Preprint
Article

This version is not peer-reviewed.

Iron Losses in Electromagnetic Devices: Nonlinear Adaptive MEC & Dynamic Hysteresis Model

Submitted:

29 January 2017

Posted:

30 January 2017

You are already at the latest version

Abstract
In this paper, an original approach allowing the determination of the iron losses in the electromagnetic devices is presented. This new approach exploits the Loss Surface (LS) hysteresis model and the magnetic flux density waveforms resulting from a generalized nonlinear adaptive magnetic equivalent circuit (MEC) using a mesh-based formulation in two-dimensional (2-D) or quasi three-dimensional (3-D). The model coupling has been applied to a 18-slots/16-poles radial-flux interior permanent-magnet (PM) synchronous machine (PMSM) dedicated to automotive applications, mainly for electric/hybrid/fuel cell vehicles (EVs/HEVs/FCVs). The obtained results have been compared with those made retrospectively in the 2-D transient finite-element (FE) Flux. The influence of the MEC discretization on the iron loss calculation and the electromagnetic performances has been analyzed. The computation time is divided by 3/2 with an error less than 7 %.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated