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Abstract: MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate 
in regulating gene expression by targeting multiple molecules. Early studies have shown that the 
expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is 
well acknowledged that such variation is involved in almost all biological processes, including cell 
proliferation, mobility, survival and differentiation. Increasing experimental data indicate that 
miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that 
miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the 
tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a 
goal to improve outcomes of cancer treatment. In our present study, we review the function of 
miRNAs in tumorigenesis and development, and discuss the latest clinical applications and 
strategies of therapy targeting miRNAs in cancer. 
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1. Introduction 

MicroRNAs (miRNAs)—a group of small endogenous non-coding functional RNAs—are 
approximately 18–22 nucleotides in length and widespread in plants and animals [1]. Studies have 
demonstrated the significance of miRNA biosynthesis and regulatory function in maintaining 
cellular homeostasis [2]. miRNAs are transcribed by RNA polymerase II, from initial processing to 
final maturing [3–5]. They are then incorporated into the RNA-induced silencing complex (RISC) 
together with Argonaute to silence target messenger RNA (mRNAs) usually through imperfect 
complementary base pairing to the 3′-untranslated region [6,7]. A single mRNA may possibly be 
targeted by multiple different miRNAs with variable efficiencies. Conversely, a single miRNA may 
target more than one mRNA. Through their binding to target mRNA sequences, miRNAs have 
various biological functions. They have an ability to inhibit or promote the expression of many 
related genes, which can affect several cell-signaling pathways essential to tumor development and 
progression, such as cell proliferation, differentiation, mobility and apoptosis [8,9]. A global 
reduction or increase of mature miRNAs is observed in cancer and involved in cancer biological 
behaviors, which has made miRNAs attractive candidates for cancer therapy. 

2. miRNAs and Cancer 

Carcinogenesis is a multistep process. Normal cells experience genetic changes to promote 
cells through pre-malignant initiation into malignant status. Microarray expression data 
demonstrated that the aberrant miRNA expression is a common event in cancer [10–12]. 
Importantly, studies featuring miRNA over-expression or ablation on mouse models demonstrated 
the correlations between miRNAs and cancer development [13,14]. Increasing evidence suggests 
that miRNAs might play a large and unanticipated role in the occurrence and development of 
human cancer. A study on a genome-wide basis by mapping 186 miRNAs found that miRNAs were 
frequently located at fragile sites, minimal regions of heterozygous loss or amplification, or 
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common break-point regions in human cancers [15]. Besides the structural and genetic alterations, 
the epigenetic silencing of miRNAs genes by DNA promoter hypermethylation or histone 
hypoacetylation has been clarified in some solid tumors and hematological malignancies [16–18]. 

With the development of genomics, miRNA expression profiles between tumor tissues and 
normal tissues could be rapidly established through high-throughput technologies such as gene 
chips, real-time PCR, etc. Dysregulation of miRNA expression has been confirmed in most tumors 
[19,20]. The up-regulated miRNAs in tumor cells are commonly considered to be oncogenic 
miRNAs (oncomiRs), which can silence the tumor suppressor genes. miR-21 is a very widely 
studied oncomiR and has been reported at high expression levels in glioblastoma [21], pancreatic 
cancer [22], breast cancer [23] and colon cancer [24]. It exerts an antiapoptotic effect by targeting the 
tumor suppressors such as phosphatase and tensin homolog (PTEN) and programmed cell death 4 
(PDCD4) [25,26]. Conversely, some miRNAs, which are often down-regulated in most cancers, can 
inhibit tumor progression and are termed tumor suppressor miRNAs. These miRNAs target 
mRNAs of some oncogenes and inhibit the carcinogenic effect by repressing the translation of 
oncogenic mRNAs [27]. For example, miRNAs are frequently lost in cancer, such as miR-15/miR-16 
in chronic lymphocytic leukemia [20]. The miR-15a/miR-16-1 cluster can directly interact with bcl-2 
mRNA and inhibit its protein translation, which induces apoptosis of leukemic cells. Loss of 
miR-15a/miR-16-1 results in an inhibition of leukemia cell apoptosis [28]. Tumorigenesis and 
development are usually associated with the down-regulation of tumor suppressive miRNAs and 
the up-regulation of oncomiRs.  

Over-expression or down-regulation of some specific miRNAs in different tumors makes them 
to be potential therapeutic targets. The circulating miRNAs released from their producer cells are 
novel non-invasive biomarkers in cancers. Several studies detected the circulating miRNAs in 
cancer patients and discussed their potential relationship to the primary tumors [29]. The 
circulating miRNAs could be detected in body fluids (blood, urine, tears, saliva, seminal fluid, 
cerebrospinal fluid, and extracellular fluid) in a fairly stable form and are considered to be valuable 
in diagnosis and in evaluating prognosis and monitoring treatment response [30,31]. It was 
reported that the levels of tumor-suppressor miRNAs increased in circulation and are involved in 
immune responses [32]. Extracellular miRNAs released from normal or tumor cells may function as 
mediators of paracrine or endocrine signaling pathways among different kinds of tumor cells [33–
35]. In conclusion, miRNAs may be used for clinical applications in cancer management, not only in 
tumor diagnosis, but in evaluating malignant potential or therapeutic efficiency, and in monitoring 
tumor recurrence and progression. 

3. Strategies of miRNA-Based Cancer Gene Therapy 

Intracellular miRNAs bind to the mRNAs of target genes with complementary sequences to 
induce mRNA degradation or inhibit mRNA translation, thereby exerting their role as 
post-transcriptional regulators of target genes [36]. Abnormal expression of miRNAs is closely 
related to cancers. For the purpose of correcting abnormal miRNA expression, miRNA-based gene 
therapy is becoming a new target strategy for malignant tumors [37]. During recent years, the 
strategies of miRNA-based tumor treatment are mainly as follows: (1) To inhibit proliferation or 
induce apoptosis of tumor cells by importing exogenous miRNAs, which are tumor suppressor 
miRNAs and down-regulated in tumor tissues. For example, the chemically synthesized miRNA 
mimics are used to imitate endogenous mature double-stranded miRNA with the aim to 
restore/enhance endogenous miRNA function [38,39]. Construction of viral vectors (adenoviral, 
lentiviral and retroviral vectors), which express specific miRNAs, could enhance the function of 
miRNAs in tumor cells; (2) To inhibit the function of miRNAs, which are oncogenic miRNAs and 
over-expressed in tumors, by applying the antisense oligonucleotides (ASOs) strategy, including 
anti-miRNA oligonucleotides (AMOs), miRNA antagomirs, locked-nucleic-acids antisense 
oligonucleotides (LNAs), miRNA sponges, multiple-target anti-miRNA antisense 
oligodeoxyribonucleotides (MTg-AMOs), miRNA-masking and nanoparticles [40–43]. LNAs and 
AMOs are the main types of ASOs that could inhibit miRNA target genes based on complementary 
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base pairing. Antagomir—a small synthetic RNA and complementary to the specific miRNA 
target—is modified to make it more resistant to degradation [44,45]. Recent studies reported a 
tumor treatment strategy that simultaneously disturbs the function of multiple oncogenic miRNAs 
(miRNA sponges). This strategy used a tumor-selective replicating viral vector to mediate the 
expression of an artificially designed interfering long non-coding RNA (lncRNA), which comprises 
the binding sites of multiple oncogenic miRNAs and thus neutralizes oncogenic miRNAs in cancer 
cells, fully protecting the function of tumor suppressor genes and exhibiting an effective anti-tumor 
effect in vitro and in vivo [46,47]; (3) Artificial miRNA, designed to target single or multiple 
malignant tumor phenotype-related genes, provides a new therapeutic strategy for cancers [48,49]. 
The strategy used natural miRNA precursor (pre-miRNA) structures, and specifically interfered 
with target gene expression by replacing core sequences of pre-miRNA with complementary 
sequences of target genes. Artificial miRNAs have a stronger silencing effect on target genes 
compared with short hairpin RNAs (shRNAs); they are regulated by polymerase II promoter to 
achieve tissue-specific or regulatory expression. The most important feature is its high safety, low 
toxicity, less effect with cell endogenous RNA interfering (RNAi) and off-target [50–53].  

Until now, some studies of tumor gene therapy targeting miRNA have obtained anti-tumor 
effects in vivo and in vitro, and laid a foundation for the safe and effective application for tumor 
patients (Table 1).  
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Table1.MicroRNAs (miRNAs) involved in cancers. 

