Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effect of Short Term Water Exposure on the Mechanical Properties of Halloysite Nanotubes-Multi Layer Graphene Reinforced Polyester Nanocomposites

Version 1 : Received: 4 January 2017 / Approved: 5 January 2017 / Online: 5 January 2017 (09:34:10 CET)

A peer-reviewed article of this Preprint also exists.

Saharudin, M.S.; Atif, R.; Inam, F. Effect of Short-Term Water Exposure on the Mechanical Properties of Halloysite Nanotube-Multi Layer Graphene Reinforced Polyester Nanocomposites. Polymers 2017, 9, 27. Saharudin, M.S.; Atif, R.; Inam, F. Effect of Short-Term Water Exposure on the Mechanical Properties of Halloysite Nanotube-Multi Layer Graphene Reinforced Polyester Nanocomposites. Polymers 2017, 9, 27.

Abstract

The influence of short term water absorption on the mechanical properties of halloysite nanotubes-multi layer graphene reinforced polyester hybrid nanocomposites has been investigated. The addition of nano-fillers significantly increased the flexural strength; tensile strength and impact strength in dry and wet conditions. After short term water exposure; the maximum microhardness; tensile; flexural and impact toughness values were observed at 0.1 wt% MLG. The microhardness increased up to 50.3%; tensile strength increased up to 40% and flexural strength increased up to 44%. Compared to dry samples; the fracture toughness and surface roughness of all types of produced nanocomposites were increased that may be attributed to plasticization effect. Scanning electron microscopy revealed that the main failure mechanism is caused by the weakening of nano-filler-matrix interface induced by water absorption. It was further observed that synergistic effects were not effective at concentration of 0.1 wt% to produce considerable improvement in mechanical properties of produced hybrid nanocomposites.

Keywords

nanocomposites; halloysite nanotubes; multi-layer graphene; water absorption; mechanical properties

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.