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Abstract: With the rapid spread of built-in GPS handheld smart devices, the trajectory data from 
GPS sensors has grown explosively. Trajectory data has spatio-temporal characteristics and rich 
information. Using trajectory data processing techniques can mine the patterns of human activities 
and the moving patterns of vehicles in the intelligent transportation systems. A trajectory similarity 
measure is one of the most important issues in trajectory data mining (clustering, classification, 
frequent pattern mining, etc.). Unfortunately, the main similarity measure algorithms with the 
trajectory data have been found to be inaccurate, highly sensitive of sampling methods, and have 
low robustness for the noise data. To solve the above problems, three distances and their 
corresponding computation methods are proposed in this paper. The point-segment distance can 
decrease the sensitivity of the point sampling methods. The prediction distance optimizes the 
temporal distance with the features of trajectory data. The segment-segment distance introduces the 
trajectory shape factor into the similarity measurement to improve the accuracy. The three kinds of 
distance are integrated with the traditional dynamic time warping algorithm (DTW) algorithm to 
propose a new segment–based dynamic time warping algorithm (SDTW). The experimental results 
show that the SDTW algorithm can exhibit about 57%, 86%, and 31% better accuracy than the longest 
common subsequence algorithm (LCSS), and edit distance on real sequence algorithm (EDR) , and 
DTW, respectively, and that the sensitivity to the noise data is lower than that those algorithms. 
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1. Introduction 

With the rapid development of sensors technology and the popularization of personal smart 
devices, GPS sensors are widely used to track moving objects, such as people, cars, and animals. A 
large number of trajectory data emerges every day. The trajectory data from GPS sensors are the 
spatio-temporal data sequences of mobile objects with the space-time variation. With the 
development of the Internet of Things, urban computing, and other research fields, the analysis of 
spatio-temporal data-based transportation systems have become a hot topic in the fields of machine 
learning. The trajectory data analysis can be a great driving force for all of the fields, for example, 
through applying the trajectory similarity measure algorithm, the distance matrix can be computed, 
which can be used to cluster the trajectory of peoples’ activities for finding the popular routes and 
hot spots and visualizing in OpenStreetMap [1,2]. In the intelligent transportation systems, it is of 
great practical value to measure the similarity of the trajectories of moving objects in a real-time, 
accurate, and reliable way. Intelligent trajectory measurement cannot only provide accurate location-
based services, but also monitor and estimate traffic jams [3]. 

In trajectory data mining, one of the most important and fundamental works is to compute the 
similarity between different trajectories. Based on the similarity measurement of trajectory data, the 
trajectories can be clustered, classified, and retrieved [4]. The accuracy of the similarity measurement 
significantly affects the accuracy of the trajectory data mining. In recent years, some mainstream 
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algorithms for trajectory similarity measurement have been proposed, such as the dynamic time 
warping algorithm (DTW) [5], longest common subsequence algorithm (LCSS) [6], and edit distance 
on real sequence algorithm (EDR) [7]. Those algorithms can obtain the results of similarity 
measurement through computing spatial point-to-point distances or temporal distances. However, 
there are common drawbacks resulting in the low accuracy. For example, the DTW algorithm just 
directly calculates the point-point distance, ignoring the influence of the different trajectory sampling 
methods on the generated trajectory sequence. The LCSS algorithm neglects optimizing the temporal 
distance of the trajectory data. The EDR algorithm does not consider the trajectory shape factor. In 
order to improve the accuracy, a segment-based dynamic time warping algorithm (SDTW) is 
proposed to measure the trajectory similarity. First, the proposed SDTW adopts the point-segment 
distance to reduce the sensitivity influence from the trajectory sampling methods. Then, considering 
the temporal distance factor, SDTW introduces the prediction distance to convert the temporal 
distance into the spatial distance. Finally, SDTW introduces the segment-segment distance to 
improve the computation accuracy by adjusting the parameters of shape factors. 

The remainder of this paper is organized as follows. Section 2 discusses the related work and 
analyzes their drawbacks. Some definitions and problem statements are described in Section 3. 
Section 4 presents the proposed SDTW algorithm, and the performance evaluations are given in 
Section 5. Discussion and conclusions are given in Section 6. 

2. Related Work 

Trajectory sequence data can be regarded as time sequence data. Many approaches to the 
trajectory similarity measurement are introduced from the similarity measurement to the time 
sequence data. The simplest trajectory similarity measurement is the Euclidean distance, but it cannot 
obtain better accuracy when the local time shifts or when those trajectories lack the same length [8]. 
In order to improve the accuracy of similarity measurement, the dynamic time warping algorithm 
(DTW), longest common subsequence algorithm (LCSS), and edit distance on real sequence algorithm 
were proposed and widely applied. 

