Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 December 2016 d0i:10.20944/preprints201612.0088.v1

Article

A Weakly Pareto Compliant Quality Indicator

Emanuele Dilettoso, Santi Agatino Rizzo, Nunzio Salerno

Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania 95125, Italy
* Correspondence: santi.rizzo@dieei.unict.it.

Abstract: In multi-objective optimization problems, the optimization target is to obtain a set of
non-dominated solutions. Comparing solution sets is crucial in evaluating the performances of
different optimization algorithms. The use of performance indicators is common in comparing
those sets and, subsequently, optimization algorithms. A good solution set must be close to the
Pareto-optimal front, well-distributed, maximally extended and fully filled. Therefore, an effective
performance indicator must encompass these features as a whole and must be Pareto dominance
compliant. Unfortunately, some of the known indicators often fail to properly reflect the quality of
a solution set or cost a lot to compute. This paper demonstrates that the Degree of Approximation
(DOA) quality indicator, is a weakly Pareto compliant unary indicator that gives a good estimation
of the match between the approximated front and the Pareto-optimal front. Moreover, DOA
computation is easy and fast.
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1. Introduction

The optimized design of industrial applications is often problematic because of the
simultaneous occurrence of many conflicting targets [1-3]. In real-world optimization problems, the
decision maker needs to have a wide range of solutions to choose from [4]. Some optimization
methods solve a single multi-objective function by aggregating different objective functions [5-7].
The choice of weights is the major weakness to this approach [5]. Other multi-objective optimization
algorithms (MOOAs) search for a non-dominated solution set [8-10], i.e. a set of multiple alternative
solutions. This set is the Approximation Set in the decision space and the Approximated Pareto
Front (APF) in the objective functions space. The main goal of such algorithms is to provide an APF
matching the Pareto-optimal one. The problem is to assess how well the approximated front fits the
optimal one [11]. The notion of optimization algorithms performance involves evaluating the quality
of the solution and the required computational effort [12]. This proves troublesome in the case of
multi-objective optimization problems: a good approach would be to use a quality indicator (QI), i.e.
a function of the APF that simplifies the quantitative performance comparison of different
optimization algorithms. The simplest comparison method would be to check whether one APF is
better than another with respect to the Pareto dominance relations [11]. Thus, a QI must be able to
account for Pareto dominance to properly compare two different algorithms. This is known as
“completeness” with respect to Pareto dominance relations, and is the most desired property of a QI.
Moreover, when APFs are incomparable with respect to Pareto dominance relations, more
information is needed to compare the APFs provided by different MOOAs. In particular, a good
MOOA should [13-15]:

1. minimize the APF distance from the Pareto-optimal front;

2. obtain a good (usually uniform) distribution of the solutions found;

3. maximize the APF extension i.e., for each objective the non-dominated solutions should
cover a wide range of values (best case: the global optimum of each objective function must
be found);

4. maximize the APF “density” , i.e. high cardinality for the approximation set is desirable.

Each goal represents a desired feature of the APF: in the following we refer to them as closeness,
distribution, extension and cardinality, respectively. A wunary QI (UQI) estimates one
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non-dominated solutions set quality by means of a real number [16]; then it is useful to estimate the
effectiveness of a MOOA.

Several known UQIs have no or limited completeness as regards Pareto dominance relations
and are unable to take into account all the features listed previously. Few UQIs overcome these
limitations despite needing much computational effort.

This paper demonstrates the >-completeness of the UQI called Degree of Approximation
(DOA) [17]. Moreover it is proved its ability to take into account all the four goals as a whole.

To our knowledge, hypervolume is the only =-complete UQI, and for this reason is considered
the best UQI for comparing optimization algorithms. Nevertheless, the relation "<" differs from "<"
since the former accounts for the case in which an APF contains some solutions of another one but
the probability of this specific event is very low, and it can be considered null when the objective
functions’ space belongs to the set of real numbers. Therefore, DOA can be used to evaluate the
performance of optimization algorithms instead of the Hypervolume since it is proved that DOA is
>-complete. Note that the calculation of hypervolume is difficult as the number of objective
functions increases, while the calculation of DOA is usually very simple and fast even in the case of
many-objective optimization.

