordinate adjustment scheme is proposed to 
improve the precision of CRFLA.  

The remaining portion of the paper is organized as follows. In Section II, we survey the 
localization algorithms according to the different natures. The system model is given in Section 
III. In Section IV, we use the PSO algorithm to improve the TSFL algorithm. CRFLA and its 
coordinate adjustment scheme are presented in Section V and Section VI respectively. The 
detailed algorithm procedure is shown in Section VII. Section VIII shows the simulation results 
and comparison. Finally, we conclude in Section IX. 
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2. Related Work 

Recently, numerous localization algorithms have been put forward, and some researchers 
have done some survey of the localization algorithms [11-14].We discuss the localization 
algorithms in UWSNs in the following five aspects, namely computation algorithm, anchor 
requirement, range measurement, synchronization requirement, and communication between 
nodes. We only discuss the difference in each aspect and use some references to describe it. 

According to the computation algorithm to be implemented, we classify the computation 
algorithms into two categories as centralized techniques [15] and distributed methods [16]. The 
centralized technology performs the localization algorithm at the command center or sink node. 
However, in the distributed method, the sensor node alone estimates the location of each sensor 
node. In [17] [18], a Reverse Localization Scheme (RLS) with a fast response to events is 
proposed. The scheme is based on the centralized technique. Thus, the data can be transmitted 
to the station, and the positioning algorithm is performed there. The scheme is described as two 
phases, namely, a transmitting phase and a centralized geometric localization phase. In the 
transmission phase, a new message exchange mechanism based on event-driven reporting is 
proposed. At the beginning of the second phase, the sink collects information from the anchor 
and estimates the location of the sensor node. The authors of [19] have shown a localization 
algorithm based on distributed technology. The authors mainly consider the problem of 
estimating the isolated unknown nodes and propose a Multihop Fitting Localization Approach 
(MFLA). The method sets the intermediate node between the beacon and the unknown node as 
a router to construct the path through the greedy method, and then fits the multi-hop path into 
a straight line and estimates it by trilateration.  

The anchor requirement means the anchor node is required or not in the localization 
algorithm. According to this, we classify the localization algorithms into two taxonomies: 
anchor-free and anchor-based schemes. In UWSNs, many positioning algorithms can use 
anchor nodes to help estimate location. Because of the different localization algorithms, anchor 
nodes are not necessary, and some researchers have proposed a self-localization algorithm that 
does not need anchor nodes. The positioning scheme [20] is an anchor-based scheme. This 
scheme consists of four types of nodes, surface buoys, Detachable Elevator Transceivers (DETs), 
anchor nodes and ordinary nodes. Besides, the scheme locates the nodes in two phases. First, 
the anchor node uses a range-based distributed approach, the LSM, to locate itself. Secondly, 
ordinary nodes use the regional positioning scheme to achieve location-free centralized 
approach. In [21], an Anchor-Free Location Algorithm (AFLA) for active restricted UWSNs is 
proposed. The algorithm uses the relationship between adjacent nodes. In this scenario, the 
underwater sensor node actively limited means that when anchored to the seafloor, it floats in 
the sea and moves within the hemispherical region. A node with unknown location broadcasts 
a message and receives the information of other nodes at the same time. When the node receives 
two messages from two different nodes, it starts the location calculation process. 

Based on the range measurement, we classify the localization algorithms into two 
categories, the range-based scheme, and the range-free scheme. In general, range-based 
schemes estimate distances by various algorithms and then convert them into positional 
information. The range-free scheme does not require distance measurement and bearing 
information, uses a local topology and the position of the neighboring anchor nodes to obtain 
the position estimate. However, the range-free scheme can only get a rough location with little 
accuracy. The positioning method of [22] is a range-based approach, and is called the 
multi-stage AUV-assisted positioning scheme that is an improvement of the "multi-stage DNR" 
scheme. In [22], the DNR is replaced by AUV. The AUV with known coordinates dives to a 
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pre-programmed depth and begins to traverse the sensor network after the preprogrammed 
path. When a non-collinear position receives three beacons, the triangulation is used to obtain 
the position of the node. In [23], the authors propose an efficient Area Localization Scheme 
(ALS). The scheme estimates the position of the sensor within a particular region. An anchor 
node broadcasts a beacon signal to a sensor node and sends an acoustic signal at a varying 
power level. The sensors passively monitor the signals and record the received information. A 
sensor node at a particular location can receive this property of different levels of signals from 
the same anchor node, the sensor measures its signal coordinates and stores the information, 
and then forward to the sink. The sink then uses the information gathered from sensor nodes to 
estimate the area in which the sensor is localized. 

