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Abstract: In wireless sensor networks (WSNs), each sensor node can estimate the global parameter
from the local data in distributed manner. This paper proposed a robust diffusion estimation
algorithm based on minimum error entropy criterion with self-adjusting step-size, which are
referred to as diffusion MEE-SAS (DMEE-SAS) algorithm. The DMEE-SAS algorithm has fast
speed of convergence and is robust against non-Gaussian noise in the measurements. The detailed
performance analysis of the DMEE-SAS algorithm is performed. By combining the DMEE-SAS
with diffusion minimum error entropy (DMEE) algorithms, an Improving DMEE-SAS algorithm
is proposed, in non-stationary environment where tracking is very important. The Improving
DMEE-SAS algorithm can avoid insensitivity of the DMEE-SAS algorithm due to the small effective
step-size near the optimal estimator, and obtain a fast convergence speed. Numerical simulations
are given to verify the effectiveness and advantages of these proposed algorithms.

Keywords: robust diffusion estimation; self-adjusting step-size; non-Gaussian noise; wireless sensor
networks

1. Introduction

Distributed estimation has become very popular for parameter estimation in wireless sensor
networks. The objective is to enable the nodes to estimate a vector of parameters of interest from the
observed data. Distributed estimation schemes over adaptive networks can be mainly classified into
incremental strategies [15–17], consensus strategies [18,25], and diffusion strategies [3,4,7,12,19,27]. In
the incremental strategies, data is processed in a cyclic fashion through the network. The consensus
strategies rely on the fusion of intermediate estimates of multiple neighboring nodes. In the Diffusion
strategies, information is processed at all nodes while the nodes communicate with all their neighbors
to share their intermediate estimates. The diffusion strategies are particularly attractive because they
are robust, flexible and fully-distributed, such as the diffusion least mean squares (DLMS) algorithm
[7]. In this paper, we focus on the diffusion estimation strategies.

The performance of distributed estimation degrades severely when the signals are perturbed
by non-Gaussian noise. Non-Gaussian noise may be natural, due to atmospheric phenomena, or
man-made, due to either electric machinery present in the operation environment, or multipath
telecommunications signals [20–22]. Recently, some researchers focus on improving robustness for
non-Gaussian noise of distributed estimation methods. The efforts are mainly directed at searching
for a more robust cost function to replace the MSE cost. To address this problem, the diffusion least
mean p-power (DLMP) based on p-norm error criterion was proposed to estimate the parameters of
the wireless sensor networks [5]. The diffusion minimum error entropy (DMEE) was proposed in
[6]. By DMEE algorithm we refer the adapt-then-combine (ATC) DMEE algorithm in [6]. The DMEE
algorithm achieved improved performance for non-Gaussian noise with the fixed step-size, but it still
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suffers from conflicting requirements between convergence rate and the steady-state mean square
error. A large step-size leads to a fast convergence rate, but a large mean-square error at the steady
state.

In this paper, we incorporate the minimum error entropy criterion with self-adjusting step-size
(MEE-SAS) [8] into the cost function in diffusion distributed estimation. Then we figure out the
diffusion-strategy solutions, which are referred to as the diffusion MEE-SAS (DMEE-SAS) algorithm.
Numerical simulation results show that DMEE-SAS algorithm outperforms DLMS, DLMP and DMEE
algorithms when the noise is modeled to be non-Gaussian noise. We also design an Improving
DMEE-SAS algorithm by using a switching scheme between DMEE-SAS and DMEE algorithms for
non-stationary environment, which tracks the changing estimator very effectively. The Improving
DMEE-SAS algorithm can avoid the small effective step-size of DMEE-SAS algorithm when it close
to the optimal estimator.

We organize the paper as follows. In section 2, we briefly revisit the MEE-SAS algorithm. In
section 3, firstly, we propose the DMEE-SAS algorithm and analyze the mean and mean square
performance for DMEE-SAS algorithm. Then we propose the Improving DMEE-SAS algorithm for
non-stationary scenario. Simulation results are shown in section 4. Finally, we draw conclusions in
section 5.

2. The Review of MEE-SAS Algorithm

A convenient evaluation of the integral operator in the formulation of quadratic Renyi’s entropy
using Gaussian kernel is obtained as follows:

H(e) = − log(
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(ej − ei))

= − log(V(e)).