Based on the idea of dynamic programming to find the optimal match point pairs between the 
trajectory points, the DTW can effectively solve the problem of local time shifting and various 
trajectory lengths [5]. The DTW algorithm was firstly introduced for speech recognition, then applied 
to the time sequence analysis later. The LCSS adopted a threshold ε to identify the match point pairs 
[6], but it is a similarity measurement in rough granularity without considering non-match pairs of 
points. The EDR is an edit distance-based algorithm, which uses a threshold ε to identify the match 
point pairs and the non-match points, different from the LCSS. Those similarity measurement 
algorithms can be divided into two types [8]: the one based on L1 and L2 paradigms, such as the 
DTW; and the other computing similarity scores based on the matching threshold, such as the LCSS 
and the EDR. 

Wang et al. have evaluated the performance on the accuracy of main similarity measurement 
algorithms, DTW, LCSS, ERP [10], EDR, and SpaDe [11], in the different time sequence datasets [9]. 
The experimental results demonstrate that the DTW algorithm can obtain the most accurate results 
of the similarity measurement in the majority of datasets although its computation speed is slow. 
Based on the evaluation results, many similarity measurement algorithms, such as Kim [12], Keogh 
[13], and Improved [14], have been proposed to reduce the computation complexity at the same 
measurement accuracy as the DTW algorithm. 

From the above analysis, it can be found that those algorithms have common drawbacks 
affecting the accuracy of similarity measurement. 

(1) The DTW, LCSS, and EDR algorithms only consider the comparison of two individual points. In 
fact, different sampling methods can form different trajectory sequences, which results in a 
significant negative impact on the final measurement results [15]. As shown in Figure 1a, the 
trajectory sequence data of a curve trajectory with an arrow may have two-point sampling 
methods T1 and T2. Two original trajectories are essentially identical, but their trajectory 
sequences are quite different. In Figure 1b, two trajectories intersect at point P, and their 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 March 2017                   doi:10.20944/preprints201703.0028.v1

Peer-reviewed version available at Sensors 2017, 17, 524; doi:10.3390/s17030524

http://dx.doi.org/10.20944/preprints201703.0028.v1
http://dx.doi.org/10.3390/s17030524


 3 of 16 

 

trajectory sequences 1T  and 2T  sample the point P. An obvious difference between the two 
trajectories is produced, but the difference is weakened due to the intersection point P. Thus, 
computing the trajectory similarity completely based on the discrete trajectory points will cause 
the loss of the details of the trajectories. It is necessary to find a way to keep the details to a 
certain extent. 

(2) Only considering the distances between the pairs of points, the mentioned algorithms cannot 
take shape factors into account [16]. However, shape factor is an important feature of a natural 
trajectory. It may result in the loss of computation accuracy when the shape factors are ignored. 

(3) Most algorithms of similarity measurement are derived from the time sequence similarity 
computation without considering the temporal distance computation between two trajectory 
points. Since the time measurement is different from the space measurement, it makes no sense 
just to simply add two weights. To solve that problem, Lee et al. proposed a trajectory distance 
measurement method with the weighted addition of the parallel distance, the perpendicular 
distance, and the angle distance [1]. Unfortunately, the proposed measurement method by Lee 
et al. cannot solve Problems (1) and (2). 

 

(a) (b)

Figure 1. Various point sampling methods of the same trajectory. (a) A trajectory of two sampling 
methods; and (b) two trajectories take the same point. 

To solve the above three problems, a segment-based trajectory similarity measurement 
algorithm is proposed to improve the accuracy. 

3. Problems and Definitions 

Mobile objects generally have time and space attributes, respectively. Space attributes can be 
three-dimensional or two-dimensional. Two-dimension is the most widely used, so all of the words 
“space” refers to two-dimension space in this paper. A trajectory records a continuous movement 
trace of a mobile object. Due to the limitations of the GPS sensors, a trajectory T consists of a series of 
points ( , , )x y t , where ( , )x y  is the spatial recorded point, t is the recorded time. For convenience, a 
natural trajectory and a trajectory sequence are strictly distinct. 

Definition 1 (natural trajectory): A continuous trajectory of a mobile object. 

Definition 2 (trajectory sequence): With a given Euclidean space, a natural trajectory can be expressed as 

1 2={ , ,..., }nT P P P , where the discrete trajectory points are ordered by time, iP  refers to the trajectory point i , 

i=( , , )i i iP x y z , and n represents the number of points in the trajectory. T is the recorded trajectory sequence from 
the natural trajectory. 

Definition 3 (sub-trajectory segment): Two adjacent discrete trajectory points iP  and i+1P  are connected 

to form a trajectory segment i i+1PP , which is a sub-trajectory segment. 

Definition 4 (natural sub-trajectory segment): A part of the natural trajectory between two adjacent 
discrete trajectory points is constructed as a natural sub-trajectory segment. 
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A trajectory sequence consists of a series of discrete points. Two adjacent discrete points are 
connected to form a sub-trajectory segment. Moreover, a real trajectory segment must exist between 
two adjacent discrete points. In Figure 2, 1S T  and 2ST  are a sub-trajectory segment and a natural 
sub-trajectory segment, respectively. 

