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Abstract: With the rapid spread of built-in GPS handheld smart devices, the trajectory data from
GPS sensors has grown explosively. Trajectory data has spatio-temporal characteristics and rich
information. Using trajectory data processing techniques can mine the patterns of human activities
and the moving patterns of vehicles in the intelligent transportation systems. A trajectory similarity
measure is one of the most important issues in trajectory data mining (clustering, classification,
frequent pattern mining, etc.). Unfortunately, the main similarity measure algorithms with the
trajectory data have been found to be inaccurate, highly sensitive of sampling methods, and have
low robustness for the noise data. To solve the above problems, three distances and their
corresponding computation methods are proposed in this paper. The point-segment distance can
decrease the sensitivity of the point sampling methods. The prediction distance optimizes the
temporal distance with the features of trajectory data. The segment-segment distance introduces the
trajectory shape factor into the similarity measurement to improve the accuracy. The three kinds of
distance are integrated with the traditional dynamic time warping algorithm (DTW) algorithm to
propose a new segment-based dynamic time warping algorithm (SDTW). The experimental results
show that the SDTW algorithm can exhibit about 57%, 86%, and 31% better accuracy than the longest
common subsequence algorithm (LCSS), and edit distance on real sequence algorithm (EDR), and
DTW, respectively, and that the sensitivity to the noise data is lower than that those algorithms.
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1. Introduction

With the rapid development of sensors technology and the popularization of personal smart
devices, GPS sensors are widely used to track moving objects, such as people, cars, and animals. A
large number of trajectory data emerges every day. The trajectory data from GPS sensors are the
spatio-temporal data sequences of mobile objects with the space-time variation. With the
development of the Internet of Things, urban computing, and other research fields, the analysis of
spatio-temporal data-based transportation systems have become a hot topic in the fields of machine
learning. The trajectory data analysis can be a great driving force for all of the fields, for example,
through applying the trajectory similarity measure algorithm, the distance matrix can be computed,
which can be used to cluster the trajectory of peoples’ activities for finding the popular routes and
hot spots and visualizing in OpenStreetMap [1,2]. In the intelligent transportation systems, it is of
great practical value to measure the similarity of the trajectories of moving objects in a real-time,
accurate, and reliable way. Intelligent trajectory measurement cannot only provide accurate location-
based services, but also monitor and estimate traffic jams [3].

In trajectory data mining, one of the most important and fundamental works is to compute the
similarity between different trajectories. Based on the similarity measurement of trajectory data, the
trajectories can be clustered, classified, and retrieved [4]. The accuracy of the similarity measurement
significantly affects the accuracy of the trajectory data mining. In recent years, some mainstream
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algorithms for trajectory similarity measurement have been proposed, such as the dynamic time
warping algorithm (DTW) [5], longest common subsequence algorithm (LCSS) [6], and edit distance
on real sequence algorithm (EDR) [7]. Those algorithms can obtain the results of similarity
measurement through computing spatial point-to-point distances or temporal distances. However,
there are common drawbacks resulting in the low accuracy. For example, the DTW algorithm just
directly calculates the point-point distance, ignoring the influence of the different trajectory sampling
methods on the generated trajectory sequence. The LCSS algorithm neglects optimizing the temporal
distance of the trajectory data. The EDR algorithm does not consider the trajectory shape factor. In
order to improve the accuracy, a segment-based dynamic time warping algorithm (SDTW) is
proposed to measure the trajectory similarity. First, the proposed SDTW adopts the point-segment
distance to reduce the sensitivity influence from the trajectory sampling methods. Then, considering
the temporal distance factor, SDTW introduces the prediction distance to convert the temporal
distance into the spatial distance. Finally, SDTW introduces the segment-segment distance to
improve the computation accuracy by adjusting the parameters of shape factors.

The remainder of this paper is organized as follows. Section 2 discusses the related work and
analyzes their drawbacks. Some definitions and problem statements are described in Section 3.
Section 4 presents the proposed SDTW algorithm, and the performance evaluations are given in
Section 5. Discussion and conclusions are given in Section 6.

2. Related Work

Trajectory sequence data can be regarded as time sequence data. Many approaches to the
trajectory similarity measurement are introduced from the similarity measurement to the time
sequence data. The simplest trajectory similarity measurement is the Euclidean distance, but it cannot
obtain better accuracy when the local time shifts or when those trajectories lack the same length [8].
In order to improve the accuracy of similarity measurement, the dynamic time warping algorithm
(DTW), longest common subsequence algorithm (LCSS), and edit distance on real sequence algorithm
were proposed and widely applied.