MicroRNA Function Targets Experimental Data Therapeutic Strategy Reference 

miR-145 
Tumor 
suppressor 

ROCK1, MMP11, Rab27a, FSCN-1, LASP1, 
MTDH, SENP1, E2F3, MUC13, c-Myc 

In vitro experiments in nasopharyngeal, bladder, cervical, lung, liver, breast, gastric, 
prostate cancer cell lines 
In vivo experiments in prostate, pancreatic, bladder cancers and multiple myeloma 

Mimics 
Vector-based (viral) 

 [54–68] 

miR-34a 
Tumor 
suppressor 

CDK6, SIRT1, E2F3, c-Met, Notch, c-Myc, 
Fra-1, TPD52, c-SRC, Bcl-2, MYCN 

In vitro experiments in neuroblastoma, glioblastoma and liver, prostate, colon, breast 
cancer cell lines 
In vivo experiments in multiple myeloma, glioma and prostate xenografts in mice 

Mimics 
Vector-based (viral) 

 [69–80] 

miR-29b 
Tumor 
suppressor 

DNMT3A/3B, CDK6, MCL-1, TCL-1, Bcl-2, 
KDM2A, MMP2, TNFAIP3/A20, BCL2L2 

In vitro experiments in glioblastomas, acute myelocytic leukemia (AML), liver, lung, 
gastric cancer cells 
In vivo experiments in AML, liver and lung cancers 

Mimics 
Vector-based (viral) 

 [81–90] 

Let-7a 
Tumor 
suppressor 

K-RAS, N-RAS, CDK6, CDC25A, HMGA2, 
MYC, RTKN, E2F2 

In vitro experiments in lung, gastric, breast and colon cancer cells 
In vivo experiments in breast and lung cancers 

Mimics 
Vector-based (viral) 

 [91–101] 

miR-340 
Tumor 
suppressor 

ROCK1, MYO10, MET, CDH1, 
NF-x03BA/B1, JAK1, EZH2 

In vitro experiments in liver, glioma, ovarian, breast, lung cancer cells 
In vivo experiments in liver cancer 

Mimics 
Vector-based (viral) 

[102–108] 

miR495 Tumor 
suppressor 

MYB, Bim-1, MTA3, JAM-A, PRL-3 In vitro experiments in glioma, AML, lung, breast, gastric, prostate cancer cells 
In vivo experiments in endometrial, breast, prostate cancers and leukemia 

Mimics 
Vector-based (viral) 

 [109–117] 

miR155 Oncogene 
SHIP-1, C/EBPβ, S0CS1, SOCS6, 
FBXW7, ZDHHC2  

In vitro experiments in liver cancer and myeloid cells 
In vivo experiments in pre-B lymphoma/Leukemia and liver cancer 

Antisense oligos 
miR-MASK 

Sponges 
 [118–126] 

miR-21 Oncogene PDCD4, PTEN, TPM1, FOXO1, Rho-B, 
BTG-2, Cdc25A 

In vitro experiments in multiple myeloma, glioblastoma, lung, colon, breast and liver 
cancer cells 
In vivo experiments in multiple myeloma 

Antisense oligos 
miR-MASK 

Sponges or LNA 
[127–133] 
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4. Therapy Targeting miRNAs in Human Cancers 

The potential of miRNAs as treatment targets in cancers has been explored by many studies. 
The therapeutics strategies either introducing tumor suppressor miRNAs or blocking oncogenic 
miRNAs have developed rapidly in recent years. 

4.1. Breast Cancer 

Breast cancer is a malignant disease threatening the health of women worldwide due to its 
high capability of recurrence and metastasis. A growing number of studies have demonstrated that 
miRNAs play critical roles in the development of breast cancer. Romero-Cordoba et al. found that 
113 miRNAs showed higher expression and 17 miRNAs were down-regulated in breast tumors 
compared to the normal adjacent tissue [134]. Furthermore, differential expression of miRNAs has 
been tightly linked with a high incidence and mortality of breast cancer. It has been well 
documented that miR-892b expression is obviously down-regulated in human breast cancer 
specimens. Over-expression of miR-892b by its mimics in breast cancer cells significantly decreased 
tumor growth, metastatic capacity, and induced angiogenesis in vitro and in vivo, which was 
mediated by attenuating nuclear transcription factor kappa B (NF-κB) signaling pathway [135]. 
miR-155 is usually considered to be an oncogenic miRNA in breast cancer. miR-155 antisense 
oligonucleotide (miR-155 ASO) was synthetized and transfected into MDA-MB-157 cells, the cell 
proliferation was remarkably inhibited and cell apoptosis was increased [118]. In addition, the use 
of artificial miRNAs (amiRNA) provides a new strategy for breast cancer therapy. A novel 
amiRNA, miR p-27-5p, which targets the 3′-untranslated region (3′-UTR) of cyclin-dependent 
kinase 4 (CDK4) mRNA, was introduced into breast cancer cells. This study revealed that cell 
proliferation was inhibited and cell cycle was arrested through down-regulation of CDK4 
expression and suppression of retinoblastoma protein (RB1) phosphorylation [136]. Liang et al. 
constructed an amiRNA by inserting a double-stranded miRNA gene against a C-X-C motif 
chemokine receptor 4 (CXCR4) into a miR-155-based RNAi expression vector, which exhibited a 
reduced expression level of CXCR4 and a suppressed migration and invasion in breast cancer cells 
[137]. 