 
Figure 2. A sub-trajectory segment and a natural sub-trajectory segment. 

Definition 5 (proxy natural sub-trajectory segment): 1segP  is denoted as a medium point of the natural 

sub-trajectory segment between iP  and i-1P . 2segP  is denoted as the medium point of the natural sub-trajectory 
segment between iP  and i+ 1P . The proxy natural sub-trajectory segment of trajectory point iP  is the natural 
sub-trajectory segment between 1segP  and 2segP . 

Definition 6 (proxy sub-trajectory): 1midP  is marked as a midpoint of the sub-trajectory segment of iP  and 

i-1P , and 2m idP  is marked as the midpoint of the sub-trajectory segment of iP  and i+ 1P . The sub-trajectory 
formed by 1midP iP  and iP 2m idP  is the proxy sub-trajectory of iP . 

 
Figure 3. A Proxy of a natural sub-trajectory. 

A discrete trajectory sequence represents a whole natural trajectory. A trajectory point on its 
sequence represents a part of the natural trajectory, called as the proxy natural sub-trajectory of the 
point. A natural trajectory can only be stored as a trajectory sequence; thus, the proxy natural sub-
trajectory segment cannot be obtained. It can only obtain the proxy sub-trajectory of the trajectory 
points. 

The problem to be solved in this paper is to compute the distance ist( , )D R S  between two given 
trajectory sequences R and S, where 1 2={ , ,..., }nR P P P  and 1 2 m={ , ,..., }S SP SP SP . The longer the distance, the 
less similarity im ( , )S R S . 

4. SDTW Algorithm 

Due to ignoring the relationship between a trajectory sequence and a natural trajectory, the current 
trajectory similarity measurement algorithms are sensitive to the sampling methods. To reduce the 
sensitivity of the points sampling methods, a point-point distance can be converted to a distance from 
a point to a specific segment, which is defined as a point-segment distance. There is a fundamental 
difference between the temporal distance and the spatial distance of trajectory points. In this paper, the 
time difference and trajectory’ shape are integrated to convert a temporal distance into a spatial distance 
and the prediction distance is presented. The DTW algorithm only uses the point-point distance, 
without considering the trajectory’s important characteristic—shape—which results in the low 
accuracy of the DTW algorithm. If the shape factors are included, the accuracy of the similarity 
measurement can be improved. A trajectory sequence is regarded as multiple continuous trajectory 
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segments, the shape lies in the difference of an angle between trajectory segments. An included angle 
can be considered into the similarity calculation, and its result is the segment-segment distance. 

The above three distances are integrated with the traditional DTW algorithm to propose a new 
segment–based dynamic time warping algorithm (SDTW). SDTW adopts the point-segment distance, 
prediction distance, and segment-segment distance to compute the accumulative distance of two 
trajectory sequences, which can improve the accuracy. 

4.1. Point-Segment Distance 

The spatial distance of two trajectory points can be converted to the spatial distance of their 
proxy trajectories. In fact, the point-segment distance is the spatial distance of the pair of two 
trajectory points. The distance of the two proxy trajectories, trueS  is the area enclosed by them (Figure 
4a). The plane is an irregular polygon area, the computation is difficult. The sum of 1S  enclosed by 

1P  and 2e gS  and 2S  enclosed by 2P  and 1egS  (Figure 4b) shows a positive correlation with trueS . 
That is, when the relative displacement of the two proxy trajectories occurs, the trend of 1S  + 2S  is 
the same as that of trueS . So, trueS  can be replaced with the sum of 1S  and 2S . 

(a) (b)

Figure 4. Two computation methods of the proxy sub-trajectory distance. (a) The area enclosed by the 
two proxy trajectories; and (b) a simplified calculation method. 

It is obvious that the distance calculation method based on the area is not an effective approach, 
especially for a trajectory point with a long proxy sub-trajectory, which results in a larger sum 
enclosed by it and other proxy trajectories. From the above analysis, the length of 1Seg  and 2S eg  
shows a positive correlation with the condition of a trajectory point with a long proxy sub-trajectory. 
The longer a trajectory is, the worse the result is. It can adopt / egS S  to convert the spatial distance 
between 1P  and 2P  into the sum of the distance from 1P  and 2e gS , and the distance from 2P  and 

1egS . That is, / egS S  is the sum of point-segment distances. 
Assume that ( ),i i iP x y  is trajectory point i on the trajectory sequence R, and ( ),j j jSP x y  is 

trajectory point j on the trajectory sequence S. Define ( ),ps i jdist P SP  as the point-segment distance of 

iP  and jSP . Define ( ),p j isdist SP P  as the point-segment distance of jSP  and iP , and 

( ) ( ), ,ps i j ps j idist P SP dist SP P≠ . Figure 5 illustrates the point-segment distance computation. 

