
Modelling of spatio-temporal zero truncated patterns in
infectious disease surveillance data

Oyelola A. Adegboye1*, Denis H.Y. Leung2, You-Gan Wang3

1Department of Mathematics, Physics and Statistics, Qatar University, Doha, Qatar 
email: o.adegboye@qu.edu.qa

2School of Economics, Singapore Management University, Singapore

email: denisleung@smu.edu.sg
3School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia. 

email: you-gan.wang@qut.edu.au

Abstract

This paper is motivated by spatio-temporal pattern in the occurrence of Leishmaniasis
in Afghanistan and the relatively high number of zero counts. We hold the view that
correlations that arise from spatial and temporal sources are inherently distinct. Our
method decouples these two sources of correlations, there are at least two advantages
in taking this approach. First, it circumvents the need to inverting a large correlation
matrix, which is a commonly encountered problem in spatio-temporal analyses. Second,
it simplifies the modelling of complex relationships such as anisotropy, which would
have been extremely difficult or impossible if spatio-temporal correlations were simultaneously
considered. We identify three challenges in the modelling of a spatio-temporal process:
(1) accommodation of covariances that arise from spatial and temporal sources; (2)
choosing the correct covariance structure and (3) extending to situations where a
covariance is not the natural measure of association. Moreover, because the data
covers a period that overlaps with the US invasion of Afghanistan, the high number of
zero counts may be the result of no disease incidence or lapse of data collection. To
resolve this issue, a model truncated at zero built on a foundation of the generalized
estimating equations was proposed.

Keywords: generalized estimating equations; overdispersion; poisson; spatio-temporal;

Leishmaniasis

1 Introduction

One of the most challenging issues in modelling spatio-temporal infectious disease data is

the choice of a valid and yet flexible correlation (covariance) structure. Some examples of
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correlation structures can be found in Cressie and Huang (1999); Gneiting (2002); Stein

(2005) and Porcu et al. (2007), among others. The correlation structures fall into one of two

types: separable in which case it is assumed that the space-time correlation can be written

as a product of a correlation for the space dimension and one for the time dimension or non-

separable where the space-time correlation is modelled as a single entity. Unfortunately, most

of these correlation structures are either extremely complicated or infeasible to manipulate

due to their high dimensions.

The motivating data is a surveillance nationally aggregated monthly counts of leishmaniasis

incidence across provinces of Afghanistan between 2003 and 2009. Leishmaniasis is the third

most common vector-borne disease and a very important protozoan infection Adegboye

et al. (2016). The burden of the disease is overwhelming and the psychological effect can be

disturbing. The impact of environmental influences on Leishmaniasis cannot be ruled out

and human activities play a significant role in the dispersion of the vectors thereby changing

the geographical distribution of the disease. The major goal of the study is to evaluate

the influence of Satellite-derived climatic and environmental variable on the occurrence

of leishmaniasis while allowing for spatio-temporal correlation in the data. Furthermore,

in most previous works, the space-time correlation is considered jointly, a step that we

believe is unnecessary or unrealistic. For example, it would be hard to imagine how the

disease incidence in Kabul in 2003 would be in any way correlated to that in Hilmand

province in 2007, because of their location and time apart. Previous study has shown

significant seasonality in the occurrence of the diseaseJanuary to March and September to

Decemberwith the highest peak in March, suggesting a peak in the cases of leishmaniasis in

March and a through in September of each year Adegboye and Adegboye (2016).

We hold the view that correlations arising from spatial and temporal sources are

inherently distinct. In this study we shall decouples these two sources of correlations, an

approach that separates the modelling of the space- and time-correlations. There are at least

two advantages in taking this approach. First, it circumvents the need to inverting a large

correlation matrix, which is a commonly encountered problem in spatio-temporal analyses

(e.g., Yasui and Lele, 1997). Second, it simplifies the modelling of complex relationships such

as anisotropy, which would have been extremely difficult or impossible if spatio-temporal

correlations were simultaneously considered.

