- 1 Article
- 2 Changes of Reference Evapotranspiration and Its

3 Relationships to Dry/Wet Conditions Based on

4 Aridity Index in Songnen Grassland, Northeast

5 China

- 6 Qiyun Ma¹, Jiquan Zhang^{1,*}, Caiyun Sun¹, Enliang Guo¹, Feng Zhang¹ and Mengmeng Wang²
- ¹ Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun
 130024, P.R. China; maqy315@nenu.edu.cn (M.Q.); 437621315@qq.com (S.C.); guoel675@nenu.edu.cn (G.E.);
 ⁹ zhangf093@nenu.edu.cn (Z.F.)
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China;
 shinegarden121@163.com (W.M.)
- 12 * Correspondence: zhangjq022@nenu.edu.cn (Z.J.); Tel.: +86-135-9608-6467
- 13
- 14

15 Abstract: Reference evapotranspiration (ET₀) plays an irreplaceable role in regional dry/wet 16 conditions under the background of climate change. Based on the FAO Penman-Monteith method 17 and daily climate variables, ET₀ was calculated for 22 stations in and around Songnen Grassland, 18 northeast China, during 1960-2014. The temporal and spatial variations of ET₀ and precipitation (P) 19 were comprehensively analyzed at different time scales by using the Mann-Kendall test, Sen's slope 20 estimator, and linear regression coupling with break trend analysis. Sensitivity analysis was used 21 to detect the key climate parameter attributed to ET₀ change. Then, the role of ET₀ in regional 22 dry/wet conditions was discussed by analyzing the relationship between ET₀, P and aridity index 23 (AI). Results shown a higher ET_0 in the southwest and a lower in the northeast, but P was opposite 24 to that of ET₀. Evidently decreasing trend of ET₀ at different time scales was detected in almost the 25 entire region, and the significant trend mainly distributed in the eastern, northeastern and central. 26 For the whole region, sensitivity analysis indicated decreasing trend of ET₀ was primarily attributed 27 to relative humidity and maximum air temperature. The positive contribution of increasing 28 temperature rising to ET₀ was offset by the effect of significantly decreasing relative humidity, wind 29 speed and sunshine duration. In addition, the value of ET₀ shown higher in drought years and lower 30 in wet years.

- 31 **Keywords:** reference evapotranspiration; climatic change; drought/wet; Songnen Grassland
- 32

33 1. Introduction

34 Climate change becomes an indisputable fact, and it may accelerate hydrological cycle and 35 redistribute global water resources [1]. Researches on climate change were identified not only in 36 isolated temperature or precipitation, but also on integrated parameters [2], like reference 37 evapotranspiration (ET₀). *ET₀* is one of the vital components of hydrological cycle and controls energy 38 and mass exchange between terrestrial ecosystems and atmosphere [2, 3], influenced by many factors 39 including climate factors, crop factors, environmental conditions and management [4]. Changes in 40 ET₀ would affect agricultural production, water resource programming and irrigation scheme. Under 41 present global warming and climate change conditions, to identify the spatial and temporal variation 42 and to determine the dominant climatic variables affecting ET₀ trends are significant for revealing the 43 impacts of climate change on hydrologic cycle. In addition, it can be helpful in determining 44 appropriate adaptation measures for mitigating the potential damage from climate change bad effects eer-reviewed version available at Water 2017, 9, , 316; doi:10.3390/w90503

2 of 15

45 [5-7]. However, relationship between changing ET₀ and dry/wet tendency is not quite clear yet, but46 it is crucial for water resource management.

47 Studies that investigate changes in climate factors have yielded mixture of results and 48 conclusions about the trends of ET₀ for specific locations during last decades. Contrary to the general 49 expectations that increase in temperature would lead to an increase in evapotranspiration, some 50 previous studies concluded that evaporation have diminished in the last decades [2]. In the upper 51 and mid-lower Yangtze River basin, Wang, et al. [1] reported decreasing trend in ET₀ during 1961-52 2000 based on daily data of 115 meteorological stations. Irmak, et al. [8] found over 116-year period 53 there was a significant decreasing in ET₀ in the Platter river basin, USA. The same decline trends also 54 found in other regions throughout the world such as Canadian, New Zealand and India [9-11]. ETo 55 has identified an increasing trend in some regions for the same period, however, such as Iran, 56 Northern Eurasia, and parts of Romania [12-14].

57 Being a typical farming-pastoral ecotone, located in the central part of northeast China, Songnen 58 Grassland have experienced highly spatial and temporal variability in ET₀ and precipitation. This 59 makes the management of water resources difficult in the region. However, to the best of our 60 knowledge, there was no comprehensive study of the relationships between changes in ET₀ and 61 dry/wet conditions has been done, and especially, the sensitivity of ET₀ to climatic variables has not 62 been done in this region. Water is the lifeline for the socioeconomic development of Songnen 63 Grassland, because agriculture and animal husbandry, which heavily depend on precipitation and 64 irrigation, are the pillar industry in the area. Therefore, understanding ET₀ trend and its role in 65 regional dry/wet conditions are important to address water shortage in this region and give a 66 scientific basis for regional water resources management.

67 In this case, the objectives of this study were (1) to evaluate spatial distribution of the ET_0 and 68 precipitation at different time scales in Songnen Grassland over the period of 1960-2014; (2) to 69 investigate temporal variability of ET₀ by using the Mann-Kendall test and liner regression coupling 70 with break trend analysis and the slopes of trend lines using the Sen's slope estimator; (3) to analyze 71 temporal trends of the climatic parameters needed to calculate ET₀, and the sensitivity and its trends 72 of ET_0 to the climatic parameters by sensitivity analysis method; (4) to explore the role of changing 73 ET₀ in regional drying or wetting conditions based on AI index. Results of this study will improve 74 our understanding the impact of climate change on hydrological process and agriculture irrigation 75 management.