Based on the idea of dynamic programming to find the optimal match point pairs between the
trajectory points, the DTW can effectively solve the problem of local time shifting and various
trajectory lengths [5]. The DTW algorithm was firstly introduced for speech recognition, then applied
to the time sequence analysis later. The LCSS adopted a threshold £ to identify the match point pairs
[6], but it is a similarity measurement in rough granularity without considering non-match pairs of
points. The EDR is an edit distance-based algorithm, which uses a threshold ¢ to identify the match
point pairs and the non-match points, different from the LCSS. Those similarity measurement
algorithms can be divided into two types [8]: the one based on L1 and L2 paradigms, such as the
DTW, and the other computing similarity scores based on the matching threshold, such as the LCSS
and the EDR.

Wang et al. have evaluated the performance on the accuracy of main similarity measurement
algorithms, DTW, LCSS, ERP [10], EDR, and SpaDe [11], in the different time sequence datasets [9].
The experimental results demonstrate that the DTW algorithm can obtain the most accurate results
of the similarity measurement in the majority of datasets although its computation speed is slow.
Based on the evaluation results, many similarity measurement algorithms, such as Kim [12], Keogh
[13], and Improved [14], have been proposed to reduce the computation complexity at the same
measurement accuracy as the DTW algorithm.

From the above analysis, it can be found that those algorithms have common drawbacks
affecting the accuracy of similarity measurement.

(1) The DTW, LCSS, and EDR algorithms only consider the comparison of two individual points. In
fact, different sampling methods can form different trajectory sequences, which results in a
significant negative impact on the final measurement results [15]. As shown in Figure 1a, the
trajectory sequence data of a curve trajectory with an arrow may have two-point sampling
methods T: and T.. Two original trajectories are essentially identical, but their trajectory
sequences are quite different. In Figure 1b, two trajectories intersect at point P, and their
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trajectory sequences 7, and 7, sample the point P. An obvious difference between the two

trajectories is produced, but the difference is weakened due to the intersection point P. Thus,
computing the trajectory similarity completely based on the discrete trajectory points will cause
the loss of the details of the trajectories. It is necessary to find a way to keep the details to a
certain extent.

(2) Only considering the distances between the pairs of points, the mentioned algorithms cannot
take shape factors into account [16]. However, shape factor is an important feature of a natural
trajectory. It may result in the loss of computation accuracy when the shape factors are ignored.

(3) Most algorithms of similarity measurement are derived from the time sequence similarity
computation without considering the temporal distance computation between two trajectory
points. Since the time measurement is different from the space measurement, it makes no sense
just to simply add two weights. To solve that problem, Lee et al. proposed a trajectory distance
measurement method with the weighted addition of the parallel distance, the perpendicular
distance, and the angle distance [1]. Unfortunately, the proposed measurement method by Lee
et al. cannot solve Problems (1) and (2).

(a) (b)

Figure 1. Various point sampling methods of the same trajectory. (a) A trajectory of two sampling
methods; and (b) two trajectories take the same point.

To solve the above three problems, a segment-based trajectory similarity measurement
algorithm is proposed to improve the accuracy.

3. Problems and Definitions

Mobile objects generally have time and space attributes, respectively. Space attributes can be
three-dimensional or two-dimensional. Two-dimension is the most widely used, so all of the words
“space” refers to two-dimension space in this paper. A trajectory records a continuous movement
trace of a mobile object. Due to the limitations of the GPS sensors, a trajectory T consists of a series of

points (x,y, l), where (x, y) is the spatial recorded point, ¢ is the recorded time. For convenience, a

natural trajectory and a trajectory sequence are strictly distinct.
Definition 1 (natural trajectory): A continuous trajectory of a mobile object.

Definition 2 (trajectory sequence): With a given Euclidean space, a natural trajectory can be expressed as

T={R,B,.....B,}, where the discrete trajectory points are ordered by time, E refers to the trajectory point i,

B=%..2), and n represents the number of points in the trajectory. T is the recorded trajectory sequence from

the natural trajectory.

Definition 3 (sub-trajectory segment): Two adjacent discrete trajectory points B and E.| are connected

to form a trajectory segment ER.,, which is a sub-trajectory segment.

Definition 4 (natural sub-trajectory segment): A part of the natural trajectory between two adjacent
discrete trajectory points is constructed as a natural sub-trajectory segment.
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A trajectory sequence consists of a series of discrete points. Two adjacent discrete points are
connected to form a sub-trajectory segment. Moreover, a real trajectory segment must exist between
two adjacent discrete points. In Figure 2, s7, and s7, are a sub-trajectory segment and a natural

sub-trajectory segment, respectively.