Synchronization requirement means that time synchronization is required or not in the 
localization algorithm. Based on this, we classify the localization algorithms into two categories: 
synchronization localization scheme and the synchronization-free localization scheme. In many 
cases, the localization scheme directly assumes that sensor nodes are synchronized with each 
other. However, this is difficult to implement in underwater environments, so the researchers 
have proposed some localization algorithms without synchronization requirements. The 
localization scheme of [24] requires time synchronization, but dual hydrophones on each node 
can reduce the need for time synchronization. In [24], a Dual Hydrophone Localization (DHL) 
approach is proposed, and the localization problem is converted to a half-plane intersection 
problem.  As for the non-synchronized positioning scheme, we introduce three papers to show 
it. In [25] [26], a range-free scheme using AUV periodically broadcasts message blocks via four 
directional beams to estimate the location information of sensor nodes.  The node receives the 
message block and uses two different continuous beams to estimate the position of the AUV at 
two different moments. The location of the nodes can then be obtained using two estimated 
locations. In [27], a Basic Synchronization-Free Localization (BSFL) scheme is proposed. It 
consists of two steps, namely the range difference calculation, and the position calculation. 
However, the BSFL still suffers from some drawbacks of the large-scale UWSNs. Therefore, a 
Large-Scale Localization Scheme (LSLS) based on BSFL is designed. It consists of three phases, 
namely sea surface anchoring, iterative localization and complementary phases.  

Based on the communication characteristics between the reference node and the common 
node, we classify the UWSNs localization algorithm into two classes, single stage method 
[28-30] and multi-stage method [31-33]. The single stage means that the exchange of messages 
between all sensor nodes and the reference nodes is straightforward. After obtaining the 
location, they are still passive and cannot be used to help locate other sensor nodes [34]. In the 
multi-stage scheme, the common node does not need to communicate directly with the 
reference node. Once sensor nodes are localized, they become new reference nodes and can help 
to locate other sensor nodes [34]. The positioning scheme of [35] is based on a single-stage 
method. The authors use hyperbolic methods and normal distribution estimation error 
modeling and calibration for location estimation. The positioning scheme [36] is based on a 
multi-level localization scheme. The Top-down Positioning Scheme (TPS) for UWSNs without 
evenly distributed anchor nodes or additional infrastructures can increase location coverage 
while maintaining low positioning errors. In this scheme, there are three types of nodes, namely 
surface anchor nodes, new reference nodes, and nonlocalized nodes. First, only sensor nodes 
that are close to the surface anchor nodes can be localized. Once the positions of sensor nodes 
are obtained, they compute their confidence values and compare them to the confidence 
thresholds. If the node's confidence values are greater than the confidence thresholds, they 
become new reference nodes to help the non-localization nodes locate themselves. 
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3. System Model 

3.1. Overview of the system 

This paper mainly concentrates on locating the underwater sensor nodes. Due to the 
assumption of perfect time synchronization being unfeasible, in TP-TSFLA proposed in this 
paper, sensor nodes are randomly deployed in the different depth of the underwater to monitor 
the various areas. We assume sensor nodes are static for the 3D-network architecture. The 
pressure sensor is equipped on every sensor node to obtain the depth of the sensor node as the 
z-coordinate. Obtaining the x-coordinate and y-coordinate of the sensor node is necessary. 
Hence the 3D-localization problem can be transformed into a 2D-localization issue.  

To obtain the coordinate of the sensor node, some particular nodes which the coordinate 
can be looked as known are needed. In this scheme, we use the mobile beacon to help realize 
localization, and no other anchor nodes are required. The mobile beacon can dive and rise in the 
vertical direction with the aid of extra weight. When they reach the deepest point of the 
deployment, they rise to the surface. Once the floating over the sea surface, they can use the 
GPS receiver to obtain their new coordinate. Hence when the mobile beacon dives to the 
deepest deployment, we can think that only the z-coordinate is changed with time. Also, the 
z-coordinate of the mobile beacon can use the pressure sensor equipped to obtain. The detailed 
deployment is shown in Figure.1.  

 

Figure 1. System model 

All the mobile beacons have the fixed transmission range, and diving speed and can 
broadcast the message at the fixed time interval. The mobile beacons broadcast the message 
which contains the mobile beacon id, itself coordinate. Sensor nodes which in the transmission 
range of the mobile beacon can receive the message. And then sensor nodes can use the 
geometric property to locate itself. During this phase, the sensor node only passively listens to 
the message from the mobile beacon to decrease the power assumption. After that, the 
unlocalized sensor node actively launches the localization request. The localized sensor node 
which is in the transmission range of the unlocalized sensor node acts as the anchor sensor node 
and responds the coordinate to the unlocalized sensor node. The unlocalized sensor node uses 
CRFLA to locate itself. 

3.2. Time synchronization-free localization scheme using mobile beacons 
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Basing on the system model, we can employ the time synchronization-free localization 
scheme using mobile beacons proposed by the authors of [10] to locate sensor nodes in Phase I. 
Hence to describe it concisely, we called it as TSFL algorithm. The mobile beacon dives and 

rises in the underwater at the fixed speed 1v . 1T and 2T express the time that the first message 
received by sensor node and the second message received by the sensor node respectively. 

Hence the coordinate of the mobile beacon at the different time is denoted as ),,( 111 zyx and 
),,( 211 zyx . The speed of sound is 2v , and the coordinate of the senor node is ),,( 3zyx . 

If 231 zzz << , we can obtain the distance d , and the detailed process can be found in 
[10]. 
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If at least three distance measures from different mobile beacons have been obtained, the 
position of the sensor node can be obtained. 