4.2. Hepatocellular Carcinoma 

Similar to other malignancies, the pathogenesis of hepatocellular carcinoma (HCC) is a 
complex with contribution of genetic and epigenetic changes. MiRNAs have been implicated in 
HCC metastasis. Zhou et al. found that miR-625 was consistently down-regulated in HCC 
specimens and its re-expression in HCC cells effectively suppressed cell migration and invasiveness 
by regulating the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1)/ PTEN pathway 
[138]. Gougelet and his colleagues used a mouse model in which β-catenin signaling was 
over-activated exclusively in the liver. They found that treatment with an LNA-derived inhibitor of 
miR-34a remarkably halved progression rates for tumors [69]. As a variety of delivery systems had 
been applied in HCC gene therapy, liposome-based carrier system was reported to be a potential 
approach. A new transferrin-targeted delivery system of negatively charged liposomes 
encapsulating anti-miR-221 was developed and effectively delivered anti-miR-221 to HepG2 cells, 
which significantly reduced the level of miR-221 [139]. Since previous studies indicated that 
amiRNA might be a promising therapeutic modality in gene therapy, Huang et al. constructed 
amiRNAs targeting firefly luciferase with the precursor frameworks of six highly abundant 
miRNAs in HCC. The results showed that the miR-221 precursor-based amiRNA exhibited a 
greatest knockdown effect on luciferase activity, indicating that construction of HCC-targeting 
amiRNAs by the precursor structure of miR-221 could be widely used in HCC treatment [140]. We 
generated an oncolytic adenoviral vector, which can specifically replicate with high copies in HCC 
cells, to express an artificially-designed interfering lncRNA (lncRNAi) containing the 
complementary binding sequences to the seed sequences of the 12 oncogenic miRNAs, including 
miR-21, miR-221/222, miR-224, miR-17-5p/20a, miR-10b, miR-106b, miR-151-5p, miR-155, 
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miR-181a/181b, miR-184, miR-1 and miR-501-5p. The lncRNAi expressed with high level in HCC 
cells and competed with target genes of oncogenic miRNAs to bind to and consume those 
oncogenic miRNAs, thereby achieving the target anti-tumor efficacy on HCC cell line xenograft 
models and HCC patient-derived xenograft (PDX) models in nude mice [46]. 

4.3. Lung Cancer 

Dysregulation of miRNAs contributes to lung carcinogenesis and progression. Fernandez et al. 
found that the expression of miR-340 was inversely correlated with progression of non-small cell 
lung cancer (NSCLC). Over-expression of miR-340 suppresses cell growth and induces apoptosis in 
NSCLC cells [108]. miRNAs are always recognized as potential targets of cancer therapy, and 
effective delivery strategies still need to be explored. Trang et al. and Ai et al. both reported that 
delivery of synthetic mimics of suppressor miRNAs in complex with a novel neutral lipid emulsion 
by blood stream was preferentially targeted to lung tumors and showed remarkable inhibition of 
tumors in a V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven mouse models of 
lung cancer [141,142]. As we know, oncolytic virotherapy is a promising approach for the treatment 
of advanced NSCLC. Since the expression of miR-145 is lower in NSCLC cells, Li et al. constructed a 
new oncolytic HSV-1 (AP27i145) carrying four copies of miR-145 target sites in the 3′-UTR of an 
HSV-1 essential viral gene, infection cell protein 27 (ICP27). AP27i145 replication selectively 
inhibited the proliferation and neoplastic capacity of NSCLC cells. Moreover, the combination of 
ionizing radiation and AP27i145 infection was obviously more effective in killing cancer cells than 
that of monotherapy [54]. 