(1)

Where e = [e1, e2, · · · , eN ] and

Gσ
√

2(ej − ei)=
1

σ
√

2π
exp(− 1

2σ2 (ej − ei)
2).

V(e) =
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(ej − ei) ≤ V(0) =
1

σ
√

2π
.

The information potential V(e) is defined as the argument of the log. The maximum value V(0)
of the information potential will be achieved when e1 = e2 = · · · = eN . The above results are obtained
in the case of batch mode, where the N data points are fixed. For online training methods, we estimate
the parameter using the stochastic information potential given below

V(e) ≈ 1
L

i

∑
j=i−L+1

Gσ
√

2(ei − ej). (2)

Where L is the latest L samples of e.
To minimize the entropy is equivalent to maximize the information potential since the log is a

monotonic function. To maximize the information potential is equivalent to minimize the following
cost function. Therefore, the cost function of MEE-SAS algorithm is

JMEE−SAS(e) = min
w

[V(0)−V(e)]2. (3)
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The MEE-SAS method has shown its ability to achieve faster speed than minimum error entropy
(MEE) method and is robust to outliers. Based on these properties, we develop the diffusion MEE-SAS
algorithms in the next section.

3. Proposed Algorithm

In this section, first, the diffusion MEE-SAS (DMEE-SAS) algorithm is proposed. Second,
the detailed convergence and steady-state analyses of this algorithm are performed. Finally, an
Improving scheme for diffusion DMEE-SAS algorithm is carried out to use in non-stationary scenario.

3.1. Diffusion MEE-SAS Algorithm

Consider a connected wireless sensor networks with K nodes. k ∈ {1, 2, . . . , N} is the node
index and i is the time index. To proceed with the analysis, we assume a liner measurement model as
follows:

dk,i = uT
k,i

w0 + vk,i. (4)

Where w0 is a M× 1 deterministic but unknown vector, dk,i is a scalar measurement of some random
process, uk,i is the M× 1 regression vector at time with zero mean and covariance σ2

u , vk,i is the random
noise signal at time i with zero mean and variance σ2

v . For each node, we have

V(ek,i) =
1
L

i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j) ≤ V(0) =
1

σ
√

2π
. (5)

Where ek,i = dk,i − uT
k,iw. The maximum value V(0) will be achieved when ek,i = ek,j, j = i − L +

1, i− L + 2, · · · , i.
We seek an estimate of w0 by minimizing a linear combination of local information. The

individual local cost function for each node k is calculated as

Jk(w) = ∑
l∈Nk

cl,kE[V(0)−V(el,i)]
2. (6)

Nk denotes the one-hop neighbor set of node k, and {clk} are some non-negative cooperative
coefficients satisfying clk = 0 if l /∈ Nk, 1TC̄ = 1T and C̄1 = 1. Here, C̄ is a N × N matrix with
individual entries {clk} and 1 is a N × 1 all-unity vector. The gradient of the individual local cost
function is given by

∇Jk(w) = ∑
l∈Nk

clkE[(
2

σ2L
)(V(0)−V(ek,i))

i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i)]. (7)

We remove the expectation to generate stochastic gradient updates, then the (7) can be rewritten as

∇ Ĵk(w) = ∑
l∈Nk

clk(
2

σ2L
)(V(0)−V(ek,i))

i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i). (8)

A gradient based algorithm for estimating w0 at each node k can thus be derived as

wk,i = wk,i−1 − µk∇ Ĵk(w)

= wk,i−1 − µk
2

σ2L ∑
l∈Nk

clk[V(0)−V(ek,i)]
i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i).
(9)
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Where µk is a positive step size. Using the general framework for diffusion-based distributed adaptive
optimization [12], an adapt-then-combine (ATC) strategy for diffusion MEE-SAS algorithm can be
formulated as

ϕk,i = wk,i−1 − µk
2

σ2L [V(0)−V(ek,i)]
i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i),

wk,i = ∑
l∈Nk

clk ϕl,i.
(10)

According to (10), the DMEE-SAS algorithm can be seen as a diffusion estimation algorithm with
variable step size µk(i). Where

µk(i) = 2µk[V(0)−V(ek,i)]. (11)

The DMEE-SAS algorithm is described formally in Algorithm 1.

