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Abstract 
 

Urban sprawl propelled by rapid population growth leads to the shrinkage of productive 

agricultural lands and pristine forests in the suburban areas and, in turn, substantially alters 

ecosystem services. Hence, the quantification of urban sprawl is crucial for effective urban 

planning, and environmental and ecosystem management. Like many megacities in fast growing 

developing countries, Chennai, the capital of Tamilnadu and one of the business hubs in India, has 

experienced extensive urban sprawl triggered by the doubling of total population over the past 

three decades. We employed the Random Forest (RF) classification on Landsat imageries from 

1991, 2003, and 2016, and computed spatial metrics to quantify the extent of urban sprawl within 

a 10km suburban buffer of Chennai. The rate of urban sprawl was quantified using Renyi’s 

entropy, and the urban extent was predicted for 2027 using land-use and land-cover change 

modeling. A 70.35% increase in urban areas was observed for the suburban periphery of Chennai 

between 1991 and 2016. The Renyi’s entropy value for year 2016 was ≥ 0.9, exhibiting a two-fold 

rate of urban sprawl. The spatial metrics values indicate that the existing urban areas of Chennai 

became denser and the suburban agricultural, forests and barren lands were transformed into 

fragmented urban settlements. The forecasted urban growth for 2027 predicts a conversion of 

13670.33ha (16.57 % of the total landscape) of existing forests and agricultural lands into urban 

areas with an associated increase in the entropy value of 1.7. Our findings are relevant for urban 

planning and environmental management in Chennai and provide quantitative measures for 
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addressing the social-ecological consequences of urban sprawl and the protection of ecosystem 

services. 

Key-words: Random forest classification; urban sprawl; spatial metrics; Renyi’s entropy; 

sustainability; land change modelling; remote sensing; urban growth model; Chennai 

 
1. Introduction 
 
Human activities have been gradually transforming ecosystems in urban, near urban, and rural land 

[1]. The most significant increase in population has been observed in the developing countries [2]. 

By 2030 the world’s population is expected to increase by 72%. In cities of  more than 100,000 

inhabitants population may surge by 175% [3]. The expansion of cities causes urban sprawl, 

characterized by the extension of settlements with the decrease of agriculture, water bodies, and 

forest land. Studies on urban sprawl are necessary as they support different fields of science such 

as transport planning, landscape architecture studies, urban planning, land-use planning, 

economics, and ecosystem services [4]. 

In developing countries like India, people are moving from the villages toward the cities for better 

social life, education, and income [5]. The increasing population of cities directly affects the land-

use and land-cover and land-changes, causing land transformation, land scarcity, and deforestation 

[6,7]. The development of cities often causes the movement of urban and rural poor into the 

bordering lands of cities [8]. The great movement of urban poor and extension of cities with the 

sudden development of industries and IT sectors cuts the bordering productive agriculture land, 

encroaches on water bodies, and transforms wild lands [9]. 

Much attention has been paid to urban growth of emerging cities in India [10]. The uncontrolled 

urban sprawl in Chennai city is having negative consequences regarding air pollution, housing, 

overcrowding, encroachment, slums, disposal of waste, increasing settlements, water availability, 

water pollution, and sewage [11]. The uncontrolled urban sprawl also leads to various 

environmental impacts, such as higher energy utilization, disturbance of species diversity, flood 

risk, and ecosystem fragmentation [4]. Predicting urban growth and associated impacts on 

ecosystem services will contribute to better urban planning with the design of eco-friendly cities 

that avoid the major negative consequences of urban sprawl [1,12].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2017                   doi:10.20944/preprints201701.0023.v1

Peer-reviewed version available at Entropy 2017, 19, , 163; doi:10.3390/e19040163

http://dx.doi.org/10.20944/preprints201701.0023.v1
http://dx.doi.org/10.3390/e19040163


3 
 

The spatial and physical characteristics of urban features, urban patterns and its forms may be 

quantified using spatial metrics [13]. These indices can be obtained directly from thematic maps 

derived from remote sensing data [14]. The availability of remotely sensed data from multiple 

dates enables us to carry out studies on urban modeling [8], urban landscape pattern analysis [15], 

and urban growth studies [13,16]. Globally, different studies on urban growth and model analysis 

have been carried out [8,9,12,15,17]. However, with a few exceptions, such studies are scarce for 