Figure 2. A sub-trajectory segment and a natural sub-trajectory segment.

Definition 5 (proxy natural sub-trajectory segment): E, is denoted as a medium point of the natural
sub-trajectory segment between p, and p,. B is denoted as the medium point of the natural sub-trajectory
segment between p, and p,, . The proxy natural sub-trajectory segment of trajectory point p, is the natural

sub-trajectory segment between Fey and Eey.

Definition 6 (proxy sub-trajectory): p,, ismarked as a midpoint of the sub-trajectory segment of p, and

P, and P,

w2 15 marked as the midpoint of the sub-trajectory segment of p, and p,, . The sub-trajectory

formEd by Pmid] Pi and Pi PmidZ

is the proxy sub-trajectory of Pp, .

Figure 3. A Proxy of a natural sub-trajectory.

A discrete trajectory sequence represents a whole natural trajectory. A trajectory point on its
sequence represents a part of the natural trajectory, called as the proxy natural sub-trajectory of the
point. A natural trajectory can only be stored as a trajectory sequence; thus, the proxy natural sub-
trajectory segment cannot be obtained. It can only obtain the proxy sub-trajectory of the trajectory
points.

The problem to be solved in this paper is to compute the distance Dist(R,§) between two given
trajectory sequences R and S, where r=(p,p,,...P,} and s={sp,sp,,..Sp,} . The longer the distance, the

less similarity Sim(R,S) .

4. SDTW Algorithm

Due to ignoring the relationship between a trajectory sequence and a natural trajectory, the current
trajectory similarity measurement algorithms are sensitive to the sampling methods. To reduce the
sensitivity of the points sampling methods, a point-point distance can be converted to a distance from
a point to a specific segment, which is defined as a point-segment distance. There is a fundamental
difference between the temporal distance and the spatial distance of trajectory points. In this paper, the
time difference and trajectory’ shape are integrated to convert a temporal distance into a spatial distance
and the prediction distance is presented. The DTW algorithm only uses the point-point distance,
without considering the trajectory’s important characteristic—shape—which results in the low
accuracy of the DTW algorithm. If the shape factors are included, the accuracy of the similarity
measurement can be improved. A trajectory sequence is regarded as multiple continuous trajectory
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segments, the shape lies in the difference of an angle between trajectory segments. An included angle
can be considered into the similarity calculation, and its result is the segment-segment distance.

The above three distances are integrated with the traditional DTW algorithm to propose a new
segment-based dynamic time warping algorithm (SDTW). SDTW adopts the point-segment distance,
prediction distance, and segment-segment distance to compute the accumulative distance of two
trajectory sequences, which can improve the accuracy.

4.1. Point-Segment Distance

The spatial distance of two trajectory points can be converted to the spatial distance of their
proxy trajectories. In fact, the point-segment distance is the spatial distance of the pair of two
trajectory points. The distance of the two proxy trajectories, s, isthe areaenclosed by them (Figure

true

4a). The plane is an irregular polygon area, the computation is difficult. The sum of s, enclosed by
p, and Scg, and s, enclosed by p, and seg, (Figure 4b) shows a positive correlation with s

true *

That is, when the relative displacement of the two proxy trajectories occurs, the trend of 5, + s, is

the same as thatof s_ .So, s

true

true

can be replaced with the sum of 5, and s,.

(b)

Figure 4. Two computation methods of the proxy sub-trajectory distance. (a) The area enclosed by the
two proxy trajectories; and (b) a simplified calculation method.

It is obvious that the distance calculation method based on the area is not an effective approach,
especially for a trajectory point with a long proxy sub-trajectory, which results in a larger sum
enclosed by it and other proxy trajectories. From the above analysis, the length of Seg, and seg,

shows a positive correlation with the condition of a trajectory point with a long proxy sub-trajectory.
The longer a trajectory is, the worse the result is. It can adopt §/Seg to convert the spatial distance
between p, and p, into the sum of the distance from p, and seg, , and the distance from p, and
Seg, . Thatis, §/Seg isthe sum of point-segment distances.

Assume that P(x.y;) is trajectory point i on the trajectory sequence R, and SP;(x;.y;) is
trajectory point j on the trajectory sequence S. Define dist,,(P.,SP;) as the point-segment distance of

p, and SP; . Define dist, (SP,P) as the point-segment distance of SP; and p, , and

Joti

dist (P, SP;) # dist . (SP;,P,) . Figure 5 illustrates the point-segment distance computation.