Algorithm 1: DMEE-SAS Algorithm

Initialize: wk,i = 0
for i = 1 : T
for each node k:

Adaptation
µk(i) = 2µk[V(0)−V(ek,i)]

ϕk,i = wk,i−1 − µk(i) 1
σ2 L

i
∑

j=i−L+1
Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i)

Combination
wk,i = ∑

l∈Nk

clk ϕl,i

end for

In the adaption step of DMEE-SAS algorithm, V(0)−V(ek,i) is close to V(0) when the algorithm
starts, and it is close to 0 when the algorithm begins to converge. V(0) − V(ek,i) is always
a non-negative scalar quantity, which can accelerate the rate of convergence and achieve small
steady-state estimation errors. The fast convergence rate and the small steady-state estimation errors
of DMEE-SAS algorithm can be established against non-Gaussian noise in the measurements.

3.2. Performance Analysis

In this section, we analyze the mean and mean-square performance of the DMEE-SAS algorithm.
For tractability of the analysis, here we fous on the case of batch mode. To briefly present
the convergence property of the proposed algorithm in terms of global quantities, the following
notations are introduced: Mτ = diag{µ1(τ)IM, . . . , µK(τ)IM}, Wτ = col{w1,τ , · · ·wK,τ}, w(0) =

col{w0, · · · , w0}, W̃τ = col{w̃1,τ · · · w̃K,τ}, S = col{s1(w0), · · · , sK(w0)}, C = C̄T ⊗ IM. τ denotes
the iteration index.

In order to make the analysis tractable, the followings are assumed:
Assumption 1: The regressor uk,i is independent identically distributed (i.i.d) in time and

spatially independent, and E[uk,i] = 0, Rk = E[uT
k,iuk,i].

Assumption 2: The input noise vk,i is super-Gaussian noise. In addition, vk,i and the regressor
uk,i is independent from each other. we have E[vk,i] = 0 and E[v2

k,i] = ξ2
k .

Assumption 3: The step-sizes, µk(i), ∀k, are small enough such that their squared values are
negligible.
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3.2.1. Mean performance

When we consider the variable step size µk(i) of DMEE-SAS algorithm as a new step size factor,
we can also seek the optimal estimator w0 by minimizing the following individual local cost function

Gk(w) = ∑
l∈Nk

clkE(V(0)−V(el,i)). (12)

Where

V(el,i) =
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(el,i − el,j)

We obtain the first gradient of E(V(0)−V(ek,i)) as follows

gk(w) = E(
1

σ2N2 Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i)]. (13)

The instantaneous implementation for (13) is as follows

ĝk(w) =
1

σ2N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i). (14)

We consider the gradient error caused by approximating the expectations with their instantaneous
values [9]. The gradient error at iteration τ and each node k is defined as follows:

sk(wk,τ−1) = ĝk(wk,τ−1)− gk(wk,τ−1). (15)

Using (10), the update equation of the intermediate estimate can be rewritten as

ϕk,τ = wk,τ−1 − µk(gk(wk,τ−1) + sk(wk,τ−1)). (16)

According to [29], ((ek,i− ek,j)/σ = 0 when w = w0. And the Hessian matrix function Hk(w0) of Jk(w)

is calculated as

Hk(w0) =
∂gk(w)

∂w
|w0

=
∂

∂w
1
σ2 E[Gσ

√
2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i)]

=
1
σ2 E[Gσ

√
2(ek,i − ek,j)(uk,j − uk,i)

T(uk,j − uk,i)−

1
σ2 Gσ

√
2(ek,i − ek,j)(ek,i − ek,j)

2(uk,j − uk,i)
T(uk,j − uk,i)]

=
1
σ2 E[uT

k,iuk,i + uT
k,juk,j]−

1
σ4 E[v2

k,i
+ v2

k,j
]E[uT

k,iuk,i + uT
k,juk,j]

=
2Rk
σ2 −

4ξ2
k Rk

σ4 .