India [16,18–20]. The city of Chennai, India has been one of the fastest growing urban areas in the 

country in the last three decades. This has resulted in traffic congestion, air and water pollution, 

uncontrolled increase of population, encroachment, water and land scarcity, the growth of slums, 

and the degradation of vegetation within and in the peripheral areas of the city [21]. Thus, such a 

study would benefit urban planners that need to understand the spatiotemporal changes of urban 

areas to better address these environmental problems and, at the same time, to ensure the provision 

of basic infrastructures and facilities without disturbing ecosystems. This study (1) studies land-

use and land-cover changes from 1991 to 2016; (2) examines the spatiotemporal urban growth 

pattern using entropy and spatial metrics; and (3) predicts the urban growth and the urban sprawl 

for the year 2027.   

2. Study area 

Chennai is the capital city of Tamilnadu, India, and gateway of south India (Figure 1). The 

geographical location of Chennai is 13.04°N 80.17°E with an elevation between 6m and 60m 

above the mean sea level. It covers an area of about 42,600ha. Due to the high urbanization in the 

Chennai district, most of the residential amenities, industries and factories, universities, and 

educational institutes are moving toward the periphery of Tiruvallur (North Chennai) and 

Kanchipuram (South Chennai) districts [21]. For this reason, this study also covers the 10km 

adjacent area of Chennai city (82,488.16ha) from Tiruvallur and Kanchipuram district for 

analyzing urban sprawl.  

Chennai city is currently home to 8,233,084 people [22] is India’s 4th largest city, and is the main 

business hub in the country. Chennai has witnessed a remarkable development of IT sectors, 

educational institutes, health care, and retail and manufacturing industries in recent decades [18]. 

Chennai is one of the main Indian cities for tourism and includes several UNESCO world heritage 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2017                   doi:10.20944/preprints201701.0023.v1

Peer-reviewed version available at Entropy 2017, 19, , 163; doi:10.3390/e19040163

http://dx.doi.org/10.20944/preprints201701.0023.v1
http://dx.doi.org/10.3390/e19040163


4 
 

sites, such as monuments and ancient temples. The city is well engaged with trade, employment, 

and business. Chennai is also rich in natural resources [23]. As a result, the population has 

increased rapidly in the last two decades [18]. 

The city coastline is about 25.60km and has a lengthy natural urban beach (Marina beach) [24]. 

The city also has a dense forest, which is the only habitat of the Great Indian Horned Owls and 

home to spotted deer, mongoose, bonnet monkeys, and many species of insects, snakes, and birds 

[25]. The mangroves along the coastline, iluppai, caper, and vanni trees and trinicomalee teak are 

part of the city vegetation [11].  

Figure 1. Location of the study area. 

3. Data and methods 

3.1 Data 

Two decades of Landsat Thematic Mapper TM satellite images with 30m resolution for years 

1991, 2003, and 2016 were used (Table 1). These Landsat data were downloaded without charge 

from the Unites States Geological Survey (USGS) portal [26] using a World Geodetic System 

(WGS) 1984 projection. 

Table 1. Data description. 

Date Sensor Path/Row Resolution Format 
August 25th, 1991 Landsat-5 142/51 30m GeoTIFF 
May 9th, 2003 Landsat-7 142/51 30m GeoTIFF 
July 4th, 2016 Landsat-7 142/51 30m GeoTIFF 
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3.2 Satellite image pre-processing and land-use and land-cover mapping 

The availability of multi-temporal data obtained from the remote sensing techniques supports the 

development of change mapping and detection for land-use and land-cover (LULC) [9]. The 

LULC is mainly useful for environmental studies, studies on urban dynamics and urban sprawl 

modelling, and studies on sustainable development [27]. Therefore, the urban sprawl studies, as is 

the case with this research, should rely on updated terrain land-use and land-cover classification. 

Figure 2 shows the flow chart for image pre-processing and classification, and validation.  

 
Figure 2. Methodology followed for image pre-processing, classification, and validation. 

