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Abstract: This paper presents experimental identification and vibration suppression of a flexible 
manipulator with non-collocated piezoelectric actuators and strain sensors using optimal multi-
poles placement control. To precisely identify the system model, a reduced order transfer function 
with relocated zeros is proposed, and a first-order inertia element is added to the model to 
compensate the non-collocation. Comparisons show the identified model match closely with the 
experimental results both in the time and frequency domains, and a fit of 97.2% is achieved. Based 
on the identified model, a full-state multi-poles placement controller is designed, and the optimal 
locations of the closed loop poles are determined. The feasibility of the proposed controller is 
validated by simulations. Moreover, the controller is tested for different locations of the closed loop 
poles, and an excellent performance of the optimal locations of the closed loop poles is shown. 
Finally, the effectiveness of the proposed controller is demonstrated by experiments. Results show 
that the vibrations of the expected modes are significantly diminished. Besides, vibrations of the 
higher modes are also slightly suppressed. Accordingly, multi-mode vibrations of the manipulator 
are well attenuated, and the tip displacement converges quickly with the proposed method. 

Keywords: experimental identification; multi-poles placement control; smart flexible manipulator; 
active vibration control; non-collocation 

 

1. Introduction 

In the fields of aerospace, robotics, civil engineering and other industries, flexible structures are 
prevailing due to their advantages of lightweight and lower energy consumption. However, flexible 
structures are highly resonant systems and exhibit the inherent property of vibration in presence of 
external disturbances, which leads to a deterioration of positioning accuracy and efficiency. Thus, 
vibration suppression of those multi-mode structures becomes imperative [1]. In recent years, smart 
materials have been extensively used for vibration control of flexible structures. Those materials 
include shape memory alloys, piezoelectric transducers and so on [2]. Among them, piezoelectric 
materials have the advantages of small volume, fast response and can be easily integrated onto the 
host structures. As a result, active vibration control of smart structures utilizing piezoelectric 
materials has become more attractive [3]. 

To obtain a better performance for vibration suppression of flexible structures, both accurate 
dynamic modeling and suitable controller design are required. And controller design often relies on 
accurate modeling of the system dynamics [4]. In most previous studies, various efficient approaches 
have been proposed to establish the mathematical model of smart flexible structures. In general, 
dynamic behaviors of flexible structures can be obtained by analytical modeling based on partial 
differential equations (PDEs) [5]. But the analytical model is less effective for the requirement of high-
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precision, and the introduction of piezoelectric (PZT) actuators/sensors adds complexity to the 
analytical modeling. In some cases, it is intractable, even impossible to find the system differential 
equations. Numerical approaches based on finite element method (FEM) are developed to obtain 
equivalent finite-dimensional models of smart structures, and yield fairly accurate results [6]. 
However, these approaches always require intensive mathematical derivations, which are usually 
labor intensive and time consuming. Meanwhile, these modeling techniques are sometimes hindered 
by factors such as the assumption of ideal boundary conditions, perfect bonding between the host 
and actuators/sensors, and so on [7].  