However, the authors do not take the impact of the water current into account and make 
the speed of the mobile beacon and sound as a constant. It is not reality. Thus we consider the 
error caused by the underwater environment and propose localization scheme based on the 
PSO algorithm. Besides, to save the cost, the number of the mobile beacon is limited which leads 
to the lower localization ratio. Primarily we use the algorithm into the relatively large 
environment. Hence we improve the algorithm based on the two aspects in TP-TSFLA. 

3.3. Algorithm Features 

In this paper, TP-TSFLA is mainly concerned about the time synchronization requirements, 
trying to find a synchronization-free localization scheme. The localization algorithm proposed 
in this paper is based on the distributed localization technique. In Phase I, mobile beacons are 
used as anchor nodes, and in Phase II, sensor nodes that are localized in the first phase act as 
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anchors to help locate the unlocalized sensor nodes. The algorithm used in Phase I is 
range-based, while the algorithm of Phase II is range-free, and belongs to the multi-stage 
method. 

The features of the system can be described as follows. 

• The system is suitable to use in the 3D-network architecture, and the sensor node is 
assumed static in the network. Every sensor node is equipped with a pressure sensor to 
sense the depth of the sensor node. The mobile beacon can obtain the x-coordinate and 
y-coordinate by GPS, and only the z-coordinate is changed when the mobile beacon dives 
to the sea. 

• The diving speed of the mobile beacon and the rate of the sound in the water of the TSFL 
algorithm are assumed as a constant. The mobile beacon broadcasts the message in the 
fixed interval. The transmission range of the mobile beacon and sensor node is fixed. The 
transmission range of the mobile beacon is larger than the transmission range of sensor 
node. 

• During Phase I, sensor nodes passively listen to the mobile beacon, not transmitting a 
message to the mobile beacon to decrease the power assumption. While in Phase II, 
sensor nodes can initiate active communication with other sensor nodes to obtain the 
message which is required to realize localization. 

• In TP-TSFLA, the small number of the mobile beacons are used as the anchor nodes. In 
Phase II, the algorithm uses the multi-stage scheme to help realize the localization. The 
localized sensor nodes are used as the new anchor nodes. 

4. Range-based Estimation Algorithm of Using PSO  

In this section, we employ the Particle Swarm Optimization (PSO) algorithm to improve 
the precision of the estimated position. To solve a variety of optimization problems, many 
optimization algorithms have been proposed, such as climbing method, genetic algorithm and 
so on. Hill climbing method has high precision, but it is easy to fall into the local minimum. 
Genetic algorithm belongs to the evolutionary algorithm.  However, the genetic algorithm 
requires more sophisticated programming, the choice of these parameters severely affect the 
quality of the solution, and most of these parameters depend on experience. The PSO algorithm, 
with smooth implementation, high precision, and fast convergence has similarly to a genetic 
algorithm, and it is also starting from the random solution. The PSO algorithm iteratively finds 
the optimal solution, and it evaluates the quality of the solution through fitness, but it is simpler 
than the genetic algorithm. It does not have the "cross" (Crossover) and "mutation." The global 
optimum is sought by following the current search to the optimal value. 

Basing on TSFL, after at least three distance measures from different mobile beacons have 
been obtained, the authors obtain the estimated position of the sensor node using the following 
formula 

( ) bAAA
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In our algorithm, we extend the estimated position of the sensor node )ˆ,ˆ( yx to two 

dimension area. The x-coordinate of the particle is between ax −ˆ  and ax +ˆ , and y-coordinate is 
between by −ˆ and by +ˆ  shown as 

]ˆ,ˆ[ axaxxj +−∈ , (7)

]ˆ,ˆ[ bybyyj +−∈ , (8)

where a  and b  are constants to determine the range of the solution-space. ),( jj yx are the 

coordinates of the particle. Hence we initialize a group of random particles (random 

candidate solution) in the rectangular area. And then the PSO algorithm iteratively finds the 

optimal solution. In each iteration, the particle updates itself by tracking two "extremum". 

The first is the optimal solution found by the particle itself, and the solution is called the 

individual extreme (pBest). The other extremum is the optimal solution found by the whole 

population. The extreme value is the global extreme value (gBest). When these two optimal 

values are found, the particle updates its speed and new position according to the following 

formula 

[])[](*()*2

[])[](*()*1[]*[]

presentgbestrandc

presentpbestrandcvwv

−+
−+=

, (9)

[][][] vpresentprsent += , (10)

where []v  is the speed of the particle, w is the inertia weight, []present is the current 

position of the particle, []pbest is the individual extreme value, [ ]gbest  is the global 

extreme value, and ()rand  is the random number between (0, 1). 1c  and 2c  are the 

learning factor. 
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Fitness Function: the distance of unknown sensor node ( )zyx ,,  from the anchor node 

( )iii zyx ,,  expressed as ir is given as 
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The coordinate of the particle is ( )jjj zyx ,, , the number of anchor node is N, and the fitness 

function can be described as 


=

−−+−+−=
N

i
rzzyyxxf iijijijj

1

2)(2)(2)( , (12)

If the fitness function tends to 0, the result solution coordinate tends to be the coordinate of 
the unlocalized sensor node. After the maximum number of loops is reached, the current global 
extreme value will be chosen as the coordinate of the sensor node. 