4.4. Gastric Cancer 

Gastric cancer remains one of the most common tumors and affects human health due to its 
high morbidity and mortality. Studies have revealed that miRNAs are probably associated with 
tumorigenesis of gastric cancer [143]. Lee et al. identified miR-130a and miR-495 as oncogenic 
miRNA candidates, both of which are capable of targeting Runt-related transcription factor 3 
(RUNX3) and can decrease apoptosis and increase cell proliferation in SNU5 and SNU484 gastric 
cancer cells. Furthermore, the synthetized antagomirs specific for miR-130a and miR-495 showed 
strong inhibitory effect on cell growth and angiogenesis [109]. Down-regulation of miR-1 has been 
reported in gastric cancer. Transfection of miR-1 mimics results in the suppression of cell 
proliferation and migration. This study provides new insights into target therapy of gastric cancer 
[144]. In addition, an artificial miRNA targeting liver-intestine cadherin (CDH17) via the lentivirus 
vector was applied to induce a long-lasting knockdown of CDH17 expression in BGC823 cells, and 
the CDH17-miRNA-transfected gastric cells showed a significant decrease in cell proliferation, cell 
motility, and migration in comparison with the control cells [145]. 

4.5. Prostate Cancer 

Prostate cancer is one of the leading causes among male cancer-related deaths. Recently, 
miRNAs have demonstrated as critical post-transcriptional regulators of prostate cancer. Wang et 
al. reported that transfection of miR-221/222 mimics in prostate cancer cells could increase the 
activity of cell proliferation and inhibit the pro-apoptotic effect by suppressing caspase-10 [146]. 
Budd and his colleagues found that inhibition of miR-22 or restoration of miR-125b impaired 
migratory and invasive potential of prostate cancer cells in vitro [147]. Recent advances in efficient 
miRNA delivery techniques using prostate cancer-targeted nanoparticles offer critical information 
for understanding the functional role of miRNAs. Zhang et al. synthesized a polyarginine peptide 
(R11)-labeled non-toxic disulfidebond polyethylenimine (SS-PEI) nanocarrier for delivery of 
miR-145 and demonstrated that the systemic administration of R11-SSPEI/FAM-miR-145 complex 
dramatically inhibited tumor growth and prolonged survival time in a mouse model of 
intraperitoneally implanting prostate cancer xenografts, without any toxicity [55]. 
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4.6. Leukemia 

MiRNAs can function either as oncogenes or tumor suppressor genes in leukemia, and open 
up new opportunities for leukemia therapy. miR-126 was first validated to be a feasible therapeutic 
target of acute myeloid leukemia (AML). The constructed targeting nanoparticles containing 
antagomiR-126 can deplete the quiescent cell subpopulation and then reduce the number of 
leukemia stem cells [148]. Jiang et al. developed a targeted nanoparticle system, FLT3 ligand 
(FLT3L)-conjugated G7 poly nanosized dendriplex encapsulating miR-150, and demonstrated that 
the system selectively targets FLT3-overexpressing AML cells and efficiently inhibits cell viability 
and induces apoptosis both in vitro and in vivo [149]. Similarly, a non-viral system of transferrin 
(Tf)-conjugated anionic lipopolyplex nanoparticles for miR-29b mimic transfection had many 
advantages, such as relatively high efficiency of miRNA transfection and low cytotoxicity in AML 
cells [81]. Mignacca et al. reported that miRNA sponges against miR-19 and miR-155 inhibited the 
functions of these miRNAs and enhanced the induction of p53 and suppressor of cytokine 
signaling-1 (SOCS1) in human myeloma cells and mouse leukemia cells, which indicated that the 
antagonizing miRNA activity could reactivate the activity of cytokine-stimulated tumor suppressor 
pathways in leukemia cells [119]. 

5. Conclusions 

As described above, there have been many new technological advances for utilizing miRNAs 
as therapeutic tools for cancers. The better understanding of miRNA biogenesis and function 
undoubtedly affects the research and development of miRNA-based therapies. Until now, several 
miRNAs have been validated in preclinical tests and left for further clinical investigation. In 2013, 
the first miRNA replacement therapy with MRX34—a liposome-formulated miR-34 
mimic—entered human clinical trials for patients with advanced or metastatic liver cancer by 
intravenous injection [150,151]. An antagonist of miR-122 was used for hepatitis C treatment and 
tested in phase II clinical trials [152]. Let-7 mimic was developed to treat a variety of solid 
carcinomas, such as lung cancer and prostate cancer [91,92]. However, many questions regarding 
the miRNA-based cancer therapies remain to be overcome, including the suboptimal delivery, low 
bioavailability, off-target effects or long term safety. Potential employed methods may be the 
development of some novel miRNA-formulations including nanoparticles, polymers and 
virus-based approaches. Overall, reprogramming miRNA networks in cancer might constitute 
numerous reasonable and effective target strategies with a strong potential and chance for success 
in the war against cancer. 
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