76 2. Materials and Methods

77 2.1. *Study area*

78 Songnen Grassland is located in central northeast China. It lies from 43°30' N to 48°05' N and 79 from 122°12′ E to 126°20′ E, and covers an area of approximately 22,350,000 km² (Fig. 1). Generally, it 80 is distributed in the meadow steppe belt of China and is the important grassland in Eurasian steppe 81 zone. The region is more dominated by temperate continental monsoon climate, with four distinct 82 seasons: quite dry, windy springs, warm, rainy summers, sunny, mild autumns, and often long, 83 freezing and dry winters. Mean annual temperature ranges from 1.9 °C in the southwest to 6.2 °C in 84 the northeast region, while the mean annual precipitation amount varies from 350 mm in the 85 southwest to 500 mm in the northeast region. Meanwhile, the mean annual amount of evaporation is 86 roughly two or three times than precipitation.

Songnen Grassland forms a typically agricultural area at the east and an agro-pastoral transition zone at the west region, determined by various physical geographical features and regional climatic differences. The current ecological environment tend to be deteriorated due to the recent and ongoing climate change and land use change in the region. Since the agriculture and animal husbandry development are the main priorities within the general economic strategy of the region, investigation on changes in ET₀ and its role in regional dry/wet conditions are needed for agriculture managers and stakeholders.

94

95 Figure 1. Location of Songnen Grassland in China and meteorological stations considered.

96 2.2. *Climate data and quality control*

97 Climate data from 21 meteorological observatory stations is provided by the National 98 Meteorological Information Centre of China, including daily observations of maximum air 99 temperature (Max T, °C), minimum air temperature (Min T, °C), average air temperature (Ave T, °C), 100 average relative humidity (Ave RH, %), wind speed (Win S, m/s), sunshine duration (Sun H, h) and 101 precipitation (P, mm), for the period of 1960-2014. Regional of seasonal, growing season of vegetation 102 (from April to October) and annual values of these climatic variables are then calculated by the 103 weighted average or sum method. The weight of every station is obtained by Thiessen polygon 104 method which assigns weight in proportion to the study area that is closest to that station. Thermic 105 seasons are considered as winter that contains December, January and February; spring: March, April 106 and May; summer: June, July and August; and autumn: September, October and November.

107 The chosen meteorological stations are showed in Figure 1. They are all distributed inside or 108 adjacent the study area in order to cover the entire region. All selected stations have good-quality 109 data and meet the QA/QC requirements, and the missing data was substituted with the 110 corresponding long-term mean value.

111 2.3. *Methods*

127

112 2.3.1. Calculation of Reference Evapotranspiration (ET₀)

113 The FAO-56 Penman-Monteith (FAO-PM) equation was recommended as the sole and global 114 standard method for ET₀ calculation [4, 15]. The method had been widely verified its accuracy and 115 reliability under various climatologic zones around the world [16-18]. Accordingly, the FAO-PM 116 method was used to estimate daily ET₀ in this study, and subsequently seasonal, growing season and

117 annual ET₀ values were derived from daily values. The FAO-PM equation was expressed as:

118
$$ET_{0} = \frac{0.408\Delta(R_{n} - G) + \gamma \frac{900}{(T + 273)}U_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34U_{2})}$$
(1)

119 where ET_0 is reference evapotranspiration (mm/d), Δ is the slope of the saturation vapour pressure 120 curve at a given air temperature (kPa/°C), R_n is the net radiation at the crop surface (MJ/(m²•d)), *G* 121 is the soil heat flux density (MJ/(m²•d)), γ is the psychrometric constant (kPa/°C), *T* is the mean 122 daily air temperature at 2 m height (°C), U_2 is wind speed at 2 m height (m/s), e_s is saturation 123 vapour pressure (kPa), e_a is actual vapour pressure (kPa), and ($e_s - e_a$) is the saturation vapour 124 pressure deficit (kPa).

125 R_n is the difference between the incoming net shortwave radiation (R_{ns}) and the net outgoing 126 longwave (R_{nl}) . R_{ns} is calculated as

$$R_{ns} = (1 - \lambda) R_s \tag{2}$$

where R_s is the incoming solar radiation (MJ/(m²•d)) and λ (=0.23) is the albedo of the hypothetical grass reference crop (dimensionless). And it was estimated based on sunshine duration record according to the calibration equation by Croitoru, et al. [2]. At the same time, R_{nl} is given by

131
$$R_{nl} = \sigma \left[\frac{T_{\max,K}^{4} + T_{\min,K}^{4}}{2} \right] \left(0.34 - 0.14\sqrt{e_a} \right) \left(1.35 \frac{R_s}{R_{so}} - 0.35 \right)$$
(3)

132 where σ is Stefan–Boltzmann constant (=4.903×10⁹ MJ/(K⁴•m²•d)); $T_{max,K}$ is the maximum absolute 133 temperature during the 24-h period (K=°C+273.16); $T_{min,K}$ is the minimum absolute temperature 134 during the 24-h period (K=°C+273.16); and, R_{so} is the clear - sky radiation (MJ/(m²•d)). All the 135 variables in Eq. (1) were calculated using the standard procedure outlined by Allen, et al. [15]. 136 Calculation of ET_0 was based on CROPWAT 8.0 software developed by FAO during 1960-2014.

137 2.3.2. Trend analysis

138 To calculate trends, six data sets including one annual, four seasonal and one growing season 139 were conducted for each meteorological station. In this study, the Mann-Kendall (MK) test, a non-140 parametric test, recommended by the World Meteorological Organization, was used to detect trends 141 [19, 20]. The MK test had been widely used for trend detecting in hydrologic and climatic research 142 owing to it does not need to conform any distribution form for the data and can allow the missing 143 data [21-23]. Besides, Sen's slope estimator was used to measure the magnitude of the trend [24]. The 144 MK test and Sen's slope estimator calculations for various time series of SPI and ET_0 were performed 145 using the Excel-based template MAKESENS 2.0 beta, developed by researchers of Finnish 146 Meteorological Institute [17].