An alternative modeling approach is system identification, which captures the input-output 
dynamics of smart structures using experimental data. Moreover, the issues of the sensor/actuator 
dynamics, signal conditioners and control unit are all included in the experimental model. Thus, the 
established model faithfully represents the dynamics of the flexible structures incorporated with 
smart materials, and the tangled mathematic calculations are also avoided. The identification process 
can be conducted in the frequency domain, or in the time domain. Among those time domain 
methods, Bu et al. [8] presented an experimental model of a flexible beam system incorporated with 
piezoceramic actuators based on the ARMAX (auto-regressive moving average exogenous) model. 
Abreu et al. [9] derived a time-domain state space model of a flexible structure using the 
observer/kalman filter identification method together with an eigensystem realization algorithm. 
Tavakolpour et al. [10] employed the genetic algorithm (GA) to identify the model parameters of a 
linear difference equation for a rectangular flexible plate system. Afshari et al. [11] utilized a 
prediction error method to obtain the ARMAX model of a flexible beam bonded with piezoceramic 
actuator/sensor, and implemented a model reduction method to find the amenable reduced order. 
Pradhan and ubudhi [12] developed a nonlinear ARMAX model of a planar two-link flexible 
manipulator system, and designed a nonlinear adaptive controller based on the identified model. As 
flexible structures are distributed parameter systems, thus have multiple vibration modes, which 
display highly resonant behavior near to the structures’ natural frequencies. For a vibration mode, 
the frequency and damping of the underlying sinusoidal behavior are the basic parameters to be 
estimated. San-Millan and Feliu [13] presented an algebraic derivative approach for online 
identification of the resonant frequencies of a flexible beam in the presence of noise and an offset. Qiu 
et al. [14] conducted an acceleration sensor based identification of modal frequencies for plate 
structures, including the first two bending and torsional modes. In order to estimate the model 
parameters of a flexible structure with collocated sensors/actuators, Bhikkaji et al. [15] proposed a 
novel frequency domain subspace identification scheme using the negative imaginary approach. To 
obtain the experimental model of a flexible plate, several frequency domain subspace identification 
algorithms with the instrumental variable idea were addressed by Ahmadizadeh et al. [16]. In 
addition, Orszulik and shan [17] studied the application of the GA to identify the transfer function of 
a flexible manipulator system with collocated piezoelectric sensor/actuator.  

Due to the inherent distributed nature, flexible structures have an infinite number of modes. But 
it is impossible to model and active control all these modes due to the computational and control 
limitations. In practice, the reduced order models of flexible structures are always developed by 
modal truncation, where only the dominant modes are considered [18]. Consequently, the problem 
of spillover associated with the un-modeled but often non-negligible modes is unavoidable, and the 
spillover effect will cause instability of the closed loop system [19]. In addition, Non-collocation of 
sensor and actuator is often suitable for installation convenience. In some cases, it is even 
recommendable for the controllability and observability of high order modes [20]. These cases, 
however, lead to the problem of non-minimum phase characteristics, which makes the closed loop 
system only conditionally stable. Meanwhile, time delay will be inevitably caused. Thus, both the 
control performance and stability of the system are all affected [21]. As a result, although great 
progress has been achieved in the field of modeling of smart flexible structures, the issue is still far 
from completely solved. 

Various studies have been conducted on the development and implementation of control 
algorithms for vibration suppression [22]. Classical feedback control strategies receive considerable 
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attention as no adaptation time or reference signal is needed. Among those control methods, the poles 
placement method (PPM) is an effective approach for active vibration suppression despite its 
simplicity; it offers users the possibility of placing the closed loop poles at some predetermined 
locations, which is desirable to set natural frequencies and damping ratios to specified values to 
achieve desired control performance [23]. Sethi and Song [24] applied the PPM for vibration control 
of the first dominant mode of flexible composite large I-beams, they further presented multi-mode 
vibration suppression of a cantilever beam using a poles placement controller with an observer [25]. 
Tehrani et al. [26] proposed a robust poles placement controller for structural vibration control using 
receptance data. Gordon and Erkorkmaz [27] studied the use of the poles placement technique to 
achieve active vibration damping and positioning control of ball screw drives. Tehrani et al. [28] 
developed a multi-input partial poles placement controller for vibration control of a glass-fiber beam 
using macro fiber composite (MFC) actuators. As the relocation of closed loop poles will alter the 
system stability characteristics and transient response, locations of the closed loop poles must be 
carefully determined.  

The remainder of this paper is organized as follows. In Section 2, the experimental setup of the 
smart flexible manipulator system is introduced. The system identification procedure is described, 
and the identified results are presented in Section 3. Section 4 briefly describes the proposed poles 
placement method. Simulations are conducted in Section 5. Subsequently, the experimental results 
and discussion are presented in Section 6. Conclusions are drawn in Section 7. 