Figure 5. Point-segment distance.
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To compute dist,, (P.SP,), it is first to compute the midpoint Bt (Xpia1> Vi) of SP; and 8B,
and the midpoint £, midz(xmid27ymid2) of SP/' and SP;‘+1 . Bun (xmidl’ymidl) and Bnid2(xmid2’ymid2) can
computed as follows Equation (1):

(Xniat> Vomiar) :((xj—l +xj)/2,(yj_1 +yj)/2)

@
(Xpia2s Ymia2) :((xj +xj+1)/2,(yj +y.i+1)/2)

i>* seg

Then it computes the shortest distance between p, and R,. disth(P R ) is [17]:

\/(xi _xmid1)2 +( _ymid1)2 ifr<0
. 2 2.
dlStps(Pi’Rseg) = \/(xi _xmidZ) + (yz _ymidZ) lf‘ rz Lseg (2)

\/(xi _dx)z + (Vmian _dy)z otherwice

where  1=(%,00 = %) X(% = Xia1) + (Viaz = Yoiat) X (Vi =Viar) 5 Lieg is the length of the derivation
Segment’ dx = (xmidl + (xmidZ ~ Xmid1 )X (I" / Lseg )) : dy = (ymidl + (ymidZ = Vmid1 ) X (V / Lseg )) .

The formula for dist, (SP,,P) is the same as dist, (P.SP;), and the spatial distance dist,, (B.SP;)

between p, and SP; with the SDTW is as shown in Equation (3):

dist,, (P,.,SPI.) = dist ,, (P,.,SPI.)+ dist ,, (SR,,P,.) ©)

4.2. Prediction Distance

Most of the trajectory similarity measurement algorithms are introduced from the time sequence
similarity algorithms without considering to optimize the trajectory data. However, the time series
data measurement and space measurement of the trajectory are essentially different, so it is necessary
to figure out a solution to calculate the temporal distance integrated with spatial distance.

In Figure 6, the time distance between p, on trajectory Rand SP; on trajectory S is computed.
The timestamp of p, is 1, the timestamp of SP, is ;. The difference between jand f; can
actually be reflected on a specific trajectory. Assume that p, is regarded as a mobile object. When

< t;, its space location after the time interval #;— is the space location of R at the timestamp ?;,

known as a prediction position of p,, denoted as p'.

P
B
Pi -~ ! Ry
e I RRNE
// ! . \\\
R | distr Y
. ! N
[ - Ry
, e N
/ - A
s 7 SP_] AN
/ e AN
, g \\‘

Figure 6. Prediction distance.

The temporal distance between p, and SP; is converted into the spatial distance between the
prediction location of p' and SP; , known as the prediction distance. It can convert a temporal

distance into a spatial distance, and reflect the time distance of trajectory points on the trajectory. It
can be seen that he prediction distance has good interpretability. It can effectively improve the
accuracy of similarity measurements. Therefore, the natural trajectory cannot be recorded, so the
similarity measurement should be based on the trajectory sequence data.
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Assume that P(x;,);,;) represents a trajectory point i on trajectory R and SP,(x;.;.t;) is a
trajectory point j on trajectory S. To compute the prediction distance between PB(x,y,;) and
SP,(x;.y;.t;), one first compares the timestamps of p, and SF; . The point with an earlier timestamp

is set as A, and the other with the later timestamp as B. Their time differenceis Ar=¢,-¢,.

The next step is to compute the prediction location of point B with the later timestamp, named
as B'. Since the information stored in the trajectory sequence is limited and the positions of the
moving object cannot be obtained at any time, the prediction location B' is only an approximate
position of point B. Then, it traverses the timestamp for each trajectory point to search the track range
of point B at the timestamp :, + ar. Suppose at the timestamp ¢, + A+, point B is located between

point i — 1 and i. The spatial coordinates (x,yy) of the prediction position B' can be calculated as

follows:

4)

Xp =X +v Xty + M =1 )
Yy =V ) X(ty A =1)

i—

Suppose that it is a uniform linear motion between any two points on the trajectory, it can
compute the velocity between two points as follows:

©)

If there does exist the corresponding recorded trajectory point B at the timestamp ¢, + A, the

B' can be estimated as follows:

{xB/:xB+(xN—x|)/(tN—tl)><At 6
v =yg+ vy =)/ (ty —t)x At ©
where N is the total number of the points on the trajectory, on which point 5is located.
The prediction distance between A and B is calculated as follows:
dist,(A4,B) =dist(A,B) @)

where dist(A,B) is the Euclidean distance between A and B' in the coordination.