147 2.3.3. Sensitivity analysis

148 Sensitivity analysis was a quantitative description method of the important degree of input 149 variables to the output [25]. In present study, it was performed to evaluate the effect of climatic 150 variables on ET₀. Because of the different approaches used in conducting ET₀, there were no standard 151 or common procedure for carrying out the sensitivity analyses on ET₀ [16, 26]. This study applied the 152 sensitivity analysis method which has the advantages of simple procedures and clear outcome was 153 developed from Li and T J [27]. The measure S_x is the sensitivity of the FAO-PM method to a 154 meteorological parameter, defined as:

155
$$S_{xij} = \frac{\left| ET_0 \left\langle 1.1xij \right\rangle - ET_0 \left\langle 0.9xij \right\rangle \right|}{ET_0 \left\langle xij \right\rangle}$$
(4)

where x_i is one of a meteorological parameters needed calculation of ET_0 , j is the parameter at year, and x_{ij} , $\langle 1.1x_{ij} \rangle$ and $\langle 0.9x_{ij} \rangle$ are the estimated ET_0 when the parameter x_i equals its reference value or is $1.1x_{ij}$ and $0.9x_{ij}$ at j year, respectively.

159 2.3.4. Aridity index (AI index)

Aridity was usually expressed as a comprehensive function of precipitation, temperature, and/or potential evapotranspiration, and reflects the level of meteorological drought [28]. There are many AI indexes have been proposed. Among these indexes, following Thornthwaite [29] and Huo, et al. [3] defined the AI index as the ratio of difference between *P* and ET_0 to ET_0 . The definition can express the arid degree in any arid or semiarid region, and can be understood as the dearth of water availability at the surface and subsurface levels.

166 In this study, based on the previous study, the AI value was calculated as:

 $AI = \left(ET_0 - P\right) / ET_0 \tag{5}$

where ET_0 is reference evapotranspiration, and *P* is precipitation. If AI be equal to or close to 1, it indicate that there is no precipitation and aridity in the highest. In contrast, if the precipitation be equal to or higher than ET_0 , the AI will be equal to 0 or be negative. The AI values of growing season eer-reviewed version available at *Water* 2017, 9, , 316; doi:10.3390/w9050

5 of 15

at each station were calculated, and the average AI in the whole Songnen Grassland was expressedby the arithmetic average from stations in and around the region.

173 2.3.5. Spatial interpolation

For analyzing of spatial patterns of trends and its magnitudes, the method of IDW was used to the whole region. This method was a simple deterministic interpolation, which was extensively used for mapping the spatial extent of climatic and hydrological point data [30]. All the procedures were made using ArcGIS 10.2 software.

178 3. Results

179 3.1. Spatial distribution of ET₀, P and their difference over the period 1960-2014

180 The spatial distributions of ET₀ and P at annual, seasonal and growing season from 1960 to 2014 181 were shown in Fig. 2, and their difference was displayed using the IDW interpolation as well. Fig.2 182 shows strong variability and marked difference between the northeastern ranges and the 183 southwestern region. From the visual inspection, it was observed that the spatial pattern of high and 184 low values of annual ET₀, P and the difference all shows similarities to other time scales. The spatial 185 pattern of ET₀ and the difference indicated higher values corresponding to the southwest and lower 186 values was distributed in the northeast areas, but precipitation was opposite, which the minimum 187 value was in western and the highest value was in eastern. Generally, ET₀ value was more than 188 double the precipitation amounts at all of the time scales considered, especially during annual and 189 growing season.

190 For ET₀, the average of annual and growing season increased from northeast to southwest from 191 less than 850 and 750 mm respectively, to more than 1100 and 980mm respectively. And seasonally, 192 it presented that all of stations showed higher ET₀ in summer, followed by spring, autumn and 193 winter. For P, the value of annual and growing season increased from western to eastern, ranges from 194 381 to 577 mm and from 352 to 511 mm respectively, and both the minimum was found in Tongyu 195 and the maximum was in Changchun. Seasonally, higher the amount of precipitation was exhibited 196 during summer, followed by autumn, spring and winter. For their difference, the maximum was 197 distributed in the southwest at every time scales (Fig.2), especially at annual, that the difference has 198 reached 700-800 mm in southwestern region. From seasonal perspective, the spring was experienced 199 the maximum value of the difference ranged from 215 to 350 mm, followed by summer, autumn and 200 winter.

203 Figure 2. Spatial distribution of ET₀, P and their difference for the period 1960-2014.

204 *3.2. Temporal variations of ET*⁰

To calculate temporal trends of ET₀ for different time scales, the linear regression coupling with break trend analysis as well as the MK test and the Sen's slope estimator were applied for the period 1960-2014. The period of break trend analysis was chosen every 30 years, which was considered as the climatological normal according to the recommendation of WMO [31]. In this paper, the climatological normal ranged from 1960 to 1989, from 1970 to 1999, from 1980 to 2009 and from 1985 to 2014, respectively. The values of the linear regression coupling with break trend analysis at 21 were shown in Fig. 3, and those of the MK test and Sen's slope estimator were shown in Table 1.

212 Fig. 3 indicated an evidently decreasing trend in ET₀ at every time scales, especially in annual, 213 growing season and spring which all had passed the significance test at the 0.05 level. Besides, it was 214 shown that almost all considered time scales had experienced decreasing trend of ET₀ at every 215 climatological normal with a rate ranging from -2.415 to -0.003 mm/a. The dropping at the sharpest rate was detected from 1970 and 1999, and the maximum was in growing season (-2.415 mm/a). 216 217 However, it was noteworthy that the region was experienced an increasing trend of ET_0 in all time 218 scales during 1980-2009, with a rate ranging from 0.085 to 0.296 mm/a, except in spring and winter, 219 although the increasing trend was not significant.

220 The results of trend analysis were almost identical with the nonparametric methods exhibited in 221 Table 1. It was showed that ET₀ had a decreasing trend in different time scales at the 21 stations inside 222 and around the region. More than 90 % for the total number of analyzed stations at every time scales 223 were reported decreasing trends except during autumn, and among them 50 % were statistically 224 significant during annual, growing season and spring. Increasing trends were found in less than 10 225 % of data sets, especially during autumn of approximately 38 %, but none of them were significant. 226 In terms of magnitude of the trend, the highest decrease of ET₀ was recorded in Haerbin (around the 227 region) and Fuyu City (inside the region) at annual, with an average decrease rate of -4.45 and -228 2.86mm/a, respectively. On the basis of this results, there is no doubt that Songnen Grassland 229 experienced an evidently decrease of ET₀ in the last 55 years. The variations of ET₀ rates may mitigate 230 drought impact on local vegetation and agricultural production.

Peer-reviewed version available at Water 2017, 9., 316; doi:10.3390/w90503

7 of 15

Figure 3. Linear trend and break trend analysis (for every 30 years) of ET₀ from 1960 to 2014.

235	Table 1.	Results of	the MK	test and	Sen's sl	ope es	timator	for E	To at	different	time scales.
-----	----------	------------	--------	----------	----------	--------	---------	-------	-------	-----------	--------------

Station	Annual		Growing season		Spring		Summer		Autumn		Winter	
Station	Ζ	β	Ζ	β	Ζ	β	Ζ	β	Ζ	β	Ζ	β
Keshanª	-2.19*	-1.11	-1.89	-0.78	-2.37*	-0.65	-1.52	-0.38	-0.86	-0.11	-1.89	-0.08
Fuyu ^a	-1.47	-0.86	-1.15	-0.61	-1.48	-0.49	-0.94	-0.35	-0.44	-0.10	-0.66	-0.05
Qiqihaerª	-0.83	-0.41	-0.52	-0.30	-1.28	-0.35	-0.83	-0.27	0.60	0.10	-0.39	-0.04
Mingshuiª	-2.82*	-2.01	-2.82*	-1.65	-2.52*	-0.83	-1.90	-0.74	-1.21	-0.20	-0.66	-0.04
Tailaiª	-2.77*	-1.77	-2.19*	-1.14	-2.48*	-0.74	-1.45	-0.58	-1.73	-0.24	-1.22	-0.13
Andaª	-4.30*	-2.70	-4.17*	-2.23	-2.89*	-0.87	-3.22*	-1.25	-2.69*	-0.46	-1.42	-0.11
Baicheng ^a	-2.61*	-1.71	-2.24*	-1.29	-2.13*	-0.58	-2.08*	-0.66	-0.28	-0.06	-0.54	-0.03
Qian'anª	-3.27*	-1.50	-2.94*	-1.19	-2.86*	-0.67	-1.95	-0.56	-0.16	-0.02	-0.45	-0.04
QianGorlosª	-2.26*	-0.95	-2.27*	-0.83	-1.87	-0.42	-1.33	-0.38	-0.23	-0.04	0.32	0.03
Tongyuª	0.09	0.05	-0.12	-0.05	-0.65	-0.17	0.38	0.10	1.47	0.22	0.34	0.04
Changling ^a	-0.83	-0.40	-1.05	-0.41	-1.21	-0.22	-0.83	-0.23	1.81	0.26	-0.53	-0.08
FuyuCity ^a	-4.98*	-2.86	-4.52*	-2.33	-3.52*	-1.12	-3.51*	-1.21	-2.19*	-0.43	-1.58	-0.15
Changchun ^a	-0.74	-0.40	-0.68	-0.37	-2.04*	-0.60	-0.06	-0.03	1.02	0.17	-0.15	-0.01
Zhalantun ^b	-0.44	-0.14	0.29	0.15	-1.31	-0.30	0.83	0.18	-0.58	-0.10	-0.90	-0.07
Wulanhaote ^b	-1.71	-0.83	-1.23	-0.62	-2.24*	-0.70	-0.29	-0.10	0.12	0.02	-0.56	-0.05
Tongliao ^b	0.83	0.66	0.00	0.00	-0.83	-0.26	-0.16	-0.05	1.93	0.39	0.89	0.15
Beian ^b	-1.03	-0.40	-0.63	-0.24	-1.64	-0.33	-0.38	-0.08	0.04	0.01	-1.01	-0.04
Hailun ^b	-0.89	-0.53	-1.12	-0.58	-1.33	-0.39	-0.95	-0.29	0.41	0.08	-0.37	-0.02
Suihua ^b	-2.50*	-1.47	-2.69*	-1.30	-2.47*	-0.79	-1.78	-0.59	-1.00	-0.20	-0.61	-0.02
Haerbin ^b	-5.36*	-4.45	-5.11*	-3.39	-4.59*	-1.64	-3.48*	-1.50	-4.68*	-1.04	-1.72	-0.19
Shuangliao ^b	-2.86*	-1.91	-2.82*	-1.54	-2.19*	-0.52	-2.89*	-0.89	-2.03*	-0.32	-0.89	-0.13

Peer-reviewed version available at <i>Water</i> 2017 , <i>9</i> , , 316; <u>doi:10.3390/w9050316</u>	Peer-reviewed version	available at <i>Water</i> 2017,	9 316:	doi:10.3390/w9050316
---	-----------------------	---------------------------------	--------	----------------------

											8	3 of 15
Region ^a	-2.23*	-1.28	-2.04*	-1.01	-2.10*	-0.59	-1.48	-0.50	-0.37	-0.07	-0.68	-0.05
Region ^b	-1.74	-1.13	-1.66	-0.94	-2.07*	-0.62	-1.14	-0.41	-0.73	-0.14	-0.65	-0.05
Region ^{a,b}	-2.83*	-1.32	-2.57*	-1.04	-2.41*	-0.59	-1.77	-0.53	-0.65	-0.10	-0.45	-0.06

236 The Z value of more than 1.96 represent significant upward trend, while values less than -1.96 show a decreasing 237 trend at $\alpha < 0.05$. a represents station in Songnen Grassland; b represents station around Songnen Grassland;

a,b represents station in and around Songnen Grassland; * represents significant trend at the 0.05 level.