The paper is organized as follows. Section 2 recalls the definitions and terminology typically
used in multi-objective optimization related to the Pareto dominance concept. Section 3 outlines the
characteristics of a quality indicator and presents a review of the most common UQIs. Section 4
describes DOA in detail, while Sections 5 and 6 mathematically demonstrate its >>-completeness
>-completeness, respectively. Section 7 proves DOA compatibility with respect to the “not better”
dominance relation. Finally, Section 8 validates DOA with some examples to highlight its accounting
for closeness, distribution, extension and cardinality. Conclusions are drawn in Section 9 and minor
details of the proof in Section 6 have been reported in Appendices.

2. Definition and Terminology

2.1. Multi-objective optimization problem

Solving a multi-objective optimization problem means finding the optimal and feasible
parameter configurations. A feasible solution (configuration) is called a decision vector (x=x1,x,...,Xm)
and is a point in the decision space (X). An objective vector (y=y1,y2,...,yn), a point in the objective space
(Y), is linked to each decision vector by means of evaluating function f. So, a multi-objective
optimization problem, with m decision variables (parameters to be set), n targets (objective functions
to be optimized), and c¢ constraints ({ equality and c-{ are inequality constraints), can be
mathematically represented as follows.

Maximize or minimize:

ORIV AL "
subject to:
g/(x)=0 i=12,..,¢
g(x)=0 i=r+1,042,.,¢c (2)
where:

x= (xl,xz,...,xm)e X
y:(ylayb“"yn)ey 3)
Y = f,(x) i=12,.,n

Without loss of generality, in the following it is assumed that each objective function has to be

minimized.

2.2. Pareto dominance
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Usually, in real-world multi-objective optimization problems, there is no single parameter
configuration that simultaneously optimizes all objective functions, i.e. a point does not exist in the
decision space that is a global optimum. Thus, solving a real-world optimization problem means
offering the designer a set of alternative optimal solutions in the “Pareto dominance” sense.

Pareto dominance - A decision vector x! dominates another decision vector x? iff:

)< £ 62) i=120n and Fi: £ )< £ (x2) @)

This relation is denoted as x* < x2. When one or more of these relations are not satisfied, x' does
not dominate x?, this condition is denoted as x? <« x2. It is worth noticing that, for a single objective
function, the standard relation ‘less than’ is generally used to define the corresponding minimization
problem, while the symbol ‘<" represents a natural extension of ‘<’ in the case of multi-objective
functions [18].

Pareto optimality - A decision vector x” is said to be Pareto-optimal iff:

Axe X : x<x' (5)
The set that groups this kind of solutions is known as a Pareto-optimal set, and all the solutions

of this set are alternative, no one being dominated by the other solutions.
In addition to dominance, other types of relation between the solutions can be defined:

e strictly dominance: a decision vector x! strictly dominates another decision vector x? (denoted as x!
<< x2) iff:
Al)<nle) imi2n ©)
e weakly dominance: a decision vector x* weakly dominates the decision vector x? (denoted as x* < x?)
iff:
fi(xl)s f,.(xz) i=12,,n 7)
Finally, when x7 is better than x2 with respect to a subset of objective functions but x? is better

than x! with respect to another subset, the two solutions are said incomparable, denoted as x | | x2 (or
x2 11 xh):
bl SN o T
= x I x? (or x? | xl) ®
Table 1 resumes the dominance relations. It is worth to note that a relation may imply other

relations:

<<= xl< 2= al K x? )

L=l L a2 = xl <L a2 (10)

By relating the solutions of one APF A to those of another APF B it is possible to extend the
dominance relations between two solutions to two APFs. Table 2 shows the relations between two
APFs.

Table 1. Dominance relations between two solutions [11].

Symbol Relation Description

strictly dominance
xl << ¥’ ) ) x! is better than x with respect to each objective function
x! strictly dominates x’

, dominance x' is not worse than x’ with respect to each objective function and x is
X! < x?
x! dominates x? better than x° by at least one objective function
X< weakly dominance x' is not worse than x° with respect to each objective function
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x! weakly dominates x’
Incomparability
x| % x! and x? do not weakly dominate each other
x' and ¥’ are incomparable
Table 2. Dominance Relations between two APFs [11].
Symbol Relation Description
A<<B A strictly dominates B each solution belonging to B is strictly dominated by a solution belonging to 4
A<B A dominates B each solution belonging to B is dominated by a solution belonging to 4
A< B A is better than B each solution belonging to B is weakly dominated by a solution belonging to 4, and 4 # B
A<B A weakly dominates B each solution belonging to B is weakly dominated by a solution belonging to 4
Al B A and B are incomparable 4 and B do not weakly dominate each other

3. Quality Indicator

3.1. Definitions

A quality indicator QI is a function g: S =R, where S is the objective functions space, that
assigns a real value to a set of APFs belonging to S related to a multi-objective optimization problem.
When the function g has just one argument (i.e. one APF), the quality indicator is called “unary”,
when it has two arguments (i.e. two APFs) it is called “binary”, and so on.