(17)

Based on the Theorem 1.2.1 of [10], we obtain

gk(wk,τ−1) = gk(w0)− (
∫ 1

0
Hk(w0 − xw̃k,τ−1)dx)w̃k,τ−1

= −(
∫ 1

0
Hk(w0 − xw̃k,τ−1)dx)w̃k,τ−1.

(18)
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Where w̃k,τ−1 = w0 − wk,τ−1 is the weight error vector for node k. We assume that the estimate of
each node converges to the vicinity of the unknown vector w0. Therefore w̃k,τ−1 is small enough such
that it is negligible, yielding

gk(wk,τ−1) ≈ −(
∫ 1

0
Hk(w0)dx)w̃k,τ−1

= −Hk(w0)w̃k,τ−1.
(19)

We can also obtain the approximation of the gradient error at the vicinity of w0, which is given by

sk(wk,ø−1) ≈ sk(w0)

= ĝk(w0)− gk(w0)

=
1
σ2

N

∑
i=1

N

∑
j=1

Gσ
√

2(vk,i − vk,j)(vk,i − vk,j)(uk,j − uk,i).

(20)

Substituting (19) and (20) into (16), an approximation of intermediate estimate can be obtained at the
vicinity of

ϕk,τ = wk,τ−1 + µk(τ)(Hk(w0)w̃k,τ−1 − sk(w0)). (21)

By substituting (21) into the second equation of (10), we get the estimate of unknown parameter as
follows

wk,τ = ∑
l∈Nk

clk[wl,τ−1 + µk(i)(Hk(w0)w̃l,τ−1 − sl(w0))]. (22)

Using global quantities defined above gives the update equation for the network estimate vector as

Wτ = C(Wτ−1 + Mτ HW̃τ−1 −MτS). (23)

Where H collects the Hessian matrix across the network into the global vector H =

diag(H1(w0), · · · , HN(w0)). Noting that Cw(0) = w(0), subtraction of both sides of (23) from w0 gives

W̃τ = C(IMN −Mτ H)W̃τ−1 + CMτS. (24)

In view of assumptions A1 and A2, W̃τ , H and C are independent of each other. Hence taking
expectation of both sides of (24) leads to

E[W̃τ ] = E[C](IMN − E[Mτ ]H)E[W̃τ−1] + CMτE[S]. (25)

We can easily find that E[S] = col{E[s1(w0), · · · , sN(w0)]} = 0, the equation (25) has therefore been
reduced to this form

E[W̃τ ] = E[C](IMN − E[Mτ ]H)E[W̃τ−1]. (26)

From (26), we observe that in order to be stable for the Algorithm 1 in the mean sense, the matrix
E[C](IMN − E[Mτ ]H) should be stable. All the entries of E(C) are non-negative and all the rows of it
add up to unity. Therefore, to ensure the stability in the mean, it should hold that

|λmax{IMN − E[Mτ ]H}| < 1. (27)

We use the notion λmax(A) to denote the maximum eigenvalue of a Hermitian matrix A. The
algorithm will therefore be stable in the mean if

∞

∏
τ=0

[IMN − E[µk(τ)]Hk(w0)]→ 0.
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Thus, we note that a sufficient condition for unbiasedness is

0 < E[µk(τ)] <
2

λmax{Hk(w0)} ⇔ 0 < µk <
1

λmax{Hk(w0)}E[V(0)−V(ek,τ)]
. (28)

3.2.2. Mean-square Performance

In order to make the presentation clearer, we shall introduce the following notation

Γ = (IMN−Mτ H)CTΣC(IMN−Mτ H).

Performing weighted energy balance on both sides of (24), and taking expectations gives

E[
∥∥W̃τ

∥∥2
Σ] = E[

∥∥W̃τ−1
∥∥2

Γ
] + E[ST MτCTΣCMτS]. (29)

Where Σ is an arbitrary symmetric nonnegative-definite matrix, and the notion ‖a‖2
Σ = aTΣa

represents a weighted vector norm for any Hermitian Σ > 0. By defining

r = vec{E[Γ]}, ` = vec{Σ}.

Where the vec(.) notation stacks the columns of its matrix argument on top of each other. We can
modify (29) to

E[
∥∥W̃τ

∥∥2
` ] = E[

∥∥W̃τ−1
∥∥2

r ] + E[ST MτCTΣCMτS]. (30)

Using the following relationship of the vectorization operator and the Kronecker product [28]:

vec(ABC) = (CT ⊗ A)vec{B}.

We can obtain that
r = φ`. (31)

Where
φ = E[(IMN−E[Mτ ]H)⊗ (IMN−E[Mτ ]H)]β. (32)

β = E[CT ⊗ CT ].