5. CRFLA 

After Phase I, some sensor nodes may not obtain the location information. Thus, those 
sensor nodes start Phase II to locate themselves. In Phase II, the environment is different from 
Phase I. In Phase I, the mobile beacon is acted as the anchor node, and the number of the mobile 
beacon is small. However in Phase II, the localized node serves as the new anchor node, and the 
number is much more than the unlocalized sensor node. The unlocalized sensor node (UN) 
transmits the localized request, and the localized sensor node (LN) which is localized in the 
transmission range (denoted as r ) can receive the request. The distance pd  between UN and 
LN which is in the transmission range satisfies the inequation rdp < . We draw a circle which 
the circle center is the localized sensor node ),,( ppp zyx  and the radius is r , then the 

unlocalized sensor node must locate in the circle area. In the range-base algorithm, we can use 
the point of intersection of three circles as the estimated coordinate of the sensor node (EN). But 
in the range-free algorithm, the three-circle may not intersect at one point. Thus we use the 
geometric center as the coordinate of the unlocalized sensor noden in Figure 2. We can see that 
if the intersection area is small, the precision is much higher. We address that if the following 
two conditions are satisfied, the precision of the circle-based range-free algorithm is much 
higher. 
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LN2
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The point of intersection of the  three  LNs 

UN

EN LN UN

 

Figure 2. CRFLA 

Condition I: the distance pd  between the unlocalized sensor node and the localized sensor 
node infinitely closes to the transmission range r of the unlocalized sensor node.  

Condition II: the three localized sensor nodes localize in the different direction of the circle.  

Here we use the figure to show the counter-example of the two conditions. We assume
2/rdp <  to verify Condition I and is shown in Figure 3. 

LN2

LN1

LN3

EN
UN

The point of intersection of the  three  LNs 

EN LN UN

 

Figure 3. CRFLA against Condition I 

 

As shown in Figure 3, if pd is much smaller than r , the intersection area will increase. Of 
course, if the three intersection points are symmetrical, the geometric center of the intersection 
area is still near the unlocalized sensor node. However, all sensor nodes are randomly 
distributed in the underwater, and the probability of the three localized sensor nodes 
distributed symmetrically is very low. Hence if the intersection area is small, even though the 
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three localized sensor nodes are not symmetrical, the geometric center will not far away from 
the unlocalized sensor node.  

To as far as possible satisfy Condition I, we employ the nature that the signal strength 
decreases with increasing distance. The unlocalized sensor node utilizes the response 
information of the localized sensor node which contains the coordinate of the localized sensor 
node and the signal strength to choose the three localized sensor nodes. Simply to say, the 
unlocalized sensor node determines the three localized nodes which the signal strength is 
lowest. It is to say the distance of the chosen three localized sensor nodes from the unlocalized 
sensor node is the largest in the all localized sensor nodes which can receive the information of 
the unlocalized sensor node. Here we do not obtain the distance from the signal strength but 
compare the value of the signal strength. 

We suppose the following case that the three localized sensors satisfy Condition I but not 
satisfy Condition II, and show in Figure 4. 

LN2

LN1

LN3

EN

UN

The point of intersection of the  three  LNs 

EN LN UN

 

Figure 4. CRFLA against Condition II 

Three localized sensor nodes are far away from the unlocalized sensor node and pd  is close 
to r . But the three localized sensor nodes are in the same direction of the circle of the 
unlocalized sensor node. In this case in Figure 4, the intersection point is three, and the 
geometric center of the intersection area is far away from the unlocalized sensor node. It means 
that the location error is larger. 

To as far as possible satisfy Condition II, we employ the k-means clustering algorithm. The 
clustering algorithm can ensure that the class distance is as small as possible, the distance 
between classes as large as possible. In TP-TSFLA, we cluster the localized node which localized 
in the transmission range of the unlocalized sensor node into four categories. The localized 
sensor node with the lowest the signal strength is chosen. Any three of the four localized sensor 
nodes are picked. We use the localized sensor node as the circle center and r as the radius to 
draw the circle. Hence three circles can obtain, and then calculate the geometric center of the 
intersection area of the three circles. Using the four localized sensor nodes, we can get four 
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different groups intersection area. Then the average value of the four geometric centers of the 
four intersection areas is used as the coordinate of the unlocalized sensor node. The circle-based 
range-free algorithm is shown in Figure 5. The red circle expresses the transmission range of the 
unlocalized sensor node. The other points within the red circle mean the localized sensor node 
which can receive the request of the unlocalized sensor node. Then the k-means algorithm 
clusters those localized sensor nodes into four classes (with different shapes). Then in each class, 
the algorithm picks out the LN which is the lowest signal strength in its cluster (the distance 
between the localized sensor nodes and unlocalized sensor nodes is larger). Then three LNs 
draws three circles. The geometric center of the intersection area of the three circles can be 
obtained. 

If the LNs within the transmission range of UN satisfy the two conditions with a high 
possibility to ensure that the three circles are intersecting and the intersection area is relatively 
small. It is to say that the relatively high precision can be guaranteed. Note that the intersection 
point can be three or two.  