 
Figure 5. Point-segment distance. 
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To compute ( ),ps i jdist P SP , it is first to compute the midpoint ( )1 1 1,mid mid midP x y  of jSP  and -1jSP , 

and the midpoint ( )2 2 2,mid mid midP x y  of jSP  and 1jSP + . ( )1 1 1,mid mid midP x y  and ( )2 2 2,mid mid midP x y  can 
computed as follows Equation (1): 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1 1

2 2 1 1

, / 2, / 2

, / 2, / 2

mid mid j j j j

mid mid j j j j

x y x x y y

x y x x y y

− −

+ +

 = + +


= + +

 (1) 

Then it computes the shortest distance between iP  and segR . ( ),ps i segdist P R  is [17]: 

( ) ( )

( ) ( )

( ) ( )

2 2
1 1

2 2
2 2

2 2
1

( )

0

,

    

i mid i mid

i seg i mid i mid seps g

i mid

x x y y if r

dist P R x x y y if r L

x dx y dy otherwice

 − + − ≤
= − + − ≥

 − + −


 (2) 

where ( ) ( ) ( ) ( )2 1 1 2 1 1r mid mid i mid mid mid i midx x x x y y y y= − × − + − × − ; segL  is the length of the derivation 
segment, ( ) ( )1 2 1( / )mid mid mid segdx x x x r L= + − × : ( ) ( )1 2 1( / )mid mid mid segdy y y y r L= + − × . 

The formula for ( ),p j isdist SP P  is the same as ( ),p is jdist P SP , and the spatial distance ( ),p i jdist P SP  

between iP  and jSP  with the SDTW is as shown in Equation (3): 

( ) ( ) ( ), , ,p i j ps ps ji ijdist P SP dist P SP dist SP P= +  (3) 

4.2. Prediction Distance 

Most of the trajectory similarity measurement algorithms are introduced from the time sequence 
similarity algorithms without considering to optimize the trajectory data. However, the time series 
data measurement and space measurement of the trajectory are essentially different, so it is necessary 
to figure out a solution to calculate the temporal distance integrated with spatial distance. 

In Figure 6, the time distance between iP  on trajectory R and jSP  on trajectory S is computed. 

The timestamp of iP  is it , the timestamp of jSP  is jt . The difference between it and jt  can 
actually be reflected on a specific trajectory. Assume that iP  is regarded as a mobile object. When it  
< jt , its space location after the time interval j it t−  is the space location of R at the timestamp jt , 
known as a prediction position of iP , denoted as 'iP . 

 
Figure 6. Prediction distance. 

The temporal distance between iP  and jSP  is converted into the spatial distance between the 

prediction location of 'iP  and jSP  , known as the prediction distance. It can convert a temporal 
distance into a spatial distance, and reflect the time distance of trajectory points on the trajectory. It 
can be seen that he prediction distance has good interpretability. It can effectively improve the 
accuracy of similarity measurements. Therefore, the natural trajectory cannot be recorded, so the 
similarity measurement should be based on the trajectory sequence data. 
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Assume that ( ), ,i i i iP x y t  represents a trajectory point i on trajectory R and ( ), ,j j j jSP x y t  is a 

trajectory point j on trajectory S. To compute the prediction distance between ( ), ,i i i iP x y t  and 

( ), ,j j j jSP x y t , one first compares the timestamps of iP  and jSP . The point with an earlier timestamp 

is set as A, and the other with the later timestamp as B. Their time difference is A Bt t tΔ = − . 
The next step is to compute the prediction location of point B with the later timestamp, named 

as 'B . Since the information stored in the trajectory sequence is limited and the positions of the 
moving object cannot be obtained at any time, the prediction location 'B  is only an approximate 
position of point B. Then, it traverses the timestamp for each trajectory point to search the track range 
of point B at the timestamp Bt t+ Δ . Suppose at the timestamp Bt t+ Δ , point B is located between 
point i − 1 and i. The spatial coordinates ( ),B Bx y′ ′  of the prediction position 'B  can be calculated as 
follows: 

( )
( )

1 1

1 1

x
B i i B i

y
B i i B i

x x v t t t

y y v t t t

− −

− −

′

′

 = + × + Δ −


= + × + Δ −
 (4) 

Suppose that it is a uniform linear motion between any two points on the trajectory, it can 
compute the velocity between two points as follows: 

( )
( )

1

1

/

/

x
i i i i

y
i i i i

v x x t

v y y t

−

−

 = − Δ


= − Δ
 (5) 

If there does exist the corresponding recorded trajectory point B at the timestamp Bt t+ Δ , the 
'B  can be estimated as follows: 

( ) ( )
( ) ( )

1 1

1 1

/
/

B B N N

B B N N

x x x x t t t

y y y y t t t
′

′

 = + − − × Δ
 = + − − × Δ

 (6) 

where N is the total number of the points on the trajectory, on which point B is located. 
The prediction distance between A and B is calculated as follows: 

( ) ( ), ,tdist A B dist A B= ′  (7) 

where ( )A,dist B′  is the Euclidean distance between A and 'B  in the coordination. 
The prediction distance between A and B also presents the point-segment distance between point 

A and segment BB’. 