Considering Assumption 3, we can approximate (32) as

φ ≈ (IM2 N2 − IMN ⊗ E[Mτ ]H − E[Mτ ]H ⊗ IMN)β

= (IMN−E[Mτ ]H)⊗ (IMN−E[Mτ ]H)β.
(33)

Using the following relationship of the vectorization operator and the matrix trace [28]:

Tr{ATB} = vecT(B)vec(A).

We find that
E[ST MτCTΣCMτS] = vecTQβθ. (34)

Where
Q = E[MτSST Mτ ].

Substituting (31) and (34) into (30), we can then reformulate recursion as follows

E[
∥∥W̃τ

∥∥2
` ] = E[

∥∥W̃τ−1
∥∥2

φθ
] + vecTQβθ. (35)
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It is known that (35) is stable and convergent if the matrix φ is stable [11]. Form the equation

βT1M2 N2 = E[(C⊗ IM)1MN ⊗ (C⊗ IM)1MN ] = 1M2 N2 .

We know that all the entries of β in (34) are non-negative and all its columns sum up to unity. Using
the property λ(A⊗A) = λ2(A), the stability of φ has the same conditions as the stability of IMN −
E[Mτ ]H. Therefore, we choose the step size in accordance with (28) which can keep the DMEE-SAS
stable in the mean-square sense.

3.3. An Improving Scheme for DMEE-SAS Algorithm

The too small effective step size near the optimal estimator will hinder the tracking ability of
DMEE-SAS algorithm in non-stationary environment. In non-stationary environment, the optimal
estimator has small changes. A random-walk model is commonly used in the literature to describe
the non-stationarity of the weight vector [11].

Therefore, we try to combine the DMEE-SAS algorithm with DMEE algorithm [6] in
non-stationary environment where tracking is important. DMEE-SAS algorithm should be used
due to the faster convergence when the algorithm start, and DMEE algorithm should be used when
algorithm begins to converge. We use Lyapunov stability theory [1] to analyze the switching time for
each node.

Lyapunov energy function is a method for analyzing the convergence characteristics of dynamic
systems. The cost function can be viewed as a Lyapunov energy function. For DMEE-SAS algorithm,
the continuous-time learning rule is

ẇ = −µDMEE−SAS
∂Jk(w)DMEE−SAS

∂w
. (36)

The temporal dynamics for the Lyapunov energy that describes the DMEE-SAS algorithm can be
obtained as follows

J̇k(w)DMEE−SAS = ∑
l∈Nk

clk(−2)[V(0)−V(el,i)]
∂V(el,i)

T

∂w
ẇ

= ∑
l∈Nk

clk(−4)µk,DMEE−SAS[V(0)−V(el,i)]
2
∥∥∥∥∂V(el,i)

∂w

∥∥∥∥2

.

(37)

The individual local energy function for DMEE algorithm can be written as

Jk(w)DMEE = − ∑
l∈Nk

clkV(el,i). (38)

For DMEE algorithm, the continuous-time learning rule is

ẇ = −µDMEE
∂Jk(w)DMEE

∂w
. (39)

In a similar way, the temporal dynamics for the Lyapunov energy that describes the DMEE
algorithm can be obtained as follows

J̇k(w)DMEE = ∑
l∈Nk

clk
∂V(el,i)

T

∂w
ẇ

= ∑
l∈Nk

clk(−µl,DMEE)

∥∥∥∥∂V(el,i)

∂w

∥∥∥∥2

.

(40)
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The switching time is determined as

∣∣ J̇k(w)DMEE−SAS
∣∣ > ∣∣ J̇k(w)DMEE

∣∣⇔ V(el,i) < V(0)− 1
2

√
µl,DMEE

µl,DMEE−SAS
(l ∈ Nk). (41)

When the condition of (41) is met, we should switch from DMEE-SAS algorithm to DMEE-SAS
algorithm. We introduce the following auxiliary variable

sk,i =

{
1, V(ek,i) < V(0)− 1

2

√
µk,DMEE

µk,DMEE−SAS

0, otherwise

This yields the following algorithm, which refer to as the improving DMEE-SAS algorithm:

ϕk,i = wk,i−1 − sk,iµk,DMEE−SAS
2

σ2L [V(0)−V(ek,i)]
i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i),

−(1− sk,i)µk,DMEE
1

σ2L

i
∑

j=i−L+1
Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i)

wk,i = ∑
l∈Nk

clk ϕl,i.