LN2

LN1

LN3

EN

UN

The sensor nodes within the communication range of UN

The point of intersection of the  three  LNs 

EN LN UN

 

Figure 5. The detailed procedure of CRFLA 

 

 

 

 

 

 

 

We can describe CRFLA in Algorithm I. 

Algorithm I：CRFLA  
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Step 1: The unlocalized sensor node (UN) ),,( zyx transmits the localization request. 

Step 2: The localized sensor nodes (LNs) which satisfy rdp <  respond the information 
which contains the coordinate ),,( ppp zyx  and signal strength pRSSI  to the UN. 

Step 3: The UN use the k-means clustering algorithm to cluster the LNs into four classes 
( icc ). 

Step 4: For each icc , choosing the LN with )min( pRSSI , four LNs can be obtained as 

4,3,2,1 LNLNLNLN . 

Step 5: Picking three LNs from 1, 2, 3, 4 LN LN LN and LN  to draw three circles, the cases 

contain ( )3,2,1 LNLNLN , ( )4,2,1 LNLNLN , and ( )4,3,2 LNLNLN , four geometric centers of the 

intersection area can be obtained expressed as ( )123123, yx , ( )124124, yx , ( )134134, yx , and ( )234234, yx . 

Step 6: calculate the average value of ( )123,123 yx , ( )124,124 yx , ( )134,134 yx , ( )234,234 yx  as the 

coordinate of the UN. 

)
4

,
4

(),(
234134124123234134124123 yyyyxxxx

yx
++++++= , (13)

 

6. The Extension of CRFLA 

Based on CRFLA, we can get an estimation of the unlocalized sensor node. However, the 
precision is rough. Thus we try to increase the accuracy of CRFLA by studying the relative 
relationship between the original coordinates of the unlocalized sensor node, estimation 
coordinates, and the coordinates of the localized sensor nodes. Considering several of the 
geometric position relationships of the three coordinates, two cases are shown as follows. In 
Figure 6, LN expresses the localized sensor node, UN shows the unlocalized sensor node, and 
EN shows the estimated coordinate of the unlocalized sensor node. Connecting three LN points 
to constitute a triangle, EN is far away from UN and closes to LN2. Hence we approximate that 
EN is in the direction of LN2 away from UN. Figure 6 shows the case that LN2 is above UN and 
EN. 
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LN2

LN1

ENUN

α 

LN3

EN LN UN

The point of intersection of the  three  LNs 

 

Figure 6. The localization relationship of the UN and EN when LN2 is above the UN and EN 

The case that LN2 is below EN and UN is shown in Figure 7. Similarly, we can approximate 
that EN is in the direction of LN2 away from UN. Next, we should try to find out why the point 
is LN2, not LN1 or LN3. Through observation, we find the angle α is the largest angle in the 
triangle. Of course, just a lot of cases are tested, and maybe not all the cases are taken into 
account. But from those tests, it is true that it is high possibility that EN is in the direction of 
LN2 away from UN. Hence, LN2 corresponding to the point that the angle of it is the largest 
angle in the triangle. We transfer the largest angle to the longest opposite edge of angle. It 
means that the distance between N1 and LN3 is largest. We will use MATLAB simulation to 
demonstrate it. Next, we give the mathematical model of the extension of CRFLA. 

UN
LN3

LN1

LN2

EN

α
 

EN LN UN

The point of intersection of the  three  LNs 

 

Figure 7. The localization relationship of the UN and EN when LN2 is below the UN and EN 

The coordinate of the UN is ),,( zyx , the coordinate of the LN2 is ),,( 222 zyx , and the 
coordinate of EN is )ˆ,ˆ,ˆ( zyx . If we want )ˆ,ˆ,ˆ( zyx  is close to ),,( zyx , we should adjust the 
coordinate )ˆ,ˆ,ˆ( zyx  in the opposite direction of the movement of EN that EN is in the direction 

of LN2 away from UN. Because the z-coordinate can be obtained from the pressure sensor 
equipped on the unlocalized sensor node, we just discuss the adjustment of the x-coordinate 
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and y-coordinate. The final coordinate of the unlocalized sensor node can be formulated as 
follows. 

)ˆˆ(),( 1,1 byaxyx ±±= , (14)

The extension of CRFLA adjusts the estimated coordinates in two steps: 

 Step 1: The adjustment of the x-coordinate: 

             Case I:  if xx ˆ2 > , then 1ˆ axx −= ; 

             Case II: if xx ˆ2 < , then 1ˆ axx += ; 

 Step 2: The adjustment of the y-coordinate: 

             Case I:  if yy ˆ2 > , then 1ˆ byy −= ; 

             Case II: if yy ˆ2 < , then 1ˆ byy += ; 

The determination of the variables 1 1,  and a b  is hard. The value of variables 1 1,  and a b  

will seriously affect the precision of the location. Unfortunately, we still cannot find out an 
excellent method to determination the value of variables 1 1,  and a b . We first assume a kind of 
relationship between the variables 1 1,  and a b  and the distance between the side lengths of the 

triangle drawn by using the localized sensor node. Then we use a significant amount of 
MATLAB simulations to change the parameter to observe the change of precision. In this paper, 
we use the parameter setting as follows. 

xxa ˆ21 −= , (15)

yyb ˆ21 −= , (16)

We will show the comparison of the different parameter settings using MATLAB simulation.  