4.3. Segment-Segment Distance 

Suppose that iS  is one segment i on the trajectory R, and jSS  is one segment j on the trajectory 

S. Suppose that iS ’s two endpoints are ( ),i i iP x y  and ( )1 1 1,i i iP x y+ + + , and jSS ’s two endpoints are 

( )S ,j j jP x y  and ( )1 1 1,j j jSP x y+ + + , respectively. The segment-segment distance is ( ), js idist P SP  can be 

calculated as follows. 
The point-point distance includes the spatial distance and the temporal distance. The spatial-

temporal distance ( ),s it jdist P SP  between iP  and jSP  is calculated as shown in Equation (8): 

( ) ( ) ( ), ,S ,Si j p i jst t i jdist P SP dist P P t dist P P= + ×  (8) 

where t is the time sensitivity parameter. The larger parameter t is, the more sensitive the distance to 
the time dimension is. When parameter t = 0, the time dimension cannot be neglected. 

The segment-segment spatial-temporal distance is the sum of spatial-temporal distances 
between the two ends of the segments. ( ),st i jdist S SS  represents the segment-segment spatial-

temporal distance of iS  and jSS , as shown in Figure 7. ( ),st i jdist S SS  can be calculated as follows: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 March 2017                   doi:10.20944/preprints201703.0028.v1

Peer-reviewed version available at Sensors 2017, 17, 524; doi:10.3390/s17030524

http://dx.doi.org/10.20944/preprints201703.0028.v1
http://dx.doi.org/10.3390/s17030524


 8 of 16 

 

( ) ( ) ( )1 1, , ,st i j st i j st i jdist S SS dist P SP dist P SP+ += +  (9) 

Then, ( ),st i jdist S SS  and the angle distance can be combined to calculate the segment-segment 

distance. It computes the included angle between iS  and jSS  in Equation (10), denoted as θ: 

( ) ( )1 1 1 1arctan2 , arctan2 ,i i i i j j j jy y x x y y x xθ + + + += − − − − −  (10) 

Under the same condition, if the included angle θ increases, ( ),st i jdist S SS  should be multiplied 

with a certain time for the computation. Thus, θ should be integrated with ( ),st i jdist S SS : 

( ) ( ), ( ) ,s i j st i jdist S SS f dist S SSθ=  (11) 

where ( )f θ  can be computed in Equation (12): 

max

( , )
( ) ( )

( , )
smid i jdist S SS

f
dist R S

θ ω θ= × +  (12) 

where ω  is an adjustable parameter and the shape negative factor. The greater ω , the less sensitive 
the distance to the shape factor. If there are no special requirements, let 1ω = . ( , )smid i jdist S SS  is the 

spatial-temporal distance between midpoints iS  and jSS . max ( , )dist R S  is the maximum temporal 
distance between any two points of trajectory sequences R and S. Furthermore, it makes no sense to 
compare the shapes of two trajectory sequences with a long distance. The shorter the distance, the 

more important the shape factor. Thus, 
max

( , )
( , )

smid i jdist S SS

dist R S
 is used to dynamically adjust the weight of the 

shape factor. 

 
Figure 7. Segment-Segment Distance. 

4.4. SDTW Computation 

After all of the segment-segment distances between trajectory sequences R and S have been 
calculated, the accumulative distance is computed derived from the idea of the DTW algorithm. 
Similar to the DTW algorithm, the similarity measurement of the SDTW is as follows: 

( )
( ) ( )( )

( )( )
( )( )

( ) ( )( )

0 , 0 0
, 0 0

,,
, ,

,
s

if n and m

if n or m

SDTW T Rest SSDTW R S

dist Head R Head S min SDTW S Rest T otherwise

SDTW Rest T Rest S

∞
= =

 = =
 =   +   

 (13) 

where n is the number of line segments on the trajectory sequence R, m is the number of line segments 
on the trajectory sequence S, and ( )Head R  indicates the first trajectory sequence 1S , and Re ( )st R  is 

the new trajectory sequence after R eliminated ( )Head R . That is to say, ( ) ( )( ),sdist Head R Head S  
represents the segment-segment distance between ( )Head R  and ( )Head S . 
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The computed accumulative distance is negative correlation with the similarity between the 
trajectory sequences. The accumulative distances of different two trajectories will be quite different, 
thus, it cannot directly compare the accumulative distances. It is necessary to convert the 
accumulative distance into the range [0, 1], where 0 means the two trajectories are irrelevant and 1 
means the two trajectories are the same. The conversion function uses the Gaussian kernel function. 
The conversion function is shown as Equation (14): 

( ) 2 2( , ) /2, [0,1]D R SSim R S e σ−= ∈  (14) 

where D represents the accumulative distance of R and S, σ  is used to describe the sensitivity of 
the similarity to the accumulative distance. With the same D, the similarity is higher when σ  is 
larger, and the similarity is lower when σ  is small. In Figure 8, when 10d = , with the increase of 
σ , the value of sim grows slowly within the range σ  from 0 to 1.5. When σ is in the range from 
1.5 to 6, the value of sim grows rapidly. When σ  is greater than 6, sim grows slowly and approaches 
1. 