 

3.2.1 Image pre-processing 

The set of Landsat ETM data were initially geo-corrected and rectified. The whole scene sizes of 

the satellite imagery of ETM data were cropped to the study area. The study area includes Chennai 

city administrative area and a 10km buffer from the city boundary. The final subset imagery of the 

study area was obtained using ENVI Imagine [28] for further classification. 
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3.2.2 Image classification in R programming 

Object-based classification in R programming is becoming more advantageous for classifying 

high-resolution satellite image at object level instead of pixel level [29]. Random forest (RF) 

classification is a machine learning algorithm adequate for object-based classification, which  

produces automatic and accurate results compared to other conventional classification methods 

[30]. We used RF package in R programming for land-use and land-cover classification [31]. Five 

land-use classes were extracted  from the resulting image classification [32]. The categories and 

their corresponding classes are described in Table 2. 

Table 2. Land-use and land-cover nomenclature. 

No LULC classes Land uses included in the class 
1 Water bodies Rivers, reservoir, lake, streams, open water, and ponds 
2 Urban Residential, industries, IT sectors, private and government 

buildings, roads, airport, and other related built-up areas 
3 Agriculture  Agriculture land and plantation  
4 Bare land Dry land, non-irrigated lands, ready for construction, and real estate 

plots 
5 Vegetation Forest and shrubs 

The spatially and spatially-cohesive features on the ground are divided by running the 

segmentation algorithm in the ENVI feature extraction tool [33]. This segmentation process is used 

to locate several regions with maximum homogeneity. The feature in the region can be vegetation 

covers of parallel structure, appearance, and color. The segmentation algorithm reduces the 

heterogeneity of image features or objects for a given resolution [34]. The segmentation image 

from classified raster data is obtained by providing minimum and maximum threshold values of 

pixel and population of pixels that can be contained in a region.  

3.2.3 Accuracy assessment 

Accuracy assessment evaluates the performance of the image classification procedure [35]. This 

study used kappa coefficients [36] to analyze the accuracy of three-decade classified images. The 

producer data were obtained from Google Maps; thus, user and producer accuracies were 

calculated through a confusion matrix. The kappa coefficient index was calculated for the three 
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different date land-use classified images in eCognition Developer [37]. 

3.3 Spatiotemporal urban sprawl analysis  

3.3.1 Urbanization analysis using spatial metrics 

Different landscape metrics were calculated in FRAGSTATS software [38] to understand the 

pattern of urban growth from 1991 to 2016 (Table 3). These metrics were used to quantify and 

compute the spatial characteristics at different levels: patch level, class area level, and the complete 

landscape level. The selected landscape metrics were CA, NP, LPI, CLUMPY, AI, FRAC_AM, 

and CONTAG [39]. 

Table 3. Spatial metrics used in the study. 

Landscape 
metrics 

Formula Description Range 

Class Area 
Metrics = 	 110000  

aij = area in m2 of patch ij.      

Total amount of 
class area in the 
landscape 

CA>0,without 
limit 

Patch Size =  

ni=total number of patches in the area of patch type i (class).  

Number of 
patches of 
landscape classes 
(Built up and 
non-built-up) 

NP≥1,without 
limit 

Largest 
patch Index = (100) 

aij = area in m2 of patch ij and A= landscape area in total(m2) 

Percentage of the 
landscape 
included by the 
largest patch 

0<LIP≤100 

Clumpiness 
Index 

= [( − 	)/ 	 < & < 5, else − 	/		1 −  ] 

gii= number of like joins among pixels of patch type, i based 
double-count process and gik= number of like joins among 
pixels of patch type, k based double-count process 

Pi= amount of the landscape occupied by patch type 

Measure the 
clumpiness of 
patches in urban 
areas   

-1≤ CLUMPY 
≤ 1 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2017                   doi:10.20944/preprints201701.0023.v1

Peer-reviewed version available at Entropy 2017, 19, , 163; doi:10.3390/e19040163

http://dx.doi.org/10.20944/preprints201701.0023.v1
http://dx.doi.org/10.3390/e19040163


8 
 

Aggregation 
Index 

= [ 	/		 ] (100) 
gii= number of like joins among pixels of patch type, i based 
double-count process and maxgii=maximum number of like 
adjacencies among pixels of patch type  

Calculates the 
adjacency 
between similar 
patch types 

0 ≤ AI ≤ 100 

Fractal 
Index 
Distribution 

= [ 		( / ) ] 
aij = area in m2 of patch ij.      

To measure area 
weighted mean 
patch fractal 
dimension 

1 ≤ 
FRAC_AM≤2

Contagion = [1 + [( 	){ / }{ln( ) [
/ ]/2 ln( )]100 

pi= amount of the landscape employed by patch type (i) class 
and gik= number of like joins among pixels of patch type, i 
and k based double-count process 

m= number of patch classes (types) existing in the landscape 

Defines the 
heterogeneity of 
a landscape 

Percent<Cont
agion≤100 

 

3.3.2 Urbanization analysis using Renyi’s entropy 

Renyi’s entropy was calculated to estimate urban sprawl between 1991 and 2016. This concept is 

used in information theory and image processing analysis such as information entropy [40]. To 

estimate the urban sprawl of Chennai city over three decades, the land-use and land-cover map 

was separated into two built-up and non-built-up classes and their spatial and temporal variations 

were taken into consideration. 

Renyi´s entropy is based on knowledge theory and acts as an indicator of spatial dispersion or 

intensity to examine any geographic components [40]. We calculated Renyi’s entropy for each 

period based on the total number of patches (N) in the LULC and their length (Pi). The extended 

version of Shannon’s information defining a comprehensive entropy [41] of order Hα, where α ≥ 

0 and α ≠ 0 is described as (1):                                                                                                                                  

                                                  	 = 	 ∑                                                                (1) 
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The Renyi’s entropy values vary from 0, indicating very dense distribution in a selected region, to 

1, indicating unequal distribution / dispersed across space [41]. 

3.4 Urban growth model  

Land change modeler in IDRISI/TERRSET [42] was used to predict the urban growth of the study 

area in 2027. The land change modeling process consists of four steps: (1) urban change analysis, 

(2) transition modelling, (3) change prediction, and (4) validation. Figure 3 shows the methodology 

followed for change analysis and modelling.  

Figure 3. Methodology applied for spatial and temporal analysis and modelling, and validation.  

 

4. Results and Discussion 
 

4.1 Land-use and land-cover classification and accuracy assessment  

Figure 4 shows the LULC maps obtained for the different time periods using Random Forest 

classification in R programming. The accuracy of the derived maps was examined in eCognition 

software [43] with training samples collected from Google maps. The overall accuracy for the 

LULC maps of 1991, 2003, and 2016 were 0.92, 0.97, and 0.92 respectively. These values were 

above the satisfactory level for land-use and land-cover classification. The accuracy assessment 

values of several classes for the different corresponding years is given in Table 4.  
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Figure 4. LULC of the three periods (1991, 2003, and 2016). 
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Table 4. Summary of confusion matrix for the classified images 1991, 2003 and 2016. 

Classes 1991 2003 2016 
 Producer 

Accuracy 
User 

Accuracy 
Producer 
Accuracy 

User 
Accuracy

Producer 
Accuracy 

User 
Accuracy 

Urban 91.05 92.32 82.02 98.09 78.12 97.25 
Vegetation 98.45 93.58 93.04 97.12 84.56 89.78 
Agriculture 96.68 91.56 98.56 86.45 96.04 97.31 
Water bodies 93.65 92.05 84.51 89.47 92.78 92.23 
Bare land 92.01 94.02 94.03 88.12 76.05 95.77 

Overall accuracy  92  97  91  

Kappa 0.92  0.97  0.92  

4.2 LULC changes and analysis 

The LULC maps of three different periods were quantified and the results are in Table 5. The 

quantified result clearly shows that the study area has experienced a remarkable change among 

the land classes. From 1991 to 2016 the growth of built-up more than tripled, i.e. an increase of 

about 37,919.81ha. This transformation influenced several classes, especially the agriculture and 

vegetation land, which decreased about 3,802.70ha and 9,923.32ha respectively. The bare land 

also decreased around 30.3%, i.e. nearly 100%. The water bodies increased about 1,451.79ha 

between 1991 and 2003, but decreased slightly between 2003 and 2016 (about 651.65ha).  

Table 5. Land-use and land-cover in percentage and hectares during the three periods. 