7. TP-TSFLA Procedure 

TP-TSFLA proposed in this paper contains two phase. In Phase I, the mobile beacon is 
employed as the anchor to realize the time synchronization-free localization of sensor nodes. If 
the sensor node cannot obtain its coordinates in Phase I, it goes into Phase II and uses CRFLA 
to locate the unlocalized sensor nodes. Hence for each phase, there are two steps. Namely, the 
first step is used to obtain the initial coordinate of the unlocalized sensor node, and the second 
phase is used to improve the precision of the position obtained by the first step. The detailed 
algorithm can be described as follows. 

Phase I: Range-based estimation phase 
Step 1: The sensor node uses the TSFL algorithm to obtain the estimated location of the most 

of the sensor nodes. Sensor nodes passively listen to the message of the mobile beacon. Then 
using those message received from the mobile beacons, the sensor node can measure the 
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distance from the mobile beacon. If at least three distance measures are obtained, then sensor 
node use those distance measures to estimate their location.   

Step 2: Every sensor node which has obtained the estimated location through Step 1 use the 
PSO algorithm to optimize the estimated position, and then the optimized estimated locations 
are taken as the final estimated location of the sensor node. 

Phase II: Range-free evaluation phase 
Step 3: Sensor nodes which cannot obtain the position through Phase I actively launch the 

localization request. The localized sensor nodes within the transmission range of the 
unlocalized sensor node receive the request and respond their coordinates to the sensor node. 
Then the unlocalized sensor node uses CRFLA to obtain its coordinate. 

Step 4: Sensor nodes adjust the estimated coordinates to improve the precision of the 
range-free method, and the final estimated location is taken as the coordinate of the unlocalized 
sensor node. 

The block diagram of TP-TSFLA is shown in Figure 8. 

Sensor nodes 

Mobile Beacons 
act as anchors

TSFL algorithm

PSO algorithm

Loci=0 Circle-based range 
free localization 

algorithm

Loci=1

Revise method

L
ocated sensor nodes act 

as anchorsFinal location 
estimation of the 

sensor nodes

Final location 
estimation of the 

sensor nodes

 

Figure 8. Block diagram of TP-TSFLA 

Table 1 gives all the mathematical notation and symbols definitions used of Algorithm II. 

 Table 1. Notation 

Sign Meaning 

iD  Number of mobile beacons which the distance measurement from 
the sensor node i  

jM  
The number of the message received from the j  mobile beacon 

iLoc  
If the node i  is localized, the 1=iLoc , else 0=iLoc  

3z  The z-coordinate of the sensor node 

)ˆ,ˆ(

_

yx

inicoor i  The estimated coordinate of the sensor node i  without using the 
optimized algorithm 
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),,( 3zyx

coordinatei The estimated coordinate of the sensor node i  after using the 
optimized algorithm 

jjf  
The fitness function of the particle jj  

Maxgen  Number of iterations 

gbest  The population optimal 

),,( 222 zyx  The coordinate of localized sensor node which corresponds to the 
point that the angle of it is the largest angle in the triangle 

 

The detailed stepwise procedure for TP-TSFLA is shown in the following Algorithm II. 

 

Algorithm II:  TP-TSFLA 

Phase I:  
  Step 1: TSFL 
    1: Each sensor node i initialize data: 3z =depth, iiM =0, iLoc =0, iD =0 
    2: Sensor node receives the beacons, records the beacon id j , jM = jM +1 

3: if jM >=2, sensor node computes the distance measure, records iD = iD +1 
4: end if  
5: if iD >=3, sensor node uses TSFL algorithm compute iinicoor _ , and records iLoc =1 
6: end if 

Step 2: PSO algorithm to improve the precision 
7: Initialize the parameter of PSO, produce initial particles jj  and velocities, and compute

jjf , set Maxgen  
8: while the Maxgen is not achieved do    
9: Update the velocity, particle population, and jjf  
10: Update the population optimal gbest  
11: end while 
12: icoordinate = gbest  

   Phase II: 
  Step 3: Circle based range-free localization  

13: if iLoc =0 
14: iinitialcoordinate _ =Algorithm I 
15: iLoc =1 

  Step 4: Sensor nodes adjust the estimated coordinates to improve the precision 
16: Compute the parameter

xxa ˆ21 −= , 
yyb ˆ21 −=  

        17: Adjust the x-coordinate and y-coordinate: 1ˆ axx ±= , 1ˆ byy ±=  
        18: ),,( 3zyxcoordinatei =  
        19: end if 
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8. Discussion 

In this section, we use the MATLAB simulation to evaluate the performance of TP-TSFLA. 
The simulation environment is mmm 500600600 ×× , and 800 sensor nodes are deployed in 
UWSNs. All sensor nodes are looked as stationary. We use 25 mobile beacons in this 
environment. The following parameters are the same as the setting of [10]. The speed of sound 
is set to 1500m/s, and the rate of the mobile beacon is 1m/s. The beacon interval varies from the 
30s to 100s, and the transmission range varies from 150m to 250m. 