 

Figure 8. The sensitivity analysis about the value of σ . 

To sum up, the pseudocode of the SDTW algorithm proposed in the paper for the similarity 
computation for the two trajectory sequences is as follows: 

As described in Algorithm 1, it first calculates the point-segment distance between each track 
point in the two trajectories according to Equation (3). If there is a temporal attribute in the trajectory 
data, it also needs to use Equation (7) to calculate the prediction distance. The segment-segment 
distance between each segment is then calculated using Equations (11) and (12). The subsequent 
calculation is the same as the DTW, and the final result is calculated using Equations (13) and (14) 
after initializing the accumulation distance matrix. 

Algorithm 1. SDTW 
Input: Two trajectory sequences 1 2={ , ,..., }nR P P P  and 1 2 m={ , ,..., }S PSP SPS  
Output: Sim, the similarity between R and S 
1: for i = 0 to n     //Calculate all point-segment distance 
2: for j = 0 to m 
3: psDist[i][j] = caclPSDistance (p[i], sp[j]) 
4: for i = 0 to n     //Calculate all prediction distance 
5: for j = 0 to m 
6: tDist[i][j] = caclTDistance (p[i], sp[j]) 
7: for i = 0 to n − 1     //Calculate all segment-segment distance 
8: for j = 0 to m − 1 
9: sDist[i][j] = caclSDistance (s[i], ss[j], psDist, tDist) 
10: init(matrix)     //Initial accumulation matrix 
11: for i = 1 to n − 1    //Calculate accumulation distance 
12: for j = 1 to m − 1 
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13: matrix[i][j] = sDist[i][j]+min (matrix[I − 1][j − 1], matrix[I − 1][j], matrix[i][j − 1]) 
14: return gaussianKernel (matrix[n − 2][m − 2]) 

SDTW needs to traverse every trajectory point of the two trajectories when calculating the point-
segment distance, the prediction distance and the segment-segment distance. caclPSDistance() is used 
to calculate the point-segment distance of two points in the two different trajectory sequences based 
on Equation (3). caclTDistance() is used to calculate the prediction distance of two points in the two 
different trajectory sequences based on Equation (7). caclSDistance() is to calculate the segment-
segment distance based on Equation (11). caclPSDistance() and caclSDistance() only involve the 
calculated points or segments, without considering the other points or segments. The computational 
complexity of function caclPSDistance() and caclSDistance() is constant order ( )O mn . In Equation 
(7), the dichotomy is used to find the trajectory point interval where the predicted point is located. 
The computational complexity of caclTDistance() is (log( ) )O m n mn+ . The computational complexity 
of DTW is also ( )O mn . The computational complexity of SDTW is ( )O mn for the trajectory data 
without the timestamp attribute, otherwise the computational complexity of SDTW is (log( ) )O m n mn+  
for the data with the time-stamp attribute. 

In this paper, the SDTW algorithm does not change the core concept of the DTW, and just 
replaces the DTW distance computation method with three types of distance. The SDTW can also use 
the lower limit of the DTW distance algorithm to improve the execution efficiency. Moreover, the 
point-segment distance, prediction distance and segment-segment distance can be integrated with 
the LCSS, EDR, and other algorithms to propose new approaches to the similarity measurement. 

5. Performance Evaluation 

5.1. Experimental Dataset and Metrics 

The dataset used in the experiments are the GPS GeoLife Trajectories dataset from Microsoft 
Research [18] and CVRR Trajectory Analysis Dataset [19]. 

The experiments use the GeoLife dataset to compare DTW and SDTW. The dataset consists of 
GPS trajectory data of 182 users over five years, for a total length of 1,292,951 km, but the single 
trajectory sequence is too long, leading to rare trajectories with a high similarity, so the trajectory 
sequences in the dataset is split into about 500,000 shorter ones indexed with an R* tree. The dataset 
does not give the trajectory sequence relationship, so the experiment results can be evaluated through 
visual analysis. 