The prediction distance between A and B also presents the point-segment distance between point
A and segment BB’.

4.3. Segment-Segment Distance

Suppose that s, is one segment i on the trajectory R, and SS; is one segment j on the trajectory
S. Suppose that s,’s two endpoints are P(x.y;) and By (%.,54), and SS;’s two endpoints are

SP;(x;,y;) and SP,

1 (Xj41.741 ), respectively. The segment-segment distance is dist,(P,SP;) can be

calculated as follows.
The point-point distance includes the spatial distance and the temporal distance. The spatial-
temporal distance dist, (B,SP;) between p, and SP; is calculated as shown in Equation (8):

dist, (P,SP;) = dist,(P.SP;)+txdist,(P.SP;) (8)

where ¢ is the time sensitivity parameter. The larger parameter ¢ is, the more sensitive the distance to
the time dimension is. When parameter t = 0, the time dimension cannot be neglected.

The segment-segment spatial-temporal distance is the sum of spatial-temporal distances
between the two ends of the segments. dist,(S,,SS;) represents the segment-segment spatial-

temporal distance of s, and SS;, as shown in Figure 7. dist,,(S,.SS;) can be calculated as follows:
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dist,, (S;,SS;) = dist,, (PSP, ) +dist,, (P,,.SP;,, ) )

Then, dist, (S;,55;) and the angle distance can be combined to calculate the segment-segment

distance. It computes the included angle between s, and SS; in Equation (10), denoted as &:
0= ‘arctanZ(yi+1 =YX —)c,.)—arctanZ(ijrl =YX —xj)‘ (10)

Under the same condition, if the included angle 6 increases, dist,, (Sl.,SSj) should be multiplied

with a certain time for the computation. Thus, 6 should be integrated with dist,, (S;,SS;):
dist, (S;,55;) = f(O)dist,, (S,.SS) (11)

where f(9) canbe computed in Equation (12):

_ diStsmid (Sz’SS/)

/) dist (R,S)

X(w+6) (12)
where @ isan adjustable parameter and the shape negative factor. The greater @, the less sensitive
the distance to the shape factor. If there are no special requirements, let w=1. dist,;;(S;,55;) is the

spatial-temporal distance between midpoints s, and SS;. gist,, (R.s) is the maximum temporal
distance between any two points of trajectory sequences R and S. Furthermore, it makes no sense to
compare the shapes of two trajectory sequences with a long distance. The shorter the distance, the
disrsmid (Sl’ SS J )

~ tant the shape factor. Thus,
more important the shape factor. Thus, =% 7,

is used to dynamically adjust the weight of the

shape factor.

Figure 7. Segment-Segment Distance.

4.4. SDTW Computation

After all of the segment-segment distances between trajectory sequences R and S have been
calculated, the accumulative distance is computed derived from the idea of the DTW algorithm.
Similar to the DTW algorithm, the similarity measurement of the SDTW is as follows:

0.,ifn=0and m=0
oo ifn=00rm=0
SDTW (R,S) = SDTW (T, Rest(S)) (13)
dist, (Head(R),Head(S)) + min SDTW(S,Rest(T)) otherwise
SDTW (Rest(T), Rest(S))

where 7 is the number of line segments on the trajectory sequence R, m is the number of line segments
on the trajectory sequence S, and Head(R) indicates the first trajectory sequence s,,and Rest(R) is

the new trajectory sequence after R eliminated Head(R) . That is to say, dist,(Head(R),Head(S))

represents the segment-segment distance between Head(R) and Head(S).
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The computed accumulative distance is negative correlation with the similarity between the
trajectory sequences. The accumulative distances of different two trajectories will be quite different,
thus, it cannot directly compare the accumulative distances. It is necessary to convert the
accumulative distance into the range [0, 1], where 0 means the two trajectories are irrelevant and 1
means the two trajectories are the same. The conversion function uses the Gaussian kernel function.
The conversion function is shown as Equation (14):

Sim(R,S)=e 2" ®927 ¢ [0,1] (14)

where D represents the accumulative distance of R and S, 0 is used to describe the sensitivity of
the similarity to the accumulative distance. With the same D, the similarity is higher when 0 is
larger, and the similarity is lower when O is small. In Figure 8, when 4 =10, with the increase of
O, the value of sim grows slowly within the range ¢ from 0 to 1.5. When O is in the range from
1.5 to 6, the value of sim grows rapidly. When O is greater than 6, sim grows slowly and approaches
1.