Land class 1991 2003 2016 
Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) 

Built-
up/urban 

24.38 
 

20,110.61 48.45 
 

39,965.51 
 

70.35 
 

58,030.42 
 

Agriculture 11.38 
 

9,387.15 
 

27.71 
 

22,857.47 
 

6.77 
 

5,584.44 
 

Vegetation 26.28 
 

21,677.89 
 

11.27 
 

9,296.41 
 

14.25 
 

11,754.56 
 

Water 
bodies 

6.45 
 

5,320.48 
 

8.21 
 

6,772.27 
 

7.42 
 

6,120.62 
 

Bare land 31.51 
 

25,992.02 
 

4.36 
 

3,596.48 
 

1.21 
 

998.10 
 

Total  82,488.16 
 

 82,488.16 
 

 82,488.16 
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4.3 Analysis of landscape metrics  

The spatial metrics were calculated with FRAGSTATS tool [38]. The values obtained and changes 

in percentage are in Table 6. The spatial variations and metrics were estimated for the built-up 

areas, indicating that the urban area increased by 98.72% between 1991 and 2003. Likewise, the 

built-up area between 2003 and 2016 also increased by 45.20%. When compared to 2003, the 

growth rate of urban area in 2016 is becoming slower (about 3%). The urban areas increased by 

188.55% during the last three decades.  

Patch size (NP) calculation helps to quantify the level of fragmentation, i.e. aggregation or 

disaggregation in the built-up landscape [16]. The number of patches has significantly increased 

(22.49%) between 1991 and 2003. Similarly, the NP increased about 37.74% between 2003 and 

2016. The number of built-up patches noticeably increased in number during the last two decades. 

The patches at the center of the urban area were clumped after 2003 and more fragmented during 

2003 and 2016. 

The proportion of the landscape area covered by the largest urban patch is quantified by the Largest 

Patch Index (LPI) landscape metrics [18]. The LPI increased by 127% between 1991 and 2003. 

The higher value in the number of urban patches illustrates a denser urban growth, but it decreases 

moving away from the center, showing the existence of semi-urban or peri-urban fragmented urban 

patches. However, LPI increased by 39.21% from 2003 to 2016, indicating a compact urban 

growth and presence of new dispersed settlements.   

In order to identify and examine the patch aggregation level, the clumpiness index was used. This 

landscape metric measures the clumpiness of urban patches [13]. The clumpiness in 1991 is -1, 

showing that the urban patch is maximally disaggregated. However, these values were 0.6 and 0.8 

in 2003 and 2016, respectively, indicating that the urban patches are becoming aggregated or 

clumped. The patch clumpiness increased by 180% from 1991 to 2016, indicating that the urban 

patch became more clumped.  

The aggregation index is computed from an adjacency matrix to measure the aggregation amount 

of the urban patches. The value of the aggregation index in 1991 shows the aggregation level as 9, 

indicating that the urban center is more clumped, and that the outskirts or suburbs have few 

patches. However in the following years (2003 and 2016) the suburbs and peripheral zone had a 
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highly fragmented progression and were more clumped in the city region. The patch aggregation 

in the urban structure clearly indicates that the city is becoming a more homogenous urban patch 

and that the suburbs are also developing with clumped patches as well as uneven patches. The 

growth of homogeneous and heterogeneous urban patches is destroying other classes such as 

vegetation, agriculture, and bare land, and transforming these landscapes into a single large urban 

patch.  

FRAC_AM increased between 1991 and 2003 as a result of contained urban growth with 

reasonable shape complexity (the values for this metric are marginally greater than 1). 

Nevertheless, the FRAC_AM value between 2003 and 2016 was 1.83, indicating that the landscape 

had a higher range of urban growth and more dispersed urban sprawl. The value between 2003 and 

2016 has increased by 44.09%. The fall in the CONTAG value between 1991 and 2003 resulted 

from a higher fragmentation. However, this value increased slightly between 2003 and 2016 

(4.10%) showing that the fragmented urban area is becoming denser. Figures 5 shows different 

temporal urban settlement growth signatures of spatial metrics.  

Table 6.  Landscape indices and changes in percentage. 

   

Metrics 

Year Changes in urban structure 

1991 2003 2016 Δ%=1991-2003 Δ%=2003-2016 

CA 20,110.61 39,965.51 58,030.42 98.72 45.20 

NP 289 354 477 22.49 34.74 

LPI 2.14 4.87 6.78 127.57 39.21 

Clumpy -1 0.6 0.8 160 33.33 

AI 9 42 69 366.66 64.28 

FRAC_AM 1.12 1.27 1.83 13.39 44.09 

CONTAG 72.32 68.43 71.24 6.66 4.10 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2017                   doi:10.20944/preprints201701.0023.v1

Peer-reviewed version available at Entropy 2017, 19, , 163; doi:10.3390/e19040163

http://dx.doi.org/10.20944/preprints201701.0023.v1
http://dx.doi.org/10.3390/e19040163


14 
 

 

Figure 5. Different temporal urban settlement growth signatures of spatial metrics. 