The experiment uses the CVRR dataset to quantitatively analyze the accuracy, the robustness of 
the measurement algorithms, and the effects of the parameters. The dataset is specifically for 
assessing the trajectory analysis algorithm, and it mainly includes three types of trajectory data: the 
I5 dataset, the driving trajectory of a car on a two-way highway; the Labomni dataset, the data of 
people walking in the laboratory (Figure 9a); and the Cross dataset, the simulation of vehicles driving 
straight and turning at crossroads (Figure 9b). All of these datasets mark the clusters of each 
trajectory. These datasets can be clustered based on the trajectory similarity measure algorithm. The 
obtained clustering results can be compared with the correct clusters, which have been marked in the 
dataset, and give the accuracy analysis of the proposed SDTW algorithm. It should be noted that the 
I5 dataset is comprised of mainly linear trajectories, and most algorithms can obtain good results. 
Therefore, the experiments only use the Cross dataset and Labomni dataset. 
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(a) (b)

Figure 9. Labomni dataset (a) and Cross dataset (b). 

In the experiments, the error rate is included as one of metrics to evaluate the performance. 

Definition 8 (error rate). The error rate (ER) is the rate of wrongly-clustered trajectory sequences, which is 
different from CCR [20]. The lower the value, the higher the accuracy of the algorithm. Suppose the number of 
the known trajectory sequences is N, the total number of clusters is k, and the correct number of the sequence 
belonging to the class c is cp . The error rate is defined as follows: 

1

11
k

c
c

ER p
N =

= −   (15) 

5.2. Search Similar Trajectory 

The experiments use the same dataset of trajectory sequences for the trajectory queries. It can 
compute and obtain the top 15 most similar trajectory sequences with the original query trajectory in 
the dataset, through executing the SDTW and DTW algorithm, respectively. The computational 
results are visually displayed on the map. The original query trajectory is shown in Figure 10a, and 
the query results of the SDTW algorithm and DTW algorithm are shown in Figure 10b,c, respectively. 

  
(a) (b) (c)

Figure 10. Query results of trajectory sequences with the SDTW and DTW algorithms. 

In Figure 10b, most of the query results of the trajectory sequence are close to the original query 
trajectory, and have high similarity in shape. In Figure 10c, many query results have low similarity 
in shape, compared with the original query trajectory. The reason is that the SDTW algorithm 
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considers the shape factor of the natural trajectory and uses the point-segment distance to reduce the 
loss of the sampling method on the accuracy, so the SDTW algorithm is more accurate than the DTW 
algorithm. 

5.3. Clustering Error Rate Comparison 

The experiment is based on the CVRR dataset with cluto [21] as a clustering tool. cluto is a low-
dimensional clustering and high-dimensional data software package for the analysis of the 
characteristics of various categories. cluto can provide a variety of optimized clustering algorithms, 
and support the trajectory clustering based on the similarity matrix. 

In order to evaluate the accuracy of similarity measurement, four algorithms, LCSS, EDR, DTW, 
and SDTW are selected to cluster the trajectory sequences. First, the trajectory similarity matrix of 
two datasets are generated with the similarity measurement algorithm. Then, it is clustered with 
agglomerative hierarchical clustering (AHC) and rbr with global optimization. Finally, the maximum 
ER of each dataset is regarded as the final result of clustering error rate. As to the LCSS and EDR 
algorithms, it is necessary to specify a threshold ε. In the experiments, LCSS and EDR algorithms 
should calculate the maximum ER with the threshold ε varying in range from 1 to 5, when the step 
is set to 1.0. As to the SDTW algorithm, it is necessary to specify the parameter ω . The SDTW 
algorithm should calculate the maximum ER with parameter ω  varying from 1 to 10, when the step 
set to 1.0. It should be noted that letting the parameter σ  in Gaussian kernel function 

2 i
1 0.1ijj

sim
N

=   can produce very good clustering results [22]. Figure 11 illustrates the compared 

results of the clustering error rate with the four algorithms. 

 
(a) (b)

Figure 11. Comparison of Clustering Error rates. (a) Clustering error rates based on the Cross dataset; 
and (b) clustering error rates based on the Labomni dataset. 

As shown in Figure 11, the algorithms with various datasets lead to various error rates, but the 
order of the error rate is the same. The LCSS, DTW, and SDTW can obtain good clustering results, 
and the EDR’s clustering effect is poor. The error rate of the SDTW is the lowest, and the error rate of 
LCSS is higher than that of the DTW. The error rate of the SDTW is 80%, 96.12%, and 44% lower than 
the LCSS, EDR, and DTW with the Cross dataset, respectively; and 35.82%, 77.01%, and 18.87% lower 
with the Labomni dataset, respectively. To sum up, the SDTW algorithm can obtain better accuracy 
than that of the DTW, LCSS, and EDR. The reason is that the SDTW algorithm introduces the 
prediction distance to convert the temporal distance into the spatial distance, considering the 
temporal distance factor. Additionally, SDTW introduces the segment-segment distance to improve 
the computation accuracy by adjusting the parameters of shape factors. 
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5.4. Noise Effect Analysis 

To evaluate the robustness of various algorithm, noisy data at different levels is superimposed 
into the original trajectory sequence data. The noise rate reflects the deviation points ratio in the 
trajectory sequence. When the noise rate is λ (0 ≤ λ ≤ 1), it indicates that the trajectory points of 
100 %λ  in the original data have been deviated to a certain extent. It is noted that due to noise 
randomness, the experiments are repeated 20 times and the average value is taken to ensure the 
accuracy of the results. 