The aim of a QI is to compare APFs and so QlIs are mainly used to indicate if a multi-objective
optimization algorithm works any better than others. Some Qls can also be applied as the acceptance
criterion to the selection operator of the stochastic search algorithms [19], but DOA is not devised for
such a scope.

3.2 Comparison Methods

This paper focuses on the use of Qs for evaluating the performances of different optimization
algorithms. To do this the QI results must be interpreted by means of an interpretation function E :
Ra — Bool, where g depends on the size of the QI set. Figurel shows some examples of interpretation
functions (A and B are two APFs).

Finally, the combination of a quality indicator, I, and an interpretation function, E, is called a
comparison method [11], and is referred to as Cie: C1e(A,B)=E(I(A),I(B)).

3.3 Compatibility and Completeness

Usually, one or a set of QIs can be useful to compare different optimization algorithms to figure
out which works better on a particular class of problems.

Non-dominated solutions are preferred to the dominated ones from the designer’s point of
view. Then, when a comparison method shows that APF A is preferable to APF B, A must be better
than B. In a similar way, when A is better than B, a comparison method must indicate that A is
preferable to B. Such features are known as =-compatibility and =-completeness [11].

Let » be an arbitrary dominance relation among those defined in Table 2 (>> or > or ). A
comparison method Cie is said »>-compatible if for each possible pair of APFs A and B:

C,,E(A,B)is true =

(11)
A«B
A comparison method Cik is said »-complete if for each possible pair of APFs A and B:
A«B
(12)

=>C; (4,B) s true
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It has been demonstrated [11] that a comparison method based on a UQI (or on a finite
combination of UQIs) that is both =-compatible and =-complete cannot exist. Moreover, Pareto
dominance is sufficient but not necessary to consider an APF preferable to another: there are pairs of
APFs with considerable quality difference which are considered, by Pareto dominance relations, as
not comparable [16]. Hence, if a comparison method based on UQI were &=-compatible, the indicator
could not provide any preference in the case of two incomparable APFs. Therefore, it would be
better if the UQI were only compatible with ¢ [20] and it should take into account all the features
(closeness, distribution, extension, cardinality) that are desirable for an APF.

Finally, while a comparison method =-complete is necessary (i.e. when APF A is better than
APF B the comparison method must highlight it), when a comparison method shows that A is
preferable to B, one of the following two cases must hold:

e  Ais “better” than B (A < B);
e A and B are incomparable and A outperforms B with respect to closeness, distribution,

extension and cardinality.

g=1
A I(A true
N BB

false

q>1 (a QI made up by combining g QIs)

Li(A)
A< 1(A)
i;iA) I( A) true
LB 1B) E(I(A>,I<B>)<[fl
B<Iz(B) alse
14(B)

Figure 1. Comparison method.

3.4 Closeness, distribution, extension and cardinality

The main target of an optimization algorithm to solve a multi-objective optimization problem is
to find an APF as similar as possible to the POF. Hence, as said before, the APF must be:

e  close to the POF; Figure 2 represents the extreme cases: an APF exhibiting good closeness only,
and an APF with all good features but not close to the POF;

e well distributed (usually uniform); Figure 3 shows an APF exhibiting a uniform distribution
only and an APF with all good features but not uniformly distributed;

e very extended (in the best case the global optimum of each objective function belongs to the
APF); Figure 4 shows an APF with only a good extension and one with all good features but not
extended;

e  with high cardinality; Figure 5 shows an APF with good cardinality only and an APF with all

good features but a poor cardinality.
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Figure 2. An APF (o) with all good features but not close to the POF and another (A ) that is only

close to the POF.

£, 4

APF ° A
closeness good poor
distribution poor good
extension  good poor
cardinality good poor

A
A
A
A

>

fi

Figure 3. An APF (o) with all good features but not uniformly distributed and another (A) that is

only uniformly distributed.

i I

APF ° A
closeness good poor
distribution good poor
extension  poor good
cardinality good poor

>

fi

Figure 4. An APF (o) with all good features but not extended and another (A ) that is only extended.