 

 

    

 

4.4 Urban sprawl measurement using entropy 

In order to estimate the sprawl and urbanization pattern during the last three decades, the LULC 

maps of Chennai and its peripheral district area were classified into non-built-up and built-up areas. 

The classified result shows that the Chennai area covered by the built-up area proportion was only 

24.38% until 1991. This value has grown immensely, reaching 70.35% in 2016. The built-up and 

non-built-up area proportion has been switched during the last 25 years. The Renyi’s entropy 

calculation indicates that the Chennai city experienced high growth of the urban area between 1991 

and 2016. The entropy value of the urban area in 1991 was 0.4, showing a moderate urban sprawl. 
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In 2003 the entropy value was 0.5, which is above the threshold value of 0.5, denoting a higher 

development of urban sprawl. In 2016 the entropy value was closer to 1, indicating a high urban 

sprawl level. Table 7 shows the built-up and non-built-up area in the Chennai city in 1991, 2003, 

and 2016. 

Table 7. Built-up and non-built-up area in the Chennai city in 1991, 2003, and 2016. 

Land class 1991 2003 2016 

Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) 

Built-up 24.38 
 

20,110.61 48.45 
 

39,965.51 
 

70.35 
 

58,030.42 
 

Non-built-up 75.62 
 

62,377.55 
 

51.55 
 

42,522.65 
 

29.65 
 

24,457.74 
 

Total  82,488.16 
 

 82,488.16 
 

 82,488.16 
 

 

5.5 LULC changes and urban sprawl detection for year 2027  

The land-use and land-cover prediction for the year 2027 was carried out after model validation, 

by confronting the 2016 LULC map with the kappa variations. The kappa value had an acceptable 

level of accuracy to predict the 2027 LULC map. The kappa values obtained were more than 

satisfactory (Kno = 82%, K location = 84% and Kquantity = 81%). The simulated 2027 land-use 

map and LULC transition between 1991 and 2016 and predicted LULC for the year 2027 are 

shown in Figures 6.  

The quantification of the LULC map of 2027 shows the projected built-up area, which will be 

increased by about 70,836.76ha. To the contrary, the vegetation and agriculture are expected to 

decrease by 3,961.66ha and 701.35ha respectively. The increases of bare land (1,570.12ha) will 

occur as a consequence of transitions in vegetation, water bodies, and agriculture land. Table 8 

compares the quantities of the LULC maps of 2016 and the predicted map of Chennai for year 

2027. 
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Figure 6. Simulated LULC map for the year 2027. 

 

Table 8. Comparison of the LULC map of 2016 and predicted LULC map of Chennai 2027. 

Land-use Class 2016 2027 Forecasted changes in 2027 
in hectares in percentage 

Built-up/urban 58,030.42 
 

70,836.76  12,805.58  22.06 

Agriculture 5,584.44 
 

701.35 -4,883.09 -87.44 

Vegetation 11,754.56 
 

3,961.66 -7,792.9 -66.29 

Water bodies 6,120.62 
 

5,420.62 -700 -11.43 

Bare land 998.10 
 

1,570.12  572.02  57.31 

Total 82,488.16 
 

82,488.16  

 

In order to examine and visualize the spatial extension of the urban area in the predicted year 

(2027), the LULC of 2027 was classified into the built-up and non-built-up areas (Figure 7). The 

built-up areas amounted to 70.35% until 2016. This proportion increased to 85.87% in 2027. The 

Renyi’s entropy value of the predicted urban area in 2027 was 1.7, which is above the range value 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2017                   doi:10.20944/preprints201701.0023.v1

Peer-reviewed version available at Entropy 2017, 19, , 163; doi:10.3390/e19040163

http://dx.doi.org/10.20944/preprints201701.0023.v1
http://dx.doi.org/10.3390/e19040163


17 
 

of 1, indicating a complex growth of urban sprawl.  

Figure 7. Classified LULC map for the year 2027. 