239 *3.3. Spatial variations of ET*⁰

240 The spatial variations of ET₀ at different time scales from 1960 to 2014 were displayed in Fig. 4. 241 All considered time scales had experienced similar changing pattern, which presented a majority of 242 time series of ET₀ have witnessed downward trends in the whole region, except during autumn. The 243 most stations with significant decreasing trend of ET₀ were mainly distributed in the eastern, 244 northeastern and central region frequently occurred at annual, spring and growing season. These 245 region were distributed the highest decrease rate of ET₀ ranged from -0.2 to -4.0 mm/a as well. 246 However, the positive changes were mainly recorded in the southwestern and southern regions at 247 autumn and winter, but they were statistically insignificant with the increasing rate ranging from 248 0.01 to 0.40 mm/a (Table 1). Overall, the spatial changing pattern of ET₀ in Songnen Grassland is that 249 a significant downward trend across the central part region with a gradually reduced intensity from 250 the eastern parts to the western areas.

252

253 Figure 4. Spatial distribution of trends and its magnitude in ET₀ over the period 1960-2014.

254 3.4. Changes in the climatic parameters

The changes in basic climatic parameters that played a considerable role in ET₀ change have been investigated on 21 stations across Songnen Grassland during 1960-2014. With the increase of air temperature (Ave T, Max T and Min T), region averaged annual of Ave RH, Sun H and Win S all significantly decreased during the study period (Fig. 5). All the climatic parameters experienced eer-reviewed version available at Water **2017**, 9, , 316; <u>doi:10.3390/w90503</u>

9 of 15

consonant changes at every climatological normal. All the increase trends of Ave T, Max T and MinT and the decrease trends of Sun H and Win S had passed the significance test at 0.01 level, while the

Ave RH had passed the significance test at 0.05 level.

262 The MK test, then, was used for detecting the statistical significant trend at 21 stations in various 263 time scales, and the results were shown in Fig. 6. The percentage value of the statistical significant increasing ($\alpha = 0.05$) was 100 % for Ave T and Min T at all considered time scales, except during 264 265 winter 95 % in Min T and more than 70 % in Ave T. In the case of Sun H, all of the series illustrated 266 downward trends, especially at annual, among them between 52 % and 71 % were statistically 267 significant. As for Win S, significant decreasing trends were found in roughly 100 % at all the 268 analyzed locations. For Ave RH, an overwhelming majority of data series have seen negative trends, but in spring the positive trends were detected more than 50 %. 269

Figure 5. Linear trend and break trend analysis (for every 30 years) of climatic parameters from 1960 to2014.

276

277 Figure 6. Frequency of climatic parameters trends in Songnen Grassland over the period 1960-2014 (%).

278 3.5. Attribution of climatic variables

Results of the sensitivity analysis for annual ETo to the climatic variables were performed in Fig. 279 280 7 and Table 2 for the 13 stations (inside the Songnen Grassland). It can be seen from Fig. 7 that the 281 Ave RH and Max T were the most sensitive variables in change of ET₀ over the whole region, followed 282 by Win S, Sun H, Min T and Ave T. However, there was a little difference in the northeast region at 283 Keshan and Mingshui stations, mainly because there have a higher elevation and distributed small 284 hills. The most sensitive climatic variables at this two stations was Ave T and Min T, respectively. 285 The summary of dominant climatic variables and the temporal trends of their sensitivities were given 286 in Table 2. Results indicated that Ave RH shown a significant decreasing trend except in Anda station 287 which shown a significant increasing trend, and trend of Max T was the same as Ave RH that 288 experienced significant downward trend at almost the whole region besides significant upward 289 trends in Changchun. For Win S and Min T, a majority of stations witnessed a significant increasing 290 trend. The Sun H shown the same temporal trend with Win S and Min T, but in the southwest region, 291 Tongyu and Changling, shown no significant decreasing trend. As for the Ave T, results shown it 292 had slight impact on changing ET₀ in Songnen Grassland, expect in Keshan. In short, the sensitivity 293 of Ave RH, Max T, Ave T and Min T experienced a significant decreasing trends, whereas that of Win 294 S and Sun H shown a significant increasing trends in the whole region.

296 Figure 7. Spatial distribution of average sensitivity in annual comparison of various climatic variables.

297

Table 2. Summary of dominant climatic variables that caused changes in ET₀ at the inside stations.