T

APF ° A
closeness good poor
distribution good poor
extension  good poor
cardinality _poor good

Figure 5. An APF (o) with all good features but with poor cardinality and another (A) that has only

high cardinality
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Figure 6 shows an APF with all the desired features. A good QI must take into account all these
features to give a correct measure of APF quality.

closeness  good .
f A distribution good APF

extension  good
M cardinality good

fi

Figure 6. An APF with all the desired features.

Table 3 points out if a specific feature partially w or totally @ affects the value of some UQIs. A
heuristic approach has been applied to determine whether a feature (closeness, distribution,
extension, cardinality) affects the QI value. In particular, an APF B obtained by improving a given
feature of another APF A is expected to have an indicator value better than that of A when the
indicator is sensitive to this feature. For example, if an APF is gradually moved towards the POF and
the indicator increasingly improves, then the indicator is influenced by the closeness feature. An
indicator is “partially” affected by a feature when it sometimes improves and other times it does not
change.

The Average Distance from Reference Set indicator [21] (also called Inverted Generational
Distance), the Completeness indicator [23,24], the Potential function indicator [19] and the
Hypervolume indicator [21, 26] account for all the features but they present some drawbacks.

Table 3. Summary of selected UQIs and features that influence their value.

Indicator Closeness Distribution Extension Cardinality
Average Distance from Reference Set [21] [ ] [ J [ [ J
Chi-Square-Like Deviation Measure [22] - [ J -
Completeness Indicator [23, 24] [ ] [ J [ J [ J
Enclosing hypercube [11] - [
Generational Distance [25] [ J
Hypervolume [21, 26] ([ [ J [ [
M, * [13] [ ]
My* [13] ® -
M;* [13] [ ]
Maximum Pareto Front Error [25] [ J
Outer Diameter [18] (]
Overall Nondominated Vector Generation [25] [ J
Overall Pareto Spread [27] [
Potential function indicator [19] [ J [ J [ J [ J
Seven Points Average Distance [28] [ ] - [ J
Spacing [29] [ J
Unary e-indicator [11, 18] [ J
Uniform distribution [30] [ J
Worst Distance from Reference Set [21] [ ]

A[8] [ ) ®
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The Average Distance from Reference Set indicator has the same complexity of DOA, but it is
>>-complete only [11].

The Completeness and Potential function indicators are as >-complete as the DOA indicator.
Nevertheless, the Completeness indicator cannot be directly computed, but can be estimated by
drawing samples from the feasible set and computing completeness for these samples. The
confidence interval for the true value can be evaluated with any reliability value, given sufficiently
large samples [18]. For the Potential function indicator similar considerations hold. Hence, the
drawback of both indicators is the high computational cost.

To our knowledge, Hypervolume is the only =-complete UQI, and so is considered the best
UQI for comparing optimization algorithms. Nevertheless, the relation A < B differs from A < B
since the former accounts for the case in which B contains some solutions of A but the probability of
this specific event is very low, and it can be considered null when the objective functions” space
belongs to the set of real numbers.

Moreover, Hypervolume running time grows exponentially with the number of objective
functions [31-34]. The most obvious method for calculating Hypervolume is the inclusion-exclusion
algorithm, with complexity O(n2"), where 1 is the number of objectives and m is the number of APF
points. The fastest methods for calculating Hypervolume (e.g. LebMeasure [35], HSO [36]) lead to a
O(m?n3) complexity. The DOA indicator has a lower computational cost, presenting a O(nMm)
complexity, where M is the number of POF points.

4. The weakly Pareto compliant quality indicator

The comparison method based on DOA and its associated interpretation function is
>-complete. While the Hypervolume indicator needs to know the reference point, the DOA
calculation needs the knowledge of the POF, like the Average Distance from Reference Set indicator.
This is not a drawback in multi-objective algorithm benchmarking which is usually carried out for
problems with known POF.

In detail, for an APF A, DOA is computed as follows.