In the experiment, the variation of λ is in the range [0.1, 1] with the step 0.1. The deviation 
degree uses a random number. The deviation degrees of most deviation points are greater than the 
maximum threshold ε in the LCSS and EDR. The other parameters are set to the same value, as in 
the experiment 5.3. 

Figure 12a,b illustrates the experiment results with the Cross and Labomni datasets, respectively. 
The results of the clustering error rate are roughly consistent with the results in experiment 5.3. It can 
be seen that the LCSS, DTW, and SDTW exhibit better accuracy than EDR, even in the case of noisy 
data. On the other hand, with the increase of the amount of noisy data, the clustering error rates of 
all algorithms increase gradually. From Figure 12, the maximum error rate of the LCSS, DTW, and 
SDTW is below 0.15 when the noise ratio varies from 0.1 to 1.0, which indicates good robustness to 
the noisy data for the above three algorithms. However, EDR exhibits poor performance on the 
robustness during the increase of noisy data. 

 
(a) (b)

Figure 12. Comparison of noise effect on the algorithms. (a) Clustering error rates based on the Cross 
dataset; and (b) clustering error rates based on the Labomni dataset. 

On the other hand, In the Cross dataset, the average change ratio of ER in the LCSS, EDR, DTW, 
and SDTW is 23.35%, 14.88%, 14.15%, and 13.64%, respectively. In the Labomni dataset, that is 11.1%, 
9.38%, 6.71%, and 4.21%, respectively. EDR and LCSS present poorer robustness than the DTW and 
SDTW. The conclusion that the robustness of the LCSS and EDR algorithms is better than the DTW 
when the deviation degree is greater than ε from [4] is not correct. The above conclusion is similar 
with [23]. The SDTW algorithm exhibits the best performance in terms of robustness, which benefits 
from the point-segment distance, which decreases the effect of sampling methods on the accuracy 
and also improves the robustness to noise. 

5.5. Parameter Effect Analysis 

In the SDTW algorithm, ω  is an important parameter and determines the weight of the shape 
factor in the similarity computation. The experiments evaluate the effect of parameter ω  varying 
from 0.3 to 20, as listed in Table 1. The experiment dataset is based on Labomni dataset. Two metrics 
are used to compute the error rate, AHC and rbr, respectively. 
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Table 1. Error rate with various ω  values. 

 0.3 0.5 1 1.5 2 2.5 3 3.5 6 10 20 
AHC 0.061 0.019 0.013 0.006 0.006 0.006 0.006 0.007 0.008 0.010 0.010 

rbr 0.217 0.061 0.009 0.009 0.008 0.009 0.01 0.01 0.01 0.011 0.011 

From Table 1 and Figure 13, when the ω  value is relatively small, the weight of the shape factor 
is quite large, which results in the high error rate. When the ω  value lies in the range below 1.0, its 
small change will cause a great change in the error rate. When the ω value is larger than 1.0, its 
change will make little effect on the results. The results show no large difference with the optimal 
results. From the experimental results, the SDTW algorithm can obtain the optimal results with the 
appropriate value of parameter ω . Furthermore, the shape factors should be properly optimized, 
otherwise, the improper weights of the shape factors may result in poor performance on the error 
rate, as shown in Figure 13. 

 
Figure 13. ER with various ω  values. 

6. Conclusions 

With the rapid development of sensor technology and the popularization of personal smart 
devices, GPS sensors are widely used to track moving objects. A trajectory similarity measure is one 
of the most important steps in trajectory data mining of human activity and vehicle moving patterns. 
Unfortunately, the main similarity measure algorithms with the trajectory data have been found to 
be inaccurate, highly sensitive to sampling methods, and have low robustness to the noise data. In 
order to solve the above problem, a segment-based dynamic time warping algorithm (SDTW) is 
proposed to measure the trajectory similarity. First, the proposed SDTW adopts the point-segment 
distance to reduce the sensitivity influence of the trajectory sampling method. Then, considering the 
temporal distance factor, SDTW introduces the prediction distance to convert the temporal distance 
into the spatial distance. Finally, SDTW introduces the segment-segment distance to improve the 
computation accuracy by adjusting the parameters of the shape factors. The experimental results 
indicate that the SDTW algorithm can obtain about 57%, 86%, and 31% better accuracy than the LCSS, 
EDR, and DTW, respectively. Meanwhile, the SDTW algorithm exhibits better robustness to the noise 
than that of the other algorithms. 
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