Station			Order a	nd trend	l of impo	rtance fo	or the clin	natic va	riables in	EΤo		
Keshan ^a	Ave T	-5.55*	Ave RH	-3.54*	Max T	-3.59*	Win S	-0.81	Sun H	3.85*	Min T	0.94
Fuyuª	Ave RH	-2.38*	Max T	-3.17*	Sun H	2.06*	Min T	1.56	Win S	0.07	Ave T	1.10

Peer-reviewed version available at Water 2017. 9., 316: doi:10.3390/w9050

												11 of 15
Qiqihaerª	Ave RH	-4.56*	Max T	-4.15*	Win S	1.31	Sun H	2.06*	Min T	4.24*	Ave T	0.00
Mingshuiª	Min T	-6.90*	Ave RH	-3.96*	Max T	-4.85*	Win S	0.64	Sun H	1.51	Ave T	0.00
Tailai ^a	Ave RH	-3.89*	Max T	-3.12*	Win S	4.02*	Sun H	1.29	Min T	3.66*	Ave T	0.00
Andaª	Ave RH	2.83*	Max T	-3.56*	Win S	0.20	Sun H	4.07*	Min T	0.40	Ave T	0.00
Baicheng ^a	Ave RH	-3.05*	Max T	-3.03*	Win S	1.19	Sun H	1.80	Min T	2.08*	Ave T	0.00
Qian'an ^a	Ave RH	-2.90*	Max T	-2.87*	Win S	2.53*	Sun H	0.28	Min T	1.68	Ave T	0.00
Qian Gorlos ^a	Ave RH	-6.27*	Max T	-4.66*	Win S	0.96	Sun H	3.53*	Ave T	-4.72*	Min T	2.31*
Tongyuª	Ave RH	-2.95*	Max T	-1.74	Win S	3.03*	Sun H	-0.15	Min T	1.06	Ave T	0.00
Changling ^a	Ave RH	-3.27*	Max T	-2.63*	Win S	4.01*	Sun H	-1.26	Min T	2.42*	Ave T	0.00
Fuyu Cityª	Ave RH	-5.62*	Max T	-4.37*	Win S	2.42*	Sun H	1.28	Min T	3.14*	Ave T	0.00
Changchun ^a	Max T	3.11*	Ave RH	-6.11*	Win S	1.97*	Sun H	3.47*	Min T	2.24*	Ave T	0.00
Region ^a	Ave RH	-4.07*	Max T	-4.18*	Win S	2.90*	Sun H	3.92*	Ave T	-6.94*	Min T	-7.93*

298 3.6. The role of ET_0 in regional dry/wet conditions

ET₀ accounts for more than 80 % of the total annual amount in growing season within a year, besides, this period is critical for crops and vegetation growing which effect directly regional socioeconomic. Therefore, this paper only considered what role ET₀ may play in regional dry/wet conditions during growing season. Regional trend and its magnitude of ET_0 , AI and P were analyzed on both the inside 13 stations and the total 21 stations, but here have presented only the results of the former in Fig. 8, owing to the similarity in results.

Fig. 8 shown the interannual variations of growing season's ET₀, AI and P over Songnen Grassland for the period 1960 to 2014. From the visual inspection, ET₀, AI and P have all experienced the decreasing trends, but only the trend of ET₀ passed the significance test. As for the fluctuation of temporal evolution, results indicated that the fluctuating pattern of ET₀ was similar to AI, but opposite to that of P. Then, the simple regression equation is established as follows:

310

319

$AI = 63.81 - 0.125P + 0.046ET_0 \quad (R^2 = 0.98, P = 0.00) \tag{6}$

Eq. (6) shown there was a positive correlation between AI and ET_0 and a negative correlation between

AI and P. The regression residual standard error displayed in Fig.8. Thus, the upward trends of ET_0 and AI were associated with downward trends of P and vice versa. This character was highly explicit during drought and wet years in particular. As shown in Fig. 8, during the severe drought years D1 (1982), D2 (2001), D3 (2004) and D4 (2007), the values of ET_0 and AI had reached or were about to the maximum in the last decades, however, the values of P had nearly attained the minimum at the same time. Similarly, the wet years such as W1 (1960), W2 (1998), and W3 (2013) had witnessed lower values of ET_0 and AI (Fig. 9).

320 Figure 8. P-P plot of regression residual standard error.

Peer-reviewed version available at Water 2017, 9, . 316; doi:10.3390/w905031

12 of 15

Figure 9. Comparison of temporal trend of ET₀, AI and P during 1960-2014. D, the drought year; W, the wetyear.

324 4. Discussion

321

325 Songnen Grassland shows obviously spatial variations of ET₀ rates from northeast to southwest 326 at different time scales (Fig. 2). It was influenced by both of the different regional climate and local 327 topography. In the north region, there was distributed some valleys and the stations located in 328 relatively high latitude area, while in the south, the topography was relatively flat with lower latitude 329 (Fig. 1). Moreover, ETo rates over Songnen Grassland have been obviously decreasing over the last 330 decades (Fig. 3 and 4). The results were consistent with a decreasing trends in the lower reaches in 331 Taoer River basin of Northeast China investigated by Liang, et al. [32]. Huo, et al. also reported that 332 a decreasing trend in the arid area of northwest China during 1955-2008 [3]. However, as discussed 333 in introduction, some studies has identified an increasing trends in some regions for the last decades. 334 One of the reasons for inconsistent findings in ET₀ trends is due to the fact that some studies on 335 climate change utilize divergent climatic parameters, potentially providing incomplete or artificial 336 trends and magnitudes in ET₀ [8].

337 During the study period, observed variations in Max T, Min T and Ave T were similar to the 338 global pattern of increasing minimum, mean and maximum temperature [9], and the results of 339 analyzing on other climatic factors were consistent with the finding reported from Yunnan Province 340 in China [4]. Then, attribution analyses for changes in annual ETo shown that Ave RH and Max T 341 were the most sensitive climate variables over the whole Songnen Grassland, which was in agreement 342 with Yin, et al. [33] studied at the whole China. However, Liu, et al. has been reported that Win S and 343 Sun H were the most sensitive factors in other part of China [11]. Thus, it can be concluded that ETo 344 has different responses to climate variables in different regions and climate conditions. What's more, 345 this study indicated the increase of ET₀ induced by rising air temperature can be compensated by 346 reduced ET₀ as significant decrease of Ave RH, Win S and Sun H. As a result, regional ET₀ appeared 347 to show a declining trend. Remarkably, human activity should take upon some of the responsibility 348 about local climate change [28], such as GHG emissions and rapid urbanization, which should be 349 further studied in Songnen Grassland.