sim
1.2

0.8
0.6
04 /

0.2 ,,
; $
2 4 6 8 10 12 14 16

Figure 8. The sensitivity analysis about the value of g,

To sum up, the pseudocode of the SDTW algorithm proposed in the paper for the similarity
computation for the two trajectory sequences is as follows:

As described in Algorithm 1, it first calculates the point-segment distance between each track
point in the two trajectories according to Equation (3). If there is a temporal attribute in the trajectory
data, it also needs to use Equation (7) to calculate the prediction distance. The segment-segment
distance between each segment is then calculated using Equations (11) and (12). The subsequent
calculation is the same as the DTW, and the final result is calculated using Equations (13) and (14)
after initializing the accumulation distance matrix.

Algorithm 1. SDTW
Input: Two trajectory sequences r={p.p,,..p,} and S={SPsP,,..SP,}

m

Output: Sim, the similarity between R and S

l:fori=0ton //Calculate all point-segment distance
2:forj=0tom

3: psDist[i][j] = caclPSDistance (p[i], spljl)

4:fori=0ton /[Calculate all prediction distance
5:forj=0tom

6: tDist[i][j] = caclTDistance (pli], sp[j])

7:fori=0ton-1 /[Calculate all segment-segment distance

8:forj=0tom-1

9: sDist[i][j] = caclSDistance (s[i], ss[j], psDist, tDist)

10: init(matrix) //Initial accumulation matrix
11: fori=1ton-1 //Calculate accumulation distance
12: forj=1tom -1
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13: matrix[i][j] = sDist[i][j]+min (matrix[I — 1][j — 1], matrix[I — 1][j], matrix[i][j — 1])
14: return gaussianKernel (matrix[n — 2][m — 2])

SDTW needs to traverse every trajectory point of the two trajectories when calculating the point-
segment distance, the prediction distance and the segment-segment distance. caclPSDistance() is used
to calculate the point-segment distance of two points in the two different trajectory sequences based
on Equation (3). caclTDistance() is used to calculate the prediction distance of two points in the two
different trajectory sequences based on Equation (7). caclSDistance() is to calculate the segment-
segment distance based on Equation (11). caclPSDistance() and caclSDistance() only involve the
calculated points or segments, without considering the other points or segments. The computational
complexity of function caclPSDistance() and caclSDistance() is constant order O(mn) . In Equation
(7), the dichotomy is used to find the trajectory point interval where the predicted point is located.
The computational complexity of caclTDistance() is O(log(m + n)mn) . The computational complexity
of DTW is also O(mn) . The computational complexity of SDTW is 0O(mn) for the trajectory data
without the timestamp attribute, otherwise the computational complexity of SDTW is O(log(m + n)mn)
for the data with the time-stamp attribute.

In this paper, the SDTW algorithm does not change the core concept of the DTW, and just
replaces the DTW distance computation method with three types of distance. The SDTW can also use
the lower limit of the DTW distance algorithm to improve the execution efficiency. Moreover, the
point-segment distance, prediction distance and segment-segment distance can be integrated with
the LCSS, EDR, and other algorithms to propose new approaches to the similarity measurement.

5. Performance Evaluation

5.1. Experimental Dataset and Metrics

The dataset used in the experiments are the GPS GeoLife Trajectories dataset from Microsoft
Research [18] and CVRR Trajectory Analysis Dataset [19].

The experiments use the GeoLife dataset to compare DTW and SDTW. The dataset consists of
GPS trajectory data of 182 users over five years, for a total length of 1,292,951 km, but the single
trajectory sequence is too long, leading to rare trajectories with a high similarity, so the trajectory
sequences in the dataset is split into about 500,000 shorter ones indexed with an R* tree. The dataset
does not give the trajectory sequence relationship, so the experiment results can be evaluated through
visual analysis.

The experiment uses the CVRR dataset to quantitatively analyze the accuracy, the robustness of
the measurement algorithms, and the effects of the parameters. The dataset is specifically for
assessing the trajectory analysis algorithm, and it mainly includes three types of trajectory data: the
I5 dataset, the driving trajectory of a car on a two-way highway; the Labomni dataset, the data of
people walking in the laboratory (Figure 9a); and the Cross dataset, the simulation of vehicles driving
straight and turning at crossroads (Figure 9b). All of these datasets mark the clusters of each
trajectory. These datasets can be clustered based on the trajectory similarity measure algorithm. The
obtained clustering results can be compared with the correct clusters, which have been marked in the
dataset, and give the accuracy analysis of the proposed SDTW algorithm. It should be noted that the
I5 dataset is comprised of mainly linear trajectories, and most algorithms can obtain good results.
Therefore, the experiments only use the Cross dataset and Labomni dataset.
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Figure 9. Labomni dataset (a) and Cross dataset (b).