Our method begins with a marginal model for Leishmaniasis incidence along the time

dimension. Marginal models are natural extensions of the generalized linear models and they

are popular in longitudinal analysis. They are well understood and they can be easily fitted

using simple modifications to existing programs. One of the most popular marginal models

is the generalized estimating equations (GEE, Liang and Zeger, 1986). The standard GEE

assumes longitudinal measurements within each observation are correlated but observations
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are independent of each other. But in our situation, the observations are disease counts and

covariates for the different spatial locations and there may be spatial dependencies.

To account for spatial dependency, we create a spatial-GEE by re-weighting the standard

GEE so that locations highly correlated with each other would receive less weight. The

weights are created from a semivariogram of the spatial data. Because the dimension of

a semivariogram is only dependent on the number of spatial locations, it is of manageable

size. Furthermore, since a semivariogram measures dissimilarity, there is no need to invert

the semivariogram to create weights. The method will be illustrated using data from

Leishmaniasis incident in the provinces of Afghanistan in 2009. This model makes it possible

to combine the specific provincial rate with the influence of the spatial neighborhood.

The data sets is also characterized by a high percentage of zero disease counts. The

data covers a period that overlaps with the US invasion of Afghanistan, the zero counts may

be the result of no disease incidence or lapse of data collection. It is a common practice in

large survey to use zero (0) as missing value. Faraway (2004) argued that although this is

not a good choice since it is a valid value for some of the variables and not mentioning it in

their data description, unfortunately this act is common particularly with data sets of any

size or complexity .

Apart from the spatial dependency in the data, this study also presents additional

challenge. It is very difficult to distinguish between ”true” and ”imputed” zeros, because of

the reporting mechanism of disease in Afghanistan (due to security, technical and logistics

issues). These problems prompted us to consider the option of discarding the zeros and

model the non-zero data using a Poisson model conditional on greater zero. We make the

assumption that ”imputed” zeros are a random event. It is often practiced to truncate the

values that are bigger than a constant to overcome over-dispersion (Saffari et al., 2011). The

analysis of truncated data often arises from a subsidiary set of results that treat a practical

problem of how data are gathered and analyzed (Greene, 2005) and incompleteness of this

data requires special estimators of the regression coefficients (Karlsson and Lindmark, 2014).

To resolve this issue, we use a model truncated at zero. Lee and Kim (1998) provides detail

review and a comparison of properties of estimators for regression models under truncated

data.

The rest of the paper is structured as follows. In Section 2, we describe the data

collection method and the variables that will be used in the study. Section 3 describes the

method. Section 4, we give the results of the data analysis, while Section 5 concludes the

paper.
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2 Methods

2.1 Model specification

Let y = {y(s, t), s = s1, ..., sS, t = t1, ..., tT} where y(s, t) ≡ yst denotes the count of disease

at spatial location s and time t. Suppose associated with (s, t) are covariates x(s, t) ≡ xst

that record the spatial location and time as well as other information that might affect

disease counts. Furthermore, let X = {x(s, t), s = s1, ..., sS, t = t1, ..., tT} and the disease

incidence at each location is model as a Poisson count.

To model spatio-temporal correlation (or equivalently covariance) and overdispersion,

we assume there is a non-negative weakly stationary latent process est such that conditional

on the e’s, the y’s are independent and are assumed to follow a log-linear model given by

E(yst|est) = exp(xτstβ)est, and var(yst|est) = φE(yst|est),

where β is a vector of unknown parameters that captures the association between incidence

and the covariates. We assume E(est) = 1 so exp(xstβ) represents the marginal mean of yst.

The latent process est is assumed to have a variance of σ2 and the covariance between est

and es′t′ is given by

cov(est, es′t′) = σ2ρ(zst, zs′t′ ,α)

where zst, zs′t′ are covariates from (s, t), (s′, t′) that jointly induce spatio-temporal correlation

and α are unknown parameters. Depending on the context, the covariates zst and xst may

be distinct, may share some components or may be the same. This model was considered

by Zeger (1988) to model discrete time series data. Under these assumptions, it can easily

be shown that

E(yst) = exp(xτstβ) ≡ µst(β), (1)

var(yst) = µst(β) + µst(β)2σ2, (2)

corr(yst, ys′t′) = ρ(zst, zs′t′ ,α)[{1 + (σ2µst(β))−1}{1 + (σ2µs′t′(β))−1}]
1
2 . (3)

If ρ(zst, zs′t′ ,α) = 0, then we have a Poisson model with overdispersion. Furthermore,

if σ2 = 0, then we have a standard Poisson model at each spatial location and time. For

convenience, we define ys· = (ys1, ..., ysT )τ as the vector of counts taken at times 1, ..., T at

spatial location s, y·t = (y1t, ..., ySt)
τ as the vector of counts taken at locations 1, ..., S at

time t and we use similar definitions for xs·, zs·, µs· and x·t, z·t, µ·t.