350 ET₀ variations and its response to regional dry/wet conditions are of great importance for crop 351 growing and natural vegetation [2, 34]. For this purpose, the present paper analyzed long term 352 variations of ET₀, AI and P at growing season during 1960-2014. Results shown that ET₀ and AI 353 decreased as the P increased, especially during drought or wet years, and vice versa (Fig. 8). This was 354 consistent with Madhu, et al. [35] who reported that higher ET values were detected in the moderate 355 and severe droughts years. Contrary to the Eq. (5), notably, the trends of ET₀, AI and P were both 356 experiencing decrease trend during the study period in this paper. This could be due to the changes 357 of precipitation was not significant. However, the decreasing rate of ET₀ and AI was higher than that 358 of P. Faced with this, the climate in Songnen Grassland gets slightly wetter from 1960-2014, and the 359 trend would be continued if the decreasing trend of ET₀ persists. In short, regional climate change 360 brings positive influence for vegetation growth, agricultural production and ecological environment.

Peer-reviewed version available at Water 2017, 9, , 316; doi:10.3390/w90503

13 of 15

361 5. Conclusions

In this study, spatial distributions of ET₀, P and their difference were obtained at different time scales. The temporal and spatial variations of ET₀ were performed for 55 years of data from 22 stations in and around Songnen Grassland, northeast China, during 1960-2014. Then, the interannual variability of climatic variables was investigated during the study period, and sensitivity analysis was conducted in this context. The role of ET₀ in regional dry/wet conditions, ultimately, was discussed based on analyzing relationships between ET₀, P and AI. The following conclusions can be drawn from this study.

- (1) Trend analysis of ET₀ at different time scales shown an evidently decreasing trend in the last
 55 years, especially in annual and spring. Break trend analysis shown that almost all
 considered climatological normals had experienced the decreasing trend, with a range of 2.415 to -0.003 mm per year. Spatial variations of ET₀ indicated that most significant
 decreasing trends were mainly distributed in the eastern, northeastern and central region
 during annual, spring and growing season.
- 375 (2) The interannual variability of climatic parameters shown the annual Max T, Ave T and Min
 376 T experienced significant increasing trend and significant decreasing trends were found for
 377 Ave RH, Win S and Sun H. Ave RH was the dominant climate variable for the declining
 378 annual ET₀ over the complete region, followed by Max T, Win S, Sun H, Min T and Ave T.
- 379 (3) In general, the results of this study indicated that drought/wetness condition was getting
 380 slightly wetter with decreasing ET₀ during growing season. Regional climate drought has
 381 been alleviated in recent several decades. The findings could be contribute to a better
 382 planning and efficient use of agricultural water resources in Songnen Grassland.
- Acknowledgments: This study was financially supported by the National Key Technology R&D Program of
 China under Grant Nos. 2013BAK05B02 and 2013BAK05B01. The authors are grateful to the anonymous
 reviewers for their insightful and constructive comments to improve this manuscript.

Author Contributions: Jiquan Zhang was responsible for the original idea of the study; Caiyun Sun and Enliang
 Guo was responsible for data compilation; Feng Zhang and Mengmeng Wang was responsible for the data
 processing and drawing; Qiyun Ma drafted the manuscript and all authors read and revised the final
 manuscript.

390 Conflicts of Interest: The authors declare no conflict of interest.

391 References

- Wang, Y.; Jiang, T.; Bothe, O.; Fraedrich, K. Changes of pan evaporation and reference evapotranspiration
 in the Yangtze River basin. *Theor. Appl. Climatol.* 2007, *90*, 13-23.
- Croitoru, A.; Piticar, A.; Dragotă, C.S.; Burada, D.C. Recent changes in reference evapotranspiration in Romania. *Global. Planet. Change.* 2013, *111*, 127-136.
- Huo, Z.; Dai, X.; Feng, S.; Kang, S.; Huang, G. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. *J. Hydrol.* 2013, 492, 24-34.
- Fan, Z.; Thomas, A. Spatiotemporal variability of reference evapotranspiration and its contributing climatic
 factors in Yunnan Province, SW China, 1961–2004. *Climatic Change* 2013, *116*, 309-325.
- 400 5. Lu, J.; Zhang, G.; Wu, F. Web-based Multi-Criteria Group Decision Support System with Linguistic Term
 401 Processing Function. *IEEE Intelligent Informatics Bulletin*. 2005.
- 402 6. Naderpour, M.; Lu, J.; Zhang, G. An intelligent situation awareness support system for safety-critical
 403 environments. *Decis. Support. Syst.* 2014, *59*, 325-340.
- 404 7. Shadmani, M.; Marofi, S.; Roknian, M. Trend Analysis in Reference Evapotranspiration Using Mann405 Kendall and Spearman's Rho Tests in Arid Regions of Iran. *Water. Resour. Manag.* 2012, *26*, 211-224.
- 406 8. Irmak, S.; Kabenge, I.; Skaggs, K. E.; Mutiibwa, D. Trend and magnitude of changes in climate variables
 407 and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska–USA. *J.*408 *Hydrol.* 2012, 420-421, 228-244.
- 409 9. Roderick, M. L.; Farquhar, G. D. Changes in New Zealand pan evaporation since the 1970s. *Int. J. Climatol.*410 2005, 25, 2031-2039.

evapotranspiration over India. J. Hydrol. Eng. 2009, 14, 508-515.