In the experiments, the error rate is included as one of metrics to evaluate the performance.

Definition 8 (error rate). The error rate (ER) is the rate of wrongly-clustered trajectory sequences, which is
different from CCR [20]. The lower the value, the higher the accuracy of the algorithm. Suppose the number of
the known trajectory sequences is N, the total number of clusters is k, and the correct number of the sequence
belonging to the class cis p,. The error rate is defined as follows:

1 k
ER=1——
N 2P (15)

c=1

5.2. Search Similar Trajectory

The experiments use the same dataset of trajectory sequences for the trajectory queries. It can
compute and obtain the top 15 most similar trajectory sequences with the original query trajectory in
the dataset, through executing the SDTW and DTW algorithm, respectively. The computational
results are visually displayed on the map. The original query trajectory is shown in Figure 10a, and
the query results of the SDTW algorithm and DTW algorithm are shown in Figure 10b,c, respectively.

(@) (b) (c)
Figure 10. Query results of trajectory sequences with the SDTW and DTW algorithms.
In Figure 10b, most of the query results of the trajectory sequence are close to the original query

trajectory, and have high similarity in shape. In Figure 10c, many query results have low similarity
in shape, compared with the original query trajectory. The reason is that the SDTW algorithm
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considers the shape factor of the natural trajectory and uses the point-segment distance to reduce the
loss of the sampling method on the accuracy, so the SDTW algorithm is more accurate than the DTW
algorithm.

5.3. Clustering Error Rate Comparison

The experiment is based on the CVRR dataset with cluto [21] as a clustering tool. cluto is a low-
dimensional clustering and high-dimensional data software package for the analysis of the
characteristics of various categories. cluto can provide a variety of optimized clustering algorithms,
and support the trajectory clustering based on the similarity matrix.

In order to evaluate the accuracy of similarity measurement, four algorithms, LCSS, EDR, DTW,
and SDTW are selected to cluster the trajectory sequences. First, the trajectory similarity matrix of
two datasets are generated with the similarity measurement algorithm. Then, it is clustered with
agglomerative hierarchical clustering (AHC) and rbr with global optimization. Finally, the maximum
ER of each dataset is regarded as the final result of clustering error rate. As to the LCSS and EDR
algorithmes, it is necessary to specify a threshold &. In the experiments, LCSS and EDR algorithms
should calculate the maximum ER with the threshold & varying in range from 1 to 5, when the step
is set to 1.0. As to the SDTW algorithm, it is necessary to specify the parameter @ . The SDTW
algorithm should calculate the maximum ER with parameter @ varying from 1 to 10, when the step
set to 1.0. It should be noted that letting the parameter O in Gaussian kernel function

#z]z (sim; =0.1 can produce very good clustering results [22]. Figure 11 illustrates the compared
results of the clustering error rate with the four algorithms.
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Figure 11. Comparison of Clustering Error rates. (a) Clustering error rates based on the Cross dataset;
and (b) clustering error rates based on the Labomni dataset.

As shown in Figure 11, the algorithms with various datasets lead to various error rates, but the
order of the error rate is the same. The LCSS, DTW, and SDTW can obtain good clustering results,
and the EDR’s clustering effect is poor. The error rate of the SDTW is the lowest, and the error rate of
LCSS is higher than that of the DTW. The error rate of the SDTW is 80%, 96.12%, and 44% lower than
the LCSS, EDR, and DTW with the Cross dataset, respectively; and 35.82%, 77.01%, and 18.87% lower
with the Labomni dataset, respectively. To sum up, the SDTW algorithm can obtain better accuracy
than that of the DTW, LCSS, and EDR. The reason is that the SDTW algorithm introduces the
prediction distance to convert the temporal distance into the spatial distance, considering the
temporal distance factor. Additionally, SDTW introduces the segment-segment distance to improve
the computation accuracy by adjusting the parameters of shape factors.
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5.4. Noise Effect Analysis

To evaluate the robustness of various algorithm, noisy data at different levels is superimposed
into the original trajectory sequence data. The noise rate reflects the deviation points ratio in the
trajectory sequence. When the noise rate is 4 (0 < A < 1), it indicates that the trajectory points of
1004% in the original data have been deviated to a certain extent. It is noted that due to noise
randomness, the experiments are repeated 20 times and the average value is taken to ensure the
accuracy of the results.