(42)
For the purpose of clarity, we summarize the procedure of the Improving DMEE-SAS algorithm

in Algorithm 2.

Algorithm 2: Improving DMEE-SAS Algorithm

Initialize: wk,i = 0
for i = 1 : T

for each node k:
Adaptation
each node calculates the switching time using (41).
each node updates intermediate estimate ϕk,i according to the first equation of (42).
Combination
wk,i = ∑

l∈Nk

clk ϕl,i

end for

4. Simulation results

20 sensors are randomly placed in a square 100 × 100 shown in Fig. 1. The communication
distance is set as 50. In this paper, the performance of the steady-state network MSD [7] is adopted
for performance comparison. All of the performance measures are averaged over 100 trials.

We employ the super-Gaussian distribution as the noise model in our simulations. We
generate the noise from the zero-mean generalized Gaussian distribution (GGD)of pdf qV(v) =∝
exp(− |v|p),where p is a positive shape parameter of GGD [26]. We set p = 0.6 to make the noise
distribution be super-Gaussian.

a) In stationary environment
Here, the proposed DMEE-SAS algorithm performance is compared with that of some existing

algorithms in the literature. We assume the communication link is ideal link. The unknown parameter
vector w0 is set to 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
]T .

We set the window length L = 8 and kernel size σ=1.5 for both DMEE and DMEE-SAS
algorithms. Further, the p is 1.2 for DLMP algorithm. The steady state MSD curves are plotted in
Fig. 2. It is found that DMEE-SAS algorithm is robust to the non-Gaussian noises and performs
better than DLMP algorithm [5] and DLMS [7]. DMEE-SAS algorithm achieves better convergence
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Figure 1. Network topology.

performance than the DMEE [6] algorithm when the DMEE-SAS and DMEE algorithms achieve
comparable performance.
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−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Times i

M
S

D
(d

B
)

 

 

DLMP

DMEE−SAS

DMEE

DLMS

Figure 2. Transient MSD curve.

b) In non-stationary environment
Here, the simulations are carried out in the same environments as those shown in 5.1 subsection,

except for the optimal estimator w0. We compare the proposed Improving DMEE-SAS algorithm with
other algorithms.

Motivated by [14], we assume a time-varying w0 of length 6 as follows:

w0
i =

1
2
[a1,i, a2,i, a3,i, a4,i, a5,i, a6,i]

T .
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Where ak,i = [cos(wi + (k−1)
2 π)] for k = 1, 2, 3, 4, 5, 6 and w = π

3000 .
The unknown link is assume to change at time 6000. In Fig. 3, the Improving DMEE-SAS

algorithm can detect the weight vector change and the performance of it is better than DLMS
algorithm. We observe that Improving DMEE-SAS and DMEE algorithms achieve comparable
performance and Improving DMEE-SAS achieves better convergence performance than the DMEE
algorithm. When compared with DMEE-SAS algorithm, the Improving DMEE-SAS algorithm
exhibits a significant improvement in performance when the estimate near to optimal estimator.
Improving DMEE-SAS algorithm achieves a low MSD and fast rate of convergence in the
non-stationary environment.
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−15

−10

−5

0

5

10

Times i

M
S

D
(d

B
)

 

 
DMEE−SAS

Improving DMEE−SAS
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Figure 3. MSD learning curves in a non-stationary environment.

5. Conclusions

In this paper, a robust diffusion estimation algorithm with self-adjusting step-size is developed
which called DMEE-SAS algorithm. The mean and mean square convergence analysis of this
new algorithm are carried out, and a sufficient condition for ensuring the stability is obtained.
Simulation results illustrate that DMEE-SAS algorithm can achieve better performance than the
DLMS, robust DLMP, and DMEE algorithms in non-Gaussian noise scenario. Besides, we propose the
Improving DMEE-SAS algorithm using in the non-stationary scenario where the unknown parameter
is changing over time. The Improving DMEE-SAS algorithm combined the DMEE-SAS WITH DMEE
algorithms and it can avoid the small effective step-size of DMEE-SAS algorithm when close to the
optimal estimator.
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