411

412

413

10. Bandyopadhyay, A.; Bhadra, A.; Raghuwanshi, N. S.; Singh, R. Temporal trends in estimates of reference

11. Liu, T.; Li, L.; Lai, J.; Liu, C.; Zhuang, W. Reference evapotranspiration change and its sensitivity to climate

14 of 15

414		variables in southwest China. Theor. Appl. Climatol. 2016, 125, 1-10.
415	12.	Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V. P.; Kahya, E. Trends in reference crop
416		evapotranspiration over Iran. J. Hydrol. 2011, 375, 65-77.
417	13.	Hosseinzadeh Talaee, P.; Shifteh Some E, B.; Sobhan Ardakani, S. Time trend and change point of reference
418		evapotranspiration over Iran. Theor. Appl. Climatol. 2014, 116, 639-647.
419	14.	Liu, Y.; Zhuang, Q.; Pan, Z.; Miralles, D.; Tchebakova, N.; Kicklighter, D.; Chen, J.; Sirin, A.; He, Y.; Zhou,
420		G.; Melillo, J. Response of evapotranspiration and water availability to the changing climate in Northern
421		Eurasia. <i>Climatic Change</i> 2014 , 126, 413-427.
422	15.	Allen, R. G.; Pereira, L. S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water
423		requirements-FAO Irrigation and drainage paper 56. FAO, Rome 1998, 300, D5109.
424	16.	Mosaedi, A.; Sough, M. G.; Sadeghi, S.; Mooshakhian, Y.; Bannayan, M. Sensitivity analysis of monthly
425		reference crop evapotranspiration trends in Iran: a qualitative approach. <i>Theor. Appl. Climatol.</i> 2016 , doi:
426		10.1007/s00704-016-1740-y
427	17.	Piticar, A.; Mihăilă, D.; Lazurca, L. G.; Bistricean, P.; Puţuntică, A.; Briciu, A. Spatiotemporal distribution
428		of reference evapotranspiration in the Republic of Moldova. <i>Theor. Appl. Climatol.</i> 2016 , 124, 1133-1144.
429	18.	Liu, C.; Zhang, D.; Liu, X.; Zhao, C. Spatial and temporal change in the potential evapotranspiration
430	10.	sensitivity to meteorological factors in China (1960-2007). J. Geogr. Sci. 2012, 22, 3-14.
431	19.	Kendall, M. G. <i>Rank correlation methods</i> . Griffin, London. 1948.
432	20.	Mann, H. B. Nonparametric tests against trend. <i>Econometrica</i> . 1945 , 13, 245-259.
433	20. 21.	Wang, W.; Zhu, Y.; Xu, R.; Liu, J. Drought severity change in China during 1961–2012 indicated by SPI and
434	21.	SPEI. Nat. Hazards. 2015, 75, 2437-2451.
435	22.	Zhang, Q.; Zhang, J. Drought hazard assessment in typical corn cultivated areas of China at present and
436	22.	potential climate change. Nat. Hazards. 2016, 81, 1323-1331.
437	23.	Yan, T.; Shen, Z.; Bai, J. Spatial and Temporal Changes in Temperature, Precipitation, and Streamflow in
438	23.	the Miyun Reservoir Basin of China. <i>Water</i> 2017 , <i>9</i> , doi:10.3390/w9020078.
439	24.	Sen, P. K. Estimates of the regression coefficient based on Kendall's tau. <i>J. Am. Stat. Assoc.</i> 1968, 63, 1379-
440	24.	1389.
441	25.	Zhao, L.; Xia, J.; Sobkowiak, L.; Li, Z. Climatic Characteristics of Reference Evapotranspiration in the Hai
442	20.	River Basin and Their Attribution. <i>Water</i> 2014 , <i>6</i> , 1482-1499.
443	26.	Zheng, C.; Wang, Q. Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to
444	20.	climatic variables in recent five decades over China. <i>Stoch. Env. Res. Risk. A.</i> 2015 , <i>29</i> , 1937-1947.
445	27.	Li, F.; T J, L. Estimation of regional evapotranspiration through remote sensing. <i>Journal of applied meteorology</i>
446	27.	1999 , 38, 1644-1654.
447	28.	Su, X.; Singh, V. P.; Niu, J.; Hao, L. Spatiotemporal trends of aridity index in Shiyang River basin of
448	20.	northwest China. Stoch. Env. Res. Risk. A. 2015, 29, 1571-1582.
449	29.	Thornthwaite, C. W. An approach toward a rational classification of climate. <i>Geography. Review.</i> 1948 , <i>38</i> ,
450	۷.	55-89.
451	30.	Ashraf, M.; Routray, J. K. Spatio-temporal characteristics of precipitation and drought in Balochistan
452	50.	Province, Pakistan. Nat. Hazards. 2015, 77, 229-254.
453	31.	Arguez, A.; Vose, R. S. The Definition of the Standard WMO Climate Normal: The Key to Deriving
454	51.	Alternative Climate Normals. B. Am. Meteorol. Soc. 2011, 92, 699-704.
455	32.	Liang, L.; Li, L.; Liu, Q. Temporal variation of reference evapotranspiration during 1961–2005 in the Taoer
456	52.	River basin of Northeast China. Agr. Forest. Meteorol. 2010 , 150, 298-306.
457	33.	Yin, Y.; Wu, S.; Chen, G.; Dai, E. Attribution analyses of potential evapotranspiration changes in China
458	55.	since the 1960s. Theor. Appl. Climatol. 2010, 101, 19-28.
459	34.	Espadafor, M.; Lorite, I. J.; Gavilan, P.; Berengena, J. An analysis of the tendency of reference
460	54.	
460 461		evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. <i>Agr. Water. Manage.</i> 2011 , <i>98</i> , 1045-1061.
461	35.	
462 463	55.	Madhu, S.; Kumar, T. V. L.; Barbosa, H.; Rao, K. K.; Bhaskar, V. V. Trend analysis of evapotranspiration and its response to droughts over India. <i>Theor. Appl. Climatol.</i> 2015 , <i>121</i> , 41-51.
405		and no response to droughts over mula. <i>Theor. Appl. Cumulot.</i> 2015 , 121, 41-51.

eer-reviewed version available at Water 2017, 9, , 316; doi:10.3390/w90503

15 of 15

© 2017 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).