We begin by considering the data y = (yτ1·, ...,y
τ
S·)

τ and X = (xτ1·, ...,x
τ
S·)

τ as a set of

longitudinal data over S spatial locations. If we temporarily treat the observations between
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spatial locations to be independent of each other, then the GEE (Liang and Zeger, 1986) is

given by:

U(β,α) ≡
sS∑
s=s1

Dτ
sV
−1
s (ys· − µs·) = 0, (4)

where Ds = ∂µs·/∂β
τ and Vs is the covariance matrix of ys·. The matrix Vs can be

expressed as A
1/2
s Rs(α)A

1/2
s , where As = diag[µs1(β) + µst(β)2σ2, ..., µsT (β) + µst(β)2σ2]

and Rs(α) is a correlation matrix, with the (t, t′)-th element representing the correlation

between times t and t′ at location s. If we let v−1s,tt′ as the (t, t′) element of V−1s , then (4) can

be written as

sS∑
s=s1

tT∑
t=t1

tT∑
t′=t1

∂µst
∂βτ

v−1s,tt′{yst′ − µst′} ≡
sS∑
s=s1

sS∑
s′=s1

tT∑
t=t1

tT∑
t′=t1

∂µst
∂βτ

wss′v
−1
s,tt′{yst′ − µst′} = 0, (5)

where wss′ = 1, s = s′ and wss′ = 0, s 6= s′. We can compare (5) to a set of estimating

equations that considers space-time correlation simultaneously. Let the data y be stacked

as a S × T vector. Then a set of estimating equations can be written as

DτṼ−1{y − µ} ≡
sS∑
s=s1

sS∑
s′=s1

tT∑
t=t1

tT∑
t′=t1

∂µs′t′

∂βτ
ṽ−1st,s′t′{yst − µst} = 0, (6)

where µ = (µτ
1·, ...µ

τ
s·)

τ and D = ∂µ/∂βτ and Ṽ is the covariance matrix of y and we let

ṽ−1st,s′t′ be the (st, st′)-th element of Ṽ−1. We can interpret (6) as a linear combination of

∂µs′t′/∂β
τ{yst−µst} with coefficients given by ṽ−1st,s′t′ . Comparing (6) to (5), we observe that

a standard GEE is also a linear combination but it replaces ṽ−1st,s′t′ with wss′v
−1
s,tt′ .

2.2 Parameter estimation

Consider the following; suppose we remove all yst = 0, then conditioned on yst > 0, (1)-(2)

become

E(yst|est) = cµst(β)est, var(yst|est) = [cµst(β) + c(1− c)µst(β)2]est

where c = 1/[1− exp(−µst)], leading to

E(yst) = cµst(β) ≡ φst(β), (7)

var(yst) = cµst(β) + c(1− c)µst(β)2 + c2µst(β)2σ2. (8)

Let d = {d(s, t) = dst}S×T be a matrix of indicators such that dst = 1 if yst > 0 and

dst = 0 otherwise. Note that yst = 0 could mean the count was zero or count was not taken.

To resolve the missing counts, we assumed counts were missing completely at random. The
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problem of counts not missing completely at random can be handled by adding an extra

model for the propensity of dst = 1. However, we wanted to illustrate the idea of a zero

truncated spatio-temporal GEE and so we chose to minimise any distraction to this main

idea. For a particular set of variance covariance matrix vs,tt′ and spatial weight w̃ss′ , the

spatio-temporal GEE conditioned only on those observations with yst > 0 can be written as

Ũ(β,α) ≡
sS∑
s=s1

sS∑
s′=s1

tT∑
t=t1

tT∑
t′=t1

∂φst
∂βτ

dst′w̃ss′v
−1
s,tt′{yst′ − φst′} = 0, (9)

where vs,tt′ is the t, t-th element of Vs, the covariance matrix of ys·. The matrix Vs can be

expressed as A
1/2
s Rs(α)A

1/2
s , where As = diag[cµs1(β)+c(1−c)µs1(β)2+c2µs1(β)2σ2, ..., cµsT (β)+

c(1− c)µsT (β)2 + c2µsT (β)2σ2] and Rs(α) is a matrix with its (t, t′)-th element representing

the correlation between times t and t′ at location s.