In [10], the authors did not show the localization precision of their algorithm. The effect of 
the underwater environment is not taken into account. Here we consider the factors which may 
lead to the distance measurement error. The average positioning error of TSFL is 2.2052m. To 
decrease the localization error of the algorithm, we introduce the PSO algorithm to improve the 
precision. We first fixed the parameter of PSO algorithm as 3== ba .The number of the 
particle is usual between 20 and 40. We choose the number as 20. In general, c1 is equal to c2, 
ranging between 0 and 4, and we use 221 == cc . The maximum number of loops is equal to 
200. The comparison of localization error between the TSFL algorithm and the range-based 
estimation algorithm of using PSO is shown in Figure 9. The average positioning error of the 
range-based estimation algorithm of using PSO by MATLAB simulation is 0.8985m. From 
Figure 9, we can see that the PSO algorithm can improve the localization error of the TSFL 
algorithm. Note that we use 800 sensor nodes in this simulation, but in the following figure only 
about the position error of 650 sensor nodes is shown. It just is because there still some sensor 
nodes cannot obtain the position information only through Phase I. 

 

Figure 9. The localization error of the sensors nodes using the TSFL algorithm and the PSO improved TSFL 
algorithm 

Meanwhile, we discuss the effect of the parameter a  of the PSO algorithm on the 
localization error. We still make the assumption that ba = . Thus, x-coordinate of the particle 
of the PSO algorithm is between ax −ˆ  and ax +ˆ , and y-coordinate is between ay −ˆ and 

ay +ˆ . The result shows in Figure 10 that when 3== ba  the average localization error is 

smallest and it is 0.8780m. With the increasing value of a , the localization error will increase. 
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When 10== ba  the largest localization error is 2.3353m. Hence, the results show that the 
right choice of the parameter of the PSO algorithm can decrease the mean localization error.  

 

Figure 10. The average localization error at different parameter setting of  in the PSO algorithm 

We study the effect of the beacon interval and transmission range on the localization ratio 
(defined as the number of localized sensor nodes). However in [10], the authors did not put out 
the simulation environment, just noting that sensor nodes are 250. In [10], the authors show that 
the localization ratio is about 76% when the beacon interval is 100s, while when the localization 
rate is about 90% when the beacon interval is 30s. However, our simulation environment 
(shown in Figure 11) indicate that the localization ratio is about 57.75% when the beacon 
interval is 100s, while the localization rate is 82.13% when the beacon interval is 30s. In [10], 
when the transmission range is 150m, the localization rate is about 80%, while the transmission 
range is 250m, the localization ratio is about 90%. However, our simulation environment 
(shown in Figure 12) indicate that the localization ratio is close to 0 when the transmission range 
is small than 180m. Hence the localization rate is close to 82.13% when the transmission range is 
250m. The reason of it may be that our simulation environment is much larger than that used in 
[10]. Meanwhile, the results show that when this method is utilized in the larger environment, 
the localization ratio may be not enough. CRFLA improves the localization ratio. In the circle 
based range-free algorithm, we use the beacon interval as 30s and the transmission range as 
250m. 
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Figure 11. The localization ratio versus beacon interval 

 

Figure 12. The localization ratio versus transmission range 

CRFLA is based on the assumption that the anchor node is relatively larger in the 
localized-to-be area. In TP-TSFLA, only the x-coordinate and y-coordinate of the sensor node 
are needed to obtain. Therefore we project sensor nodes into the 2D-plane and study the 
2D-relationship between sensor nodes. In Figure 13, we use the red circle to express the sensor 
node, and the blue triangle to show the estimation location of the PSO improved the TSFL 
algorithm. We can see the red circle which is not surrounded by the blue triangle is the 
unlocalized sensor nodes. Hence it is evident that the localized sensor nodes (new anchor nodes) 
are much more than the unlocalized sensor nodes. They locate in the different directions of the 
unlocalized sensor nodes. Thus, the prerequisites of CRFLA are established. 
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Figure 13. The location of the sensor node projected to the 2D-plane  

We then use MATLAB simulation to estimate the positioning error of CRFLA. The results 
show that the average positioning error is about 6.7996m. Compared with the range-based 
localization algorithm (Phase I), the localization error is much larger. It is the shortcoming of 
the range-free localization algorithm. But the range-free is much simple, and the power 
assumption is much lower. Besides the range-free localization does not need some unrealistic 
assumptions such as precise time synchronization, and fixed speed which may lead to the 
localization error. An extension of CRFLA is proposed by designing a coordinate adjustment 
scheme. The comparison of the localization error of the unlocalized sensor node in Phase II is 
shown in Figure 14. From Figure 14, we can see most of the localization error of the extension of 
CRFLA is lower than CRFLA. The average positioning error using the extension of CRFLA is 
3.5348m. Besides, the extension of CRFLA may increase the localization error. But it is just a 
small part of it. Hence, to this extent, the coordinate adjustment scheme is useful. Compared 
with TSFL which those coordinates of unlocalized sensor node are unknown, TP-TSFLA can 
locate most of them with the average localization error of 3.5348m and has significantly 
improved the performance. The localization ratio is 96.38%, while the localization ratio of the 
TSFL is 82.13%. 
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Figure 14. The localization error of CRFLA 