In the experiment, the variation of 4 is in the range [0.1, 1] with the step 0.1. The deviation
degree uses a random number. The deviation degrees of most deviation points are greater than the
maximum threshold € in the LCSS and EDR. The other parameters are set to the same value, as in
the experiment 5.3.

Figure 12a,b illustrates the experiment results with the Cross and Labomni datasets, respectively.
The results of the clustering error rate are roughly consistent with the results in experiment 5.3. It can
be seen that the LCSS, DTW, and SDTW exhibit better accuracy than EDR, even in the case of noisy
data. On the other hand, with the increase of the amount of noisy data, the clustering error rates of
all algorithms increase gradually. From Figure 12, the maximum error rate of the LCSS, DTW, and
SDTW is below 0.15 when the noise ratio varies from 0.1 to 1.0, which indicates good robustness to
the noisy data for the above three algorithms. However, EDR exhibits poor performance on the
robustness during the increase of noisy data.
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Figure 12. Comparison of noise effect on the algorithms. (a) Clustering error rates based on the Cross

=)

dataset; and (b) clustering error rates based on the Labomni dataset.

On the other hand, In the Cross dataset, the average change ratio of ER in the LCSS, EDR, DTW,
and SDTW is 23.35%, 14.88%, 14.15%, and 13.64%, respectively. In the Labomni dataset, that is 11.1%,
9.38%, 6.71%, and 4.21%, respectively. EDR and LCSS present poorer robustness than the DTW and
SDTW. The conclusion that the robustness of the LCSS and EDR algorithms is better than the DTW
when the deviation degree is greater than € from [4] is not correct. The above conclusion is similar
with [23]. The SDTW algorithm exhibits the best performance in terms of robustness, which benefits
from the point-segment distance, which decreases the effect of sampling methods on the accuracy
and also improves the robustness to noise.

5.5. Parameter Effect Analysis

In the SDTW algorithm, @ is an important parameter and determines the weight of the shape
factor in the similarity computation. The experiments evaluate the effect of parameter @ varying
from 0.3 to 20, as listed in Table 1. The experiment dataset is based on Labomni dataset. Two metrics
are used to compute the error rate, AHC and rbr, respectively.
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Table 1. Error rate with various @ values.

0.3 0.5 1 1.5 2 2.5 3 3.5 6 10 20
AHC 0.061 0.019 0.013 0.006 0.006 0.006 0.006 0.007 0.008 0.010 0.010
rbr 0217 0.061 0.009 0.009 0.008 0.009 0.01 0.01 0.01 0.011 0.011

From Table 1 and Figure 13, when the @ value is relatively small, the weight of the shape factor
is quite large, which results in the high error rate. When the @ value lies in the range below 1.0, its
small change will cause a great change in the error rate. When the @ value is larger than 1.0, its
change will make little effect on the results. The results show no large difference with the optimal
results. From the experimental results, the SDTW algorithm can obtain the optimal results with the
appropriate value of parameter @ . Furthermore, the shape factors should be properly optimized,
otherwise, the improper weights of the shape factors may result in poor performance on the error
rate, as shown in Figure 13.
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Figure 13. ER with various @ values.

6. Conclusions

With the rapid development of sensor technology and the popularization of personal smart
devices, GPS sensors are widely used to track moving objects. A trajectory similarity measure is one
of the most important steps in trajectory data mining of human activity and vehicle moving patterns.
Unfortunately, the main similarity measure algorithms with the trajectory data have been found to
be inaccurate, highly sensitive to sampling methods, and have low robustness to the noise data. In
order to solve the above problem, a segment-based dynamic time warping algorithm (SDTW) is
proposed to measure the trajectory similarity. First, the proposed SDTW adopts the point-segment
distance to reduce the sensitivity influence of the trajectory sampling method. Then, considering the
temporal distance factor, SDTW introduces the prediction distance to convert the temporal distance
into the spatial distance. Finally, SDTW introduces the segment-segment distance to improve the
computation accuracy by adjusting the parameters of the shape factors. The experimental results
indicate that the SDTW algorithm can obtain about 57%, 86%, and 31% better accuracy than the LCSS,
EDR, and DTW, respectively. Meanwhile, the SDTW algorithm exhibits better robustness to the noise
than that of the other algorithms.
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