Our primary interest lies in the parameters β but we also must deal with the nuisance

parameters α. Let R(α) be a 84×84 matrix where α contains the parameters (θ) estimated

via weighted least square method as described in Section 3.2. The parameters are estimated

via a Newton-Raphson iteration method. To solve for (α,β) jointly, we employed the method

of (Prentice, 1988). Let β̂k and α̂k be the estimates of β and α at the k-th iteration. We

first fitted a GEE with an independence working correlation structure, we then solve the

estimating equation for α, and we then iterate until convergence. This step gives the values

vs,tt′ . Denoting
∑

s,s′,t,t′ ≡
∑sS

s=s1

∑sS
s′=s1

∑tT
t=t1

∑tT
t′=t1

, we estimate an initial estimate β̂0

using (5) by assuming an identity matrix for Rs(α), equivariance, i.e., v−1s,tt′ = 1 and, spatial

weight. Then at iteration k,

β̂k+1 = β̂k −
[∑

s,s′,t,t′
∂φst(

ˆβk)

∂βτ dst′w̃ss′v
−1
s,tt′(β̂k)

∂φst(
ˆβk)

∂βτ

]−1 [∑
s,s′,t,t′

∂φst(
ˆβk)

∂βτ dst′w̃ss′v
−1
s,tt′{yst′ − φst′(β̂k)}

]
(10)

Here we take the slope of the linear regression of log(r̂kstr̂
k
st′) on log(|t− t′|) as α̂k. We

then iterate between (9) and (10) until convergence.

The standard errors for the parameter estimates can be obtained via the large-sample

properties (Liang and Zeger, 1986; Leung et al., 2009; Paul et al., 2013). Under mild

regularity conditions, K
1
2 (β̂GEE−β) is asymptotically multivariate Gaussian with zero mean

and covariance matrix given by:

lim
K→∞

K
[∑

s,s′,t,t′
∂φst

∂βτ dst′w̃ss′v
−1
s,tt′

∂φst

∂βτ

]−1 [∑
s,s′,t,t′

∂φst

∂βτ dst′w̃ss′v
−1
s,tt′cov(yst′)

∂φst

∂βτ

] [∑
s,s′,t,t′

∂φst

∂βτ dst′w̃ss′v
−1
s,tt′

∂φst

∂βτ

]−1
(11)

However, in our experience, the sandwich formula does not work very well. Instead,

we use resampling by blocked jackknife (see, e.g., Künsch, 1989 and Sherman, 2011, chapter

10). Let β̂−k be an estimate of β with data from the k-th province removed and let β̄ =

1/K
∑K

k=1 β̂−k. We then define the resampled estimate of var(β̂) by

v̂ar(β̂) =
K − 1

K

K∑
k=1

(β̂−k − β̄)2. (12)
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3 Application to Afghanistan leishmaniasis incidence

data

3.1 Data description

The above methodology was applied to the analysis of leishmaniasis incidence data in

Afghanistan between 2003 and 2009. The data sets were monthly cases of leishmaniasis

reported to the Afghanistan Health Management Information System (HMIS) under the

National Malaria and Leishmaniasis Control Programme (NMLCP) of the Ministry of Public

Health (MoPH). Leishmaniasis infections were confirmed clinically or calibrated ocular micrometer

supported binocular light microscopy of Leishmania parasites. The data consists of 148,945

new cases of Leishmaniasis from 20 provinces in Afghanistan between 2003 and 2009 (of these,

41,072 occurred in 2009)(Figure 1). Satellite-derived environmental and climatic data such

as accumulated rainfall, land surface temperature and Wind were obtained from the National

Aeronautics and Space Administration-NASA Earth Observations (NEO) [http://earthobservatory.nasa.gov/].