First, given a solution i belonging to the POF, Dis, is determined from the sub-set of A
containing the solutions dominated by i (Figure 7). Hence, if the number of components belonging to
Dia is not null (i.e. 1Dial>0), for each approximated solution a € Dia the Euclidean distance dfi«
between a4 and i is computed as:

dfia= > ia= 101 (13)
k=1
with:
n  number of objective functions,
fra  value of k-th objective function of the approximated solution 4,
fri  value of k-th objective function of optimal solution i.
Euclidean distance di4 (Figure 8) between i and the nearest approximated solution belonging to
Dixis computed in the objective function space as:

>0
=0

Di,A
Di,A

(14)

min(dffa) ae Dy if
di,A= - ’ ’ if

Another quantity ria (similarly to dia) is computed for i considering the solutions of A not
dominated by i (i.e. A\D;a):

>0
=0

i,

in (#f; , A\D, , if |4\ D,
A:{mm(rf,)ae i AND, 15)

e if ‘A\Di,A

where rfia is a ‘reduced’ distance (Figure 9) between i and a non dominated solutiona of A (i.e.Vae
A :ill a),i.e. computed only for objectives k with fia > f.i:
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rfi,a = \/Z [max (O’ fk,a - fk,i )]2 (16)
k=1
Note that, rfi« is equal to dfi« when a € Dia. Moreover, defining n. (1. < 1) as the number of
functions for which the fiefii 2 0 (fka 2 fri, k=1,..,neand fia < foi, k= natl,.,n) expression (16) can be
rewritten as:

i =\/Z"j PAGEAG (17)
k=1 k=n,+1
Finally, defining
siA=min(dia,tia) (18)

the DOA indicator for the APF A is computed as:

|POF |

SiA (19)

1
[PoF| 4

DOA(4) =

f

o ey

>

fi

Figure 7. Dia of a point i belonging to the POF (example with n=2).

A . Diy A
f .a 3 © P OF
2
as®
.:..' di,A :dﬁ"” .617 as
-. i
i

>

fi

Figure 8. dia of a point i belonging to the POF.
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A aj ‘A\Dz,A
A ° POF
£ A
2 :
=
N"b NS rlA rla
v
i ri,a
9 ao
>
fi

Figure 9. ria of a pointibelonging to the POF.

Considering two APFs A and B, the proposed quality indicator needs interpreting [11] to
affirm either that “A is preferable to B” or “B is preferable to A” or “A and B are equivalent”: the
proposed obvious interpretation function is illustrated in Figure 10. Moreover, DOA changes with
arbitrary scaling of the objective functions, since the DOA indicator is a distance-based metric, while
the relationship between DOA (A) and DOA (B) does not change.

In the following, it is demonstrated that A < B implies “A is preferable to B”, that is
DOA (A) <DOA (B), in order to affirm that DOA is a >-complete quality indicator.

For the sake of clarity, the >>-completeness of DOA is demonstrated before proving its
>-completeness.

rue  when DOA(A) < DOA(B)

t
E((A)IB)<

false otherwise

Figure 10. Interpretation function: pseudo-code to compare A and B by means of DOA(A) and
DOA(B).

5. >>-completeness

DOA is a >>-complete quality indicator if DOA(A) < DOA(B) for any pair of APF A and B, with
A <<B.

In the hypothesis that A << B, each solution of B is strictly dominated by, at least, one solution
of A. To demonstrate that DOA(A) < DOA(B) is sufficient to prove that six is always lesser than sis
for each point i € POF. In other words,

if
sia<sipVie POF (20)
then
[por | | lror]
DOA(A)—WZ i ‘POF‘ Z s;.5 = DOA(B) (21)

Considering a point i € POF, in the following, b indicates the solution belonging to B which
provides sis and a a solution of A that strictly dominates b (2 << b); only four scenarios are possible
(see Figure 11):

Al.i<<bAi<a

Bl.i<<bAilla

Cl.i<bAilla

DLillbAilla
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A A
b b
fz a 1‘ fz a 1‘
.11.
dfia s;3=d;p ia si5=d;z
i P
> >
scenario Al: most relevant case 11 scenario B1 or C1 fi
A A
b b
A A
fz a gsi,B:di,B f2 a ési,B: riB
Et
%a \S ~ g
S ¥
i i
> >
scenario C1: limit case fy scenario D1 fi

Figure 11. Possible scenarios for A>>B.

Note that the other scenarios i < b Ai<aandi || b Ai< aarenot possible because 2 << b: in
fact, from eitheri<bAa<<bandill b Aa<<bfollowsia.
Moreover, it is worth to put in evidence the following remarks:
Rmk.1 i< aimplies that sia < dfis, in detail:
sia=dfiaiff sia=dia A dia=dfis;
sia < dfia either if sia = dia A dia = dfie < dfia (Where a*e A and a* # a) or if sia = ria (this implies that
tia <dia < dfia).
Rmk.2 i |l aimplies that sia < rfiq, in detail:

sia = tfia iff sia =ria A ria=rtfie
o sia<tfiaeither if sia = ria A ria = rfie <rfia (Where a*e A and a* # a) or if sia = dia (this implies that
dia <tia < 1fia).
Finally, the inequality sia < siz will be proved for the four scenarios A1-D1: this inequality
naturally implies the >>-completeness of the DOA indicator.