2. Experimental Setup 

The experimental setup of the manipulator system is shown in Fig. 1. The flexible manipulator 
used in this paper is a uniform aluminum cantilever beam and its properties are listed in Table 1. To 
fulfill the illustration of structural responses in the low frequency scope, instead of traditional PZT 
sensors, a full bridge strain gauge arrangement with the parameters detailed in Table 2, is attached 
on both sides of the beam as schematically illustrated in Fig. 2. The strain gauge is chosen to lie near 
the root of the beam where the strain energy of the structure is the highest. Two PZT actuators with 
the properties listed in Table 3, are bonded onto both sides of the beam near the strain gauge. 
Moreover, a laser displacement sensor of Micro-Epsilon ILD 1402-50 (range: 50mm, resolution: 5 μm) 
is used to measure the tip displacement of the manipulator. An electromagnetic vibrator is fixed to 
excite vibration of the beam as an external disturbance. The real-time control system is implemented 
using a personal computer. A DAQ device of National Instrument PCI-6221(37 pin) is used for data 
acquisition and control output. The PZT actuator is driven by a power amplifier, which can amplify 
the input signals from ±5 V to ±75 V. The strain signal is low-pass filtered and amplified through a 
strain amplifier, which can amplify the signal to a voltage range of ±10 V. The output signal of the 
laser displacement sensor is conditioned to a voltage signal of 1~5 V by a signal conditioner. In 
addition, all the control algorithms are developed with the LabVIEW programming software. 

Table 1. Properties of the manipulator 

Symbol Quantity Units Value 

lb length mm 1070.2

wb width mm 61.6 

tb thickness mm 2.1 

Eb Modulus of elasticity Gpa 72 

ρb density Kg/m3 2700 
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Figure 1. Experimental Setup of the smart manipulator system 

 

Figure 2. Block diagram of the experimental setup 

Table 2. Properties of the strain measurement 

Symbol Quantity Units Value

Sg Gauge sensitivity -- 2.08 

Rs Resistance Ω 350 

Ks Amplification -- 5000 

Uo Supply Voltage V 4.0 

xs Location on the beam mm 30.0 

Table 3. Properties of the PZT patches 

Symbol Quantity Units Value 

lp×wp×tp length×width× thickness mm 60×20×0.8 

Ep Modulus of elasticity Gpa 63 

ρp Patch density kg/m3 7650 

d31 Strain coefficient C/N -166×10-12 

xp Location on the beam mm 92.4 
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3. System Identification 

System identification can be used to experimentally extract the dynamic model of a system. For 
system identification, a mathematical model of the beam is necessary. Due to the spatially distributed 
nature of flexible structures, it is highly desirable to work with transfer functions, thus the vibration 
dynamics of a cantilever beam can be written as Eq. (1) 
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where k is the gain of the open loop, n is the mode number, ζn and ωn are the damping ratio and 
natural frequency of the nth mode, respectively. But it is impractical to identify the infinite number 
of vibration modes. In practice, only a certain bandwidth is of interest, and dynamic response of the 
flexible structures is often dominated by the vibrations of the lower modes. Therefore, some form of 
mode truncation for the higher modes is needed. A common reduced order model used by Bhikkaji 
et al.[15] Orszulik and shan [17] is given as  
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where m is the number of modes kept in the model, ki is the gain of the open loop for each mode, D 
is a feedthrough term, which is added to compensate for the modal truncation effect. But this neglect 
of higher modes still leads to the appearance of the direct energy transmission [29]. Therefore, the 
poles of the truncated system, which represent the resonance frequencies, are natural property of the 
system and independent among different modes, but the locations of the zeros will be distorted due 
to the omission of the higher modes. Besides, the strain sensors and PZT actuators are not collocated 
as shown in Fig. 2, these locations may lead to the problem of the non-minimum phase characteristics 
and some sort of time delay. Above all, the truncated model including the non-collocated 
sensors/actuators is given by Eq. (3) 
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Where ai and bi are the relocated zeros of the ith mode due to the omission of the higher modes. 
Meanwhile, a pure del`ay element is added to the truncated model representing the time delay, τ is 
the delay time. 