Figure 2 presents the distribution of the disease incidence across the 20 provinces with

available data sets. A striking feature of the data is the high number of zero incidence for

many locations. Many of the provinces have counts of zeros for months, then a sudden

jump to a few hundreds or thousands, then back to zero. Between 2003 and 2006, most

of the provinces reported no cases of Leishmaniasis; this claim cannot be verified because

this period coincides with the US led war in Afghanistan and disease reporting may only be

possible in a relatively safe environment.

3.2 Model fitting

The modelling is a 2-step process, we need to find the spatial weight, w̃ss′ , then the variance-

covariance matrix, vs,tt′ that induce will the temporal dependency. Recall the dimension of

Ṽ is ST × ST . For the current data set, S = 20 represents the number of provinces and

T = 7 represents the number of years with recorded data. If we use the monthly data, which

would allow us to study how seasonality affects the transmission (incidence) of the disease,

then T = 84 and so S×T = 20× 84 = 1680 and therefore Ṽ would be a matrix that cannot

feasibly be handled. Furthermore, as we argued in Section 1, the correlation between y(s, t)

and y(s′, t′) often does not have any practical meaning so (6) does not seem to be a route

that we should follow.

Firstly, our idea is to consider the spatial correlations that are omitted by the standard

GEE. Therefore, we propose using a set of weight wss′ different from those in (5). The

weights are derived from a commonly used measure of spatial correlation, the semivariogram

(see, e.g., Cressie, 1993). For the data in this paper, we define an empirical semivariogram
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Figure 1: Map showing the distribution of new cases of Leishmaniasis in Afghanistan in 2009
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Figure 2: Distribution of total cases of Leishmaniasis at provincial level in Afghanistan
(2003-2009)
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as

γ̂(h) =
1

2N(h)× T

tT∑
t=t1

∑
s,s′∈N(h)

(yst − ys′t)2, (13)

where h is a lag distance between spatial locations s and s′ and N(h) is the number of pairs

of spatial locations separated by no more than h. The empirical variogarms is computed

at different time scale and then averaged over the same spatial lags. Unlike covariance or

correlation, which measure similarity, semivariogram measures dissimilarity. Hence, if we

use semivariogram to create weights, we do not have to carry out any matrix inversion. This

empirical semivariogram (13) can be used to fit a parametric semivariogram model, e.g.,

nugget, exponential or Gaussian, for illustration, we have chosen powered exponential;

γ(h, α) = τ 2 + σ2
(
1− e−|h/φ|q

)
, h > 0 (14)

where 0 < q ≤ 2, φ > 0 and α = (τ 2, σ2, φ). The quantities τ 2, σ2 and φ represent the nugget,

sill, and range, respectively. This semivariogram includes as special cases the exponential

(q = 1) and Gaussian (q = 2). The corresponding correlation function has the form

ρ(h, α) =
σ2

σ2 + τ 2
e−|h/φ|

q

, h > 0. (15)

An exponential model was used to obtain the parameters that were used in the construction

of the spatial weights matrix.

Secondly, we also need to construct the variance matrix, Vs to induce the temporal

dependency. Recall that for fixed a s, vs,tt′ , t, t
′ = t1, ..., tT are the elements of the variance

covariance matrix of disease counts between times. The data set consists of monthly disease

counts for each province that were captured over 7 years, from 2003-2009, with up to 84

observations per province. However, as mentioned before, year is an artificial variable that is

not of interest. On the contrary, there might be two different types of temporal correlations:

(1) Between months that are nearby and (2) Between the same month in different years

(seasonality). A simple temporal correlation function may be of the form α = {αt,t′ , t, t′ =

1, ..., 12}, such that αt,t′ = α|t−t
′|, 0 < α < 1 and t = 1, ..., 12 be indicator for months of the

year, and |t− t′| is the time lag. But this seems too simple, for example, supposed January

2003 and May 2003 are correlated because they are only 4 months apart, whereas January

2003 and February 2004 are correlated because they are from the same season (Winter in

Afghanistan) but different years, on the other hand, January 2003 and May 2003 probably

are not likely to be correlated. In order to account for the presence of seasonality in the

data i.e. temporal correlation between the same month in different years (Afghanistan is

characterized by four seasons namely; winter, spring, summer and autumn), we used dummy

(binary) variable to capture and quantify the seasonal effects.
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Similarly, a semivariogram was used to parameterize the correlation matrix R(α),

with its (t, t′)-th element representing the correlation between times t and t′ at location s.