Al. i<<bAixa

In this case, i strictly dominates b then sis = dis = dfiy, because b is the solution which provides sis.
Moreover, i < a implies that sia < dfi. (see Rmk.1).
So, in order to demonstrate that sia < s;5 it is sufficient to demonstrate that dfis < dfis.
Recalling that:
i<a = fii < fra, Vk=1,.n
a<<b = foa<fip, vV k=1,.n
the following inequalities hold:
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0< faa=Jki<Jip—Je; Yhk=l.,n

dfi . = \/Z [fk,a - fk,i]2 < \/Z [fk,b - fk,i]z =df;, (22)
k=1 k=1

=

SiaSdfia<dfip=5;p

Bl. i<<bAilla

In this case, i strictly dominates b then siz = di = dfis, because b is the solution which provides siz.
Moreover, i | | a implies that si4 < 7fi« (see Rmk.2).

So, in order to demonstrate that sia < siz it is sufficient to demonstrate that fi. < dfis. Proof is
given in the next section because scenario C encompasses scenario B.

Cl. i<bAilla

In this case, i dominates b then sis = diz = dfis, because b is the solution which provides siz.
Moreover, i | | a implies that sia < rfi. (see Rmk.2).

So, in order to demonstrate that sia < si5 is sufficient to demonstrate that rfi. < dfis.

Ordering the n objective functions of solution a in such a way that the first n. (with n.<n) are
greater than those of i and recalling that:
illa = fui<fis v k=1,..,1a

foi 2 fioa, V k=n.+1,..,n

i<b = fiisfir,  Vk=l,..n
a<<b = foa<fip, vV k=1,..,n
then the following inequalities hold:

0< froa= i <JSip— T Vik=1l.,n,
0 frp—Sis Vk=n,+1.,n
=
Hia= D fea=fil+ D0<
k=1 k=n,+1 (23)

\/2 [fk,b _fk,z']2 + Z[fk,b _fk,i]z =dfi,
k=1

k=n,+1
=

SiaStfia<dfiy=5s;p

D1. illbAilla

In this case, i and b are incomparable then sis = ris = rfis, because b is the solution which provides
si. Moreover, i | | a implies that sia < 7fi (see Rmk.2).

So, in order to demonstrate that si4 < sig it is sufficient to demonstrate that rfi. < rfie.

Ordering the n objective functions of solution a in such a way that the first n. are greater than
those of i, ordering the n objective functions of solution b in such a way that the first n» are greater
than those of i (with na<n» <n, since a >> b Ai || a implies n. < ny, while 7 | | b implies n» < 1) and
recalling that:
illa = fi<fta  Vk=1,.,m

foi 2 foa, V k =n+t1,..,n
illb = fii < fib, vk=l,.,m
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fri 2 fiob, V k=nwtl,..,n
a<<b = foa<fip, vk=l,.n
then the following inequalities hold:

0< fra=Jii <Jip— Jri Vik=1.,n,

0< fip—Jri Vk=n,+1.,n,
02 fip—fri Vik=n,+1.,n
=

_\/Z[fka 1l ZO+ 20< (24)

k=n,+1  k=n,+1

\/ fkb fk;] + z [fkb sz] + ZO—rfb

=1 k=n,+1 k=ny+1

= S aStia<tfipy=5is

O

6. >-completeness

In this section is proved that DOA is a >-complete quality indicator. Consider any pair of APF
A and B, with A<B, the >-completeness of DOA is demonstrated by proving that si4 is never greater
than sis (for each point i € POF) and always exists a point i* € POF for which s+ is lesser than si:

if
sia<sig Vi e POF A Fi* € POF : sina <siB (25)
then
X |por | |por |
DOA (4) = POF[ Spoq + Z ,A] ‘POF { Spop + ; s,,BJ: DOA (B) (26)

In the following, b indicates the solution belonging to B which provides sis for a point i € POF
and a a solution of A that dominates b (a < b). Moreover, the >-completeness of DOA is proved in the
worst and most general case, i.e. when VbeB A ac A :a << b (i.e.a <b Aa << b, limit case); only five
scenarios are possible (see Figure12):

A2.i