Using Taylor series expansion, the pure delay element can be approximated as Eq. (4) 
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Then, the truncated model of the smart structure can be rewritten as Eq. (5) 
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Experiments were conducted to identify the parameters of the system model. A chirp signal with 
a frequency varies from 0.1 to 15 Hz was applied to the PZT actuators to have the chance of exciting 
the first two modes of the structure. The magnitude of the excitation signal was 5 V, and the 
identification experiment took 15 s. The sampling frequency was 200 Hz, and a low-pass filter was 
utilized with a cut-off frequency of 100 Hz. The time response signals for chirp excitation are plotted 
in Figs. 3(a)-(b). 
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(a) Chirp excitation signal (b) Sensor output signal 

Figure 3. Time response of the chirp excitation and measured output signal 
To find the transfer function of the system in the frequency domain, Fourier transform is 

performed on the chirp excitation signal u(t) and sensor output signal y(t), the frequency response 
function(FRF) of the open loop system is given by Eq. (6) 
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Where Suy(jω) is the cross spectral density between signal u(t) and y(t), Suu(jω) is the auto spectral 
density of signal u(t). The measured frequency response of the system is plotted in Fig. 4, it can be 
seen that the natural frequencies of the first two modes of the smart structure are 1.47 and 9.06 Hz, 
respectively. 

 

Figure 4. Measured frequency response of the system 
The system identification toolbox (Matlab software) was used for system identification. Based 

on Eq. (5), the identified transfer function using the chirp signal is expressed as Eq. (7). For 
comparison, the identified transform function depicted as Eq. (2) is also given in Eq. (8). And the 
modal parameters for the two indentified models are detailed in Table 4. Meanwhile, Bode diagram 
of the two identified transfer functions in the frequency range of interests (0.1–100 Hz) are plotted in 
Fig. 5. 

 
2 2

2 2

13.44( 0.72 6.66)( 1.58 2045)
( )

( 355.4)( 0.071 86.99)( 0.42 3238)

s s s s
G s

s s s s s

+ + + +=
+ + + + +

  (7) 

 
2 2

1.89 43.69
( ) 0.035

0.071 87.05 0.40 3238cG s
s s s s

− −= + +
+ + + +

  (8) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 January 2017                   doi:10.20944/preprints201701.0038.v1

http://dx.doi.org/10.20944/preprints201701.0038.v1


 7 of 19 

 

 

Figure 5. Bode diagrams of the identified models 

Table 4. Comparison of modal parameters for the identified models 

model 
natural frequencies damping ratio 

f1 f2 ζ1 ζ2 

Gc(s) 1.48 9.06 0.004 0.004 

G(s) 1.48 9.06 0.004 0.004 

It can be observed from Table 4 that the first two resonance frequencies of the identified models 
are both 1.48 and 9.06 Hz respectively, which are nearly the same as the results obtained from the 
measured frequency response in Fig. 4. Meanwhile, the two identified models have nearly the same 
damping ratios for the first two modes. Bode diagrams of the two identified models have similar 
characteristics nearby the resonance frequencies, as shown in Fig. 5. The locations of the zeros and 
poles for the two models are also given in Fig. 6. It is worthwhile to note that the locations of the poles 
of the two identified models coincide highly, while the locations of the zeros of the two identified 
models are totally different; this is because the locations of the zeros are distorted due to the omission 
of the higher modes, different system models lead to different relocation of the zeros as depicted 
before. 

 

Figure 6. Locations of the zeros and poles  

System responses of the two identified models excited by the same chirp signal are illustrated in 
Figs. 7(a)-(b), both in the time and frequency domains. Besides, the measured system response of the 
smart structures is also given for comparison. As seen from these figures, system responses of the 
two identified models are both in good agreement with the experimental response. An excellent 
match between the identified models and experimental results can be noticed nearby the two 
resonance frequencies. However, at the beginning period of the chirp excitation (t<1.5s), there are 
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some differences between the model Gc(s) and the measured system responses. It is noticed that 
system responses of the identified model G(s) show a better agreement with the experimental 
responses than that of the model Gc(s). As a result, the identified model G(s) is accurate both in the 
time and frequency domains.  

(a) Time responses (b) Frequency responses 

Figure 7. Comparison of system responses with the chirp signal excitation 
The non-minimum phase characteristics of the smart structure are clearly seen in the phase plot 

of Fig. 5, due to the non-collocation of sensors and actuators. In addition, since the identified delay 
time τ (0.003s) is far less than 1s, it is reasonable that the pure delay element is approximated by a 
first-order inertia element in Eq. (3). 

After system model has been identified, it is necessary to validate whether the model is precise 
enough to represent the real system. The validation experiment is very required since a good match 
on one signal alone does not necessarily mean it is well matched on another [30]. For this test, the 
plant was subjected to a summation excitation of several sinusoidal signals of 1.6 V, their frequencies 
were at 0.5 Hz, 1.5 Hz, 6 Hz and 9 Hz, respectively. The time responses for the validation signal are 
plotted in Figs. 8(a)-(b). 

(a) Input signal (b) Sensor output signal 

Figure 8. Time response of the validation excitation and measured output signal 
A comparison between the actual structure and the identified transfer function when subjected 

to the validation signal is shown in Figs. 9(a)-(b). It can be seen that the output signals are very close, 
thus confirming that the system identification has performed properly. And the fitness percentage 
(FP) between the real output and estimated output was calculated for quantitative comparison, which 
is defined as Eq. (9). 
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Where N is the number of the acquisition data, yi is the measured system response, ݕො is the estimated 
response of the identified model. The calculation results are summarized in Table 5.  

Table 5. Comparison of FP of identified models 

Identified model Chirp excitation Validation excitation 

Gc(s) 77.9% 81. 4% 

G(s) 97.2% 90.5% 

It is clearly observed from the validation test that the identified model considered in this study 
performs well. Comparing the FP in Table 5, it is noted that the proposed model G(s) performs better 
than the widely used model Gc(s). Consequently, the identified model G(s) with the delay element is 
chosen to represent the real plant. 

(a) Time responses (b) Frequency responses 
Figure 9. Comparison of system responses with the validation signal excitation 

4. Controller Design 

The poles placement method (PPM) is a well-known approach employed in the feedback control. 
It offers the flexibility to relocate the dominate poles of the closed loop system to achieve desired 
performances. PPM is very desirable for feedback control, as the location of the poles corresponds 
directly to the eigenvalues of the system, which controls the characteristics of the closed loop 
response [31]. It is known that the poles of symmetric structural systems are complex with real and 
complex parts. The poles of the proposed smart structure are related to modal damping ratios and 
natural frequencies by Eq. (10) 
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Except the pole corresponding to the inertia element of the identified model G(s), the locations 
of the poles corresponding to the first two modes are plotted in Fig. 10.  
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Figure 10. Locations of poles corresponding to the first two modes 

Mathematically, if the dominant complex-conjugate poles lie close to the imaginary axis, the 
system transient response exhibits excessive oscillations and it may be very slow. Therefore, to 
guarantee fast and well-damped transient response characteristics, it is necessary to place the closed-
loop poles in a particular region far away from the imaginary axis. It can be observed from Fig. 10 
that both the two pairs of poles locate fairly close to the imaginary axis. Thus, both the two pairs of 
poles need to be relocated to get a better performance of the system [32].  

Compared with the polynomial form, the state space approach is more convenient in designing 
the controller. As it offers the designer to select n independent gains for a system, the arbitrarily 
desired poles is achieved. The state space representation of the system is written as Eq. (11) 
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Where y(t) is the output vector, in our case is the voltage output of strain sensors, and u(t) is the input 
vector, it is the pre-amplified voltage to the piezoelectric actuators. x(t), A, B, C and D are the state 
variable vector, state matrix, control matrix, output matrix and direct transfer matrix, respectively. 
Those parameters are defined as 
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Where n is the degree of the denominator of the identified model G(s), and in our case is 5. pn, pn-

1, …, p1 and p0 are the coefficients of the denominator of G(s) in descending powers of s. qn, qn-1, …, q1 

and q0 are the coefficients of the numerator of G(s). 
The state space equations must be controllable in order to implement the PPM. Thus, system 

observability and controllability matrices are calculated to ensure all the states are controllable and 
observable. Once those are determined, poles of the closed loop system could be placed at any desired 
location by means of state feedback through an appropriate state feedback gain matrix. The feedback 
control u(t) can be defined as Eq. (13) 

 ( ) ( )u t t= −Kx   (13) 
Where K is the state feedback gain matrix. Substituting Eq. (13) into Eq. (11) gives Eq. (14) 

 ( )( ) ( )t t= −x A BK x   (14) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 January 2017                   doi:10.20944/preprints201701.0038.v1

http://dx.doi.org/10.20944/preprints201701.0038.v1


 11 of 19 

 

The eigenvalues of matrix (A-BK) are the closed loop poles of the controlled system, which 
determine the closed loop performance of the system. If the locations of the desired poles are 
determined, the feedback gain matrix can be solved using Eq. (15) 

 ( )
1

( )
g

i
i

s s p
=

− − = −∏I A BK   (15) 

Where pi is the desired closed loop poles, g is the poles number. 
For effective vibration suppression, it is necessary to choose the closed loop poles appropriately. 

In practice, if the desired closed loop poles are placed far from the left of the imaginary axis, the 
voltage delivered by the controller might exceed the actuator limits, thus possibly destabilizes the 
closed loop system; Furthermore, the generated voltage may oscillate too fast in order to control the 
system, and a noise amplification will be caused, which leads to a possible excitation of the high 
frequency modes of the system. Consequently, the spillover effect is unavoidable. On the other hand, 
a close location of closed loop poles may lead to a slow closed loop response. Therefore, a compromise 
needs to be found between the response time and control force. 

To achieve the desired damping characteristics of the target modes, without affecting the natural 
frequencies of the structure, the best solution is to adjust only the real part of the dominant poles. As 
it is known, the dynamic response of a second order system has no vibration and achieves a stable 
state in a short time when the damping ratio is 0.707. So the optimal locations of the desired poles 
can be attained when the closed loop damping ratio is set to be 0.707. The basic idea of this method 
is illustrated in Fig. 11. The comparisons between the relocated closed loop and open loop poles are 
listed in Table 6. 

Table 6. Comparisons between the closed loop and open loop poles 

Open loop poles Open loop damping ratio Closed loop poles Close loop damping ratio

-0.036±9.33i 0.004 -6.59±9.33i 0.707 

-0.21±56.9i 0.004 -40.23±56.9i 0.707 

 

Figure 11. Optimal locations of the closed loop poles 

5. Simulations 

To evaluate the effectiveness of the proposed controller, simulations of system response in the 
closed loop were performed with the above derived transfer function G(s). The excitation signal was 
a summation of the two sinusoidal signals of modal frequencies for a period of 10 s at 0.5 V. A 
saturation block with limits of ±5 V was incorporated to limit the control effort, as it would be in 
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implementation. The simulated time responses for the open and closed loop system in a total period 
of 40 s are shown in Fig. 12. 

 
Figure 12. Simulated time responses for open and closed loop system 

As plotted in Fig. 12, the excited vibrations for the open loop system take more than 30 s to 
eliminate, while with the poles placement controller, the system vibrations die down in less than 15 
s. obviously, system vibrations are effectively suppressed. Furthermore, two sets of optional locations 
for the closed loop poles as given in Table 7, are chosen to verify the effectiveness of the proposed 
controller.  

Table 7. Comparisons of optional locations for closed loop poles 

Optional location Closed-loop poles damping ratio 

Closer location 
-3.73±9.33i 

0.4 
-22.76±56.9i 

Optimal location 
-6.59±9.33i 

0.707 
-40.23±56.9i 

Further location -7.93±9.33i 0.85 

After the locations of the desired poles are determined, Eq. (15) can be rewritten as 

 ( )
2

1

ˆ( ) ( )( )d i i
i

s s p s p s p
=

− − = − − −∏I A BK   (16) 

Where pi and ̂݌௜	are the complex-conjugate poles, and pd is the pole corresponding to the first-order 
inertia element. Then, the feedback gain matrix can be solved using Eq. (16). 

Simulation results with different locations of closed loop poles are illustrated in Figs. 13(a)-(b). 
It can be seen that a further location of the closed loop poles leads to a better control performance, 
but a severer spillover phenomenon is caused. On the other hand, the spillover phenomenon is 
avoided with a closer location of the closed loop poles, but the effectiveness of the controller decreases 
unavoidably. 
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(a) Time response of the closed loop system (b) Control voltage of PZT actuators 

Figure 13. Simulation results with different locations of the closed loop poles 

6. Experiments 

The identified model combined with the proposed controller was implemented on the 
experimental setup as. The controller was tested in the real time data acquisition system with the 
same sampling frequency of 200 Hz. The experimental setup was excited using the same excitation 
signal used in simulation. The open loop test was conducted to view the results in the absence of the 
controller. And the comparisons of the free vibrations (without control) results between simulation 
and experiment are shown in Fig. 14. It is clear that the experimental results are in good agreement 
with simulation for the open loop test. It should be pointed out that the amplitude of the time 
response in simulation is a little larger than that in experiment. This is because the identified model 
G(s) corrects for the neglected modes.  

 

Figure 14. comparisons of free vibration results between simulation and experiment 

In addition, the tip displacement measured by the laser displacement sensor is plotted in Fig. 15. 
It can be seen that the uncontrolled tip displacement of the manipulator still has an amplitude of 
0.25mm, after a damping period of 60 s. The time taken for the vibration to settle down is so long that 
vibration control must be carried out to accelerate this process. 
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Figure 15. Tip displacement measured by the laser displacement sensor 
Next, the controller with the optimal locations of desired poles was implemented. The closed 

loop time responses with the PPM are shown in Fig. 16(a). It can be seen that the system vibrations 
are well suppressed with the proposed controller, and the damping period of the vibration response 
is shortened significantly. Furthermore, the power spectral density comparisons for 10 s to 25 s are 
shown in Fig. 16(b). Compared with the responses of the open loop, the measured magnitude at the 
first resonant frequency drops from 5.6 dB to 4.1dB, and a drop of 2.3dB is observed for the second 
resonant frequency. Evidently, substantial drops are observed at the first two resonant frequencies. 
Moreover, the closed loop time responses for the simulated and experimental results mach closely as 
shown in Fig. 17. It is noted that the control efficiency in experiment is a little better than that in 
simulation. This is because the amplitude of time response in simulation is a little larger than that in 
experiment as shown in Fig. 14. And the measured tip displacement is shown in Fig. 18. After a 
damping period of 13 s, the amplitude of the controlled tip displacement reduces to 0.05 mm. Thus, 
a quick vibration convergence is achieved with the proposed controller. 

(a) Time response (b) power spectral density 

Figure 16. Comparisons of experimental responses between the open and closed loop 
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Figure 17. Comparisons of the closed loop time responses 

Figure 18. Comparisons of the measured tip displacement 
To further evaluate the performance of the controller, the same structure was subjected to an 

external disturbance by the electromagnetic vibrator (EMV). The open loop (without control) and 
closed loop (with the controller) time responses are shown in Fig. 19(a). In the absence of the 
controller, the uncontrolled response measured by the strain sensors still has an amplitude of 0.14 V 
after a damping period of 50 s, while now is suppressed to 0.05V within 9 s. and the power spectral 
density comparisons for a period of 25 s are presented in Fig. 19(b). 

(a) Time response (b) power spectral density 

Figure 19. Comparisons of experimental responses excited by the EMV 

It is noticed that the first two vibration modes are well suppressed. This is expected to happen 
since the first two modes, corresponding to the first two pairs of dominant poles, are the ones that 
are mostly needed to be diminished. Moreover, it is also interesting to notice from Fig. 19(b) that the 
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three higher modes (the third, fourth and fifth peaks), excited by the impulse excitation of the EMV, 
also experience a small attenuation. Even though the corresponding poles have not been changed, 
this might be the influence of the first two pairs of poles that have been relocated. As the three higher 
vibration modes have fast convergence speed in the time domain, they are not dominant to affect the 
system response. The induced vibrations die down very quickly with the proposed controller as 
compared in Fig. 20.  

 

Figure 20. Comparisons of measured tip displacement excited by the EMV 
The amplitude of the controlled tip displacement reduces to 0.05 mm after a damping period of 

13 s, while the damping period takes more than 60 s without the controller. Besides, it is necessary to 
notice as the peak value of the measured vibration response exceeds the range of the A/D board (±10 
V) as plotted in Fig. 19(a); control saturation of actuators is inevitable. The control voltage applied on 
actuators is depicted in Fig. 21. 

 
Figure 21. Control voltage applied on actuators 

Finally, experimental results of the poles placement controller with different locations of the 
closed loop poles are compared in Figs. 22(a)-(d). Significant attenuation of measured time responses 
measured by the strain sensors can be seen for the two cases, namely the further location of poles 
with damping ratio 0.85 (-48.37±56.9i, -7.93±9.33i) and the optimal location of poles with damping 
ratio 0.707(-40.23±56.9i, -6.59±9.33i).  
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(a) Measured time response by strain sensors (b) power spectral density 

(c) Measured tip displacement (d) Control voltage applied on the actuators 
Figure 22. Comparisons of experimental results with different locations of poles 

However, it is important to point out that the measured time responses with the further location 
of poles decays a little slower than that with the optimal location of poles in Fig. 22(a). The 
experimental results show the control effectiveness reduces with a further location of poles, which is 
different from simulations. In the case of further location of poles, it is observed that vibration 
responses of the first two modes are well suppressed, and a larger attenuation of the first mode is 
achieved in Fig. 22(b), compared with the optimal case. But peaks corresponding to the other three 
higher modes (the third, fourth and fifth peaks) have larger amplitudes than that in the open loop 
case. All these can be attributed to the fact that the desired closed loop poles are placed too far from 
the imaginary axis; hence the control voltage delivered by the controller severely exceeds the system 
limits, which lead to a severe control saturation phenomenon as demonstrated in Fig. 22(d). 
Furthermore, the spillover effect is caused by the control saturation, and vibrations of the higher 
modes are excited. Those results are further illustrated by the measured vibration response of the 
beam tip in Fig. 22(c). At the beginning period (0-1s), vibrations of the higher modes are excited due 
to the severe spillover effect, thus the peak values of tip displacement with the further location of 
poles are slightly larger than that with the optimal case. As vibrations of the higher modes converge 
quickly in the time domain, the spillover effect disappears during the periods of 4-6s, and the control 
force of the actuators is mainly used to deal with vibrations of the first two modes. Correspondingly, 
the control effectiveness with the further location of poles is better than that with the optimal case in 
the period of 4-6s. 

In summary, locations of the closed loop poles must be carefully determined to implement the 
poles placement controller. The effectiveness of the optimal multi-poles placement method is 
validated by experiments. Multi-mode vibrations of the smart flexible manipulator are well 
suppressed with the proposed controller. 
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7. Conclusions 

Experimental identification and multi-mode vibration suppression of a smart flexible 
manipulator bonded with non-collocated piezoelectric actuators and strain sensors are conducted in 
this paper. A reduced order transfer function representing the physical system is proposed, and a 
first-order inertia element is added to the model for experimental identification. An optimal multi-
poles placement controller is proposed and implemented on the structure. Both comparative 
simulated and experimental results validate the effectiveness and feasibility of the proposed 
controller. The conclusions of this study can be summarized as follows: 

In order to descirbe the smart flexible manipulator system, a reduced order transfer function 
model with relocated zeros compensating for the neglect of higher modes is proposed. And a first-
order inertia element representing the non-collocation of the sensors and actuators is added to the 
model for system identification. Comparative results show the identified model match closely with 
the experimental results both in the time and frequency domains, and a fit of 97.2% is achieved in the 
identification results. The validation test with an excitation of several sinusoidal signals further 
validated the excellent performance of the proposed model. 

An optimal multi-poles placement controller is designed and implemented on the structure. The 
optimal locations of the closed loop poles are determined at the best damping ratio 0.707. Compared 
with different locations of poles, the best performance of the optimal locations of poles is 
demonstrated by simulations. Experimental results show vibrations of the first two modes of the 
manipulator are significantly diminished as expected. Moreover, vibrations of the higher modes are 
also slightly suppressed with the proposed controller. In addition, if a further location of poles is 
chosen, the spillover effect will be caused due to the control saturation of actuators, and vibrations of 
the higher modes will be excited. Consequently, the best performance for the optimal locations of the 
closed loop poles is validated, and the effectiveness and feasibility of the proposed controller are 
demonstrated.  
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