We compute the empirical variograms at different spatial locations and then average the

variograms over temporal lags.

For two different times, say t, t′, that are t = |t − t′| months apart, the correlation

between the two times, t, t′ could be written as:

C(t, t′) = C0
T (t) (16)

where C0
T (t) represent an temporal exponential function with parameters α = τ 2, σ2, φ.

We defined a 84 × 84 matrix R(α) where α contains the parameters (τ 2, σ2, φ) that

can be estimated by using a graphical display of γ̂(h) at h = h1, ..., hK . Another method is

to use weighted least squares, i.e., minimise

K∑
k=1

wk{γ̂(hk)− γ(hk, α)}2 (17)

with respect to α for some weights wk’s. Following Cressie (1985), we use wk = |N(hk)|.

4 Results

We applied the spatio-temporal zero truncated model to study the effects of environmental

variables on Leishmaniasis, while allowing for different dependencies in the data. Population

size was added as offset, the environmental variables used as covariates were average monthly

temperature (Celsius), average monthly accumulated rainfall (Inches), average monthly wind

speed (Knots) and altitude (Metres). In an attempt to investigate the effects of spatial and

temporal interaction, the model incorporated both the temporal variance covariance matrix

vs,tt′ and spatial weight w̃ss′ .

The results from the spatio-temporal truncated model is given in Table 1. The environmental

parameters are significant risk factors for leishmaniasis in Afghanistan. There appears to be

a negative effect of altitude, temperature, wind and accumulated rainfall as predictors for

leishmaniasis incidence.

5 Conclusion

The technique used is this article allow for correct specification of correlation structures

to improve the efficiency of the GEE method. The leishmaniasis data presented several

problems with modelling issues, ranging from correlation/covaraince specification to issues

with ”imputed” or ”non true” zeros. The high percentage of zero disease counts may be the
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Table 1: Parameter estimates (and standard errors) of the zero-truncated model for
Leishmaniasis data

Risk factors Estimate Standard error

Intercept -8.847 0.331
Altitude -0.011 0.001
Temperature -0.004 0.001
Rainfall -0.032 0.013
Wind -0.027 0.005
Season: Winter 0.256 0.062
Season: Spring 0.128 0.096
Season: Autumn -0.135 0.206

result of no disease incidence or lapse of data collection. Moreover, the dependency in the

data may be a result of spatial variation, temporal or both. To resolve this issue, a renowned

method was used to address the many issues that the data presented in a very novel way. A

model truncated at zero was fitted while allowing for dependency in the data via a working

correlation matrix using the technique of GEE.

The results from this study are similar to that of (Adegboye and Kotze, 2012; Rajesh

and Sanjay, 2013; Thompson et al., 2002; Valderrama-Ardila et al., 2010; Karagiannis-Voules

et al., 2013). The model confirms the significant influence of environmental factors on the

incidence of Leishmaniasis. The model indicates that high temperatures are associated with a

lower incidence of Leishmaniasis; this is similar to the findings of (Rajesh and Sanjay, 2013).

The survivability of the sand fly (Leishmaniasis vector) has been reported to reduce during

high temperatures (Rajesh and Sanjay, 2013). A negative association between accumulated

rainfall and incidence of Leishmaniasis has been found; this is not surprising as extreme

rainfall may have a negative effect on the vector such as flooding (Thompson et al., 2002).

The negative effect of temperature and rainfall is also in line with what was observed in the

exploratory analysis. Two peaks were observed in the disease occurrence between 2003 and

2009 – January to March and September to December – which coincide with the cold period,

while July is the hottest month and March is the wettest month. The results also indicate

that low altitudes are associated with an increase in the cases of Leishmaniasis, whereas an

increase in the wind speed has a negative effect on the disease.
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