 

5 Conclusions  

The purpose of computing urban models for a period of time help us to understand the growth of 

the urban area and regulate the land transformation and sustainability [44]. The application of GIS, 

RS, and geospatial modelling tools enables the assessment and modelling of land-cover changes 

and the study of urban growth [45].  

Land-use and land-cover maps of the Chennai city area for the years 1991, 2003, and 2016 were 

obtained using Random Forest classification with R programming. The computed maps provided 

a new perspective of the spatiotemporal distribution of the landscape in the study region. We found 

a fragmented urban growth in the outskirts of Chennai city, with the transformation of vegetation 

cover and agriculture land into settlements. The dense urbanization in the city region, quantified 

and analyzed using urban sprawl measurement and landscape metrics, raises challenges for 

sustainable urban planning and suitable land resource provision.   

The urban system in Chennai is extending toward the peripheral region of Kanchipuram and to the 

Thiruvalluvar district area. This growth has greatly impacted the landscapes with the loss of 
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valuable urban vegetation and agriculture land and outward sprawling. The land changes around 

the urban center have to become denser and a reasonable amount of the urban expansion in 

Tiruvallur (North Chennai) and Kanchipuram (South Chennai) is also observed. This development 

is characterized by the decreasing largest patch index (LPI) and by the increase in the amount of 

urban patches (NP) in 2027.  

The Chennai coastline had a remarkable urban growth between 1991 and 2016. Almost all the 

coastline of the study region is covered by urban settlements that negatively impact the mangrove 

forest [46] and the Savukku plantations [47]. This vegetation provides important ecosystem 

services, such as a natural shield from Tsunami, cyclones, and other ecological disasters [48].  

Between 1991 and 2003 16.3% of agriculture and 15.01% of vegetation was transformed into 

urban/built-up, and 20.44% of agriculture land was lost between 2003 and 2016, while 30.3% of 

bare land became urban settlement during 1991 and 2003. The absence of involvement in 

agriculture by the population, the urban clumpiness in the city center, and the increasing population 

are the main reasons for such massive land transformation. The decreasing amount of vegetation 

and agriculture land will have negative environmental impacts, such as habitat loss for native 

species including Great Indian Horned Owls, spotted deer, mongoose, bonnet monkeys, and 

golden jackals [11]. Also, the degradation of forest and farm land leads directly to increases in city 

temperature and air pollution levels [49,50]. Recent studies already reveal that Chennai is one of 

the most highly air polluted cities in India [22]. 

The Entropy sprawl measurement indicates that the urban landscape had a high progress rate of 

urban sprawl and dispersion of urban growth between 1991 and 2016. This is directly and 

significantly influencing the urban fringe. The predicted entropy value for 2027 is 1.7, indicating 

a very high growth of urban sprawl. 

Aggregated build-up, population growth, and land scarcity in the city are the reasons behind urban 

sprawl in the districts neighboring Chennai. Furthermore, increasing urban settlements also adds 

strain to sewage water disposal and waste management, both of which openly cause water and soil 

pollution [51]. Recent studies reveal that the threat of hydrological pollution of the Cooum river 

[52] and the coastal water in Chennai have been increasing due to the discharge of uncontrolled 

and non-treated sewage waters from domestic and commercial activities [53]. The rapid growth of 
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urban area also poses a waste management problem, as everyday the city produces about 0.71kg 

of garbage per capita [54]. The recent investigation on waste disposal and management of Chennai 

city found that burning waste in Chennai's dump yards at Perungudi and Kodungaiyur creates 

severe soil and air pollution, which cause several health hazards, including respiratory disorders 

and the threat of cancer for nearby residents and animals [55].  

The projected 2027 land-use and land-cover maps estimate an urban transition of 87% from 

agriculture land and 66% from vegetation, between 2016 and 2027. This projection and associated 

rapid transformation will most likely affect existing ecosystem services and the environment. At 

the same time, the bare land will increase at the expense of vegetation and agriculture classes. The 

growth and transformation of non-built-up area into the built-up area in the coming 11 years is 

expected to continue growing at an alarming rate.   

The computation and modelling of urban growth patterns emphasize the need for well-judged land-

use distribution and transformation, as well as the preparation of urban development policies 

giving importance to the sustainable deployment of natural resources. The land allocation strategy 

should conform to the land availability and capability classification of Chennai city to achieve 

sustainable urban expansion and development.  
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