Hence, we survey the effect of the coordinate adjustment parameter settings on the 
localization error. We discuss lots of cases, and here we just list ten of them which the 
localization error is relatively small. We list the parameter settings of 1a  and 1b , and the NO 
(#) of the cases, the different localization errors in Table 2. The coordinate of the UN is ),,( zyx , 
the coordinate of LN1 is ),,( 111 zyx , the coordinate of LN2 is ),,( 222 zyx , the coordinate of LN3 
is ),,( 333 zyx , and the coordinate of EN is )ˆ,ˆ,ˆ( zyx . Note LN2 corresponding to the point that 

the angle is the largest angle in the triangle. We use the No (#). of the cases is 0 to express 
CRFLA. Then we discuss many cases of the parameter settings and choose ten of them to show 
the localization error. We can see the different parameter settings can decrease the localization 
error at different extent. Compared with the localization error of CRFLA, the localization error 
of all the cases is reduced and show it in Figure 15. 

Table 2. The parameter setting of the coordinate adjustment scheme and their own localization error 

No (#) The parameter setting of the 1a  and 1b  Average localization error 

0 011 == ba  6.7996m 

1 
xxa ˆ21 −=  

yyb ˆ21 −=  

3.5348m 

2 
2ˆ21 +−= xxa

 

1ˆ21 +−= yyb
 

3.6220m 

3 5ˆ21 ÷−= xxa  3.6815m 

0 20 40 60 80 100 120
-2

0

2

4

6

8

10

12

14

16

Sensor Nodes

Lo
ca

liz
at

io
n 

E
rr

or

 

 

Circle-based Range-free Localization Algorithm

The Extension of Circle-based Range-free Algorithm

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2017                   doi:10.20944/preprints201703.0070.v1

Peer-reviewed version available at Sensors 2017, 17, 726; doi:10.3390/s17040726

http://dx.doi.org/10.20944/preprints201703.0070.v1
http://dx.doi.org/10.3390/s17040726


 23 of 4 

 

5ˆ21 ÷−= yyb  

4 ( ) 3ˆˆˆ 3211 ÷−+−+−= xxxxxxa
 

( ) 3ˆˆˆ 3211 ÷−+−+−= yyyyyyb
 

3.7380m 

5 ( ) ( ) ( ) ( )
( ) ( )

25
ˆˆ

ˆˆˆˆ

2
3

2
3

2
2

2
2

2
1

2
1

11 ÷














−+−+

−+−+−+−
==

yyxx

yyxxyyxx
ba

4.0327m 

6 ( ) ( ) ( ) ( )
( ) ( )

40
ˆˆ

ˆˆˆˆ

2
3

2
3

2
2

2
2

2
1

2
1

11 ÷














−+−+

−+−+−+−
==

yyxx

yyxxyyxx
ba

4.1148m 

7 ( ) ( ) ( ) ( )
( ) ( )

40
2

23
2

23

2
31

2
31

2
21

2
21

11 ÷














−+−+

−+−+−+−
==

yyxx

yyxxyyxx
ba

 

4.1152m 

8 ( ) 15ˆˆ 2211 ÷−+−== yyxxba  4.1489m 

9 ( ) ( ) 15ˆˆ 2
2

2
211 ÷−+−== yyxxba

 4.3465m 

10 ( ) 1631211 ÷−+−= xxxxa  

( ) 1631211 ÷−+−= yyyyb  

4.6065m 

 

 

Figure 15. The localization error of different coordinate adjustment scheme parameter 1a , and 1b  
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0.8985m. The PSO algorithm can efficiently improve the localization error of the TSFL algorithm. 
In Phase II, we use CRFLA to locate the unlocalized sensor nodes, and the localization ratio 
achieved is 96.38% while the localization ratio of using TSFL is 82.13%. The average localization 
error of CRFLA is 6.7996m while using the coordinate adjustment scheme the average 
localization error can decrease to 3.5348m. 

9. Conclusions  

To make better use of underwater resources and realize the application of UWSNs, the 
localization of sensor nodes for UWSNs is the critical issue. Many scholars put forward 
different localization techniques of UWSNs. However, most of them are based on the 
assumption of accurate synchronization between sensor nodes. In fact, it is tough to achieve. 
TP-TSFLA in this paper contains two phase, namely, range-based estimation phase and 
range-free evaluation phase. The PSO algorithm can decrease the localization error for TSFL. 
CRFLA locates the unlocalized sensor nodes. We use the multi-stage scheme that the localized 
sensor nodes are looked like the new anchor nodes to help realize localization. Besides, a 
coordinate adjustment scheme is extended to improve the precision of circle-based range-free 
algorithm. The simulation results show that TP-TSFLA can achieve a relative localization ratio 
without time synchronization and the PSO algorithm and the coordinate adjustment scheme 
can decrease the localization error. However, there are still some issues to study. We design the 
two conditions based on the experience and experiment. Therefore it just can only guarantee 
with a high probability the selected anchor nodes is optimal. We will further improve the two 
conditions. If the coordinate adjustment scheme is designed more reasonable, the localization 
error will decrease a lot. Hence, we will find the better parameter setting of the coordinate 
adjustment scheme. The impact of the localization protocols on the routing and clustering 
protocols is also a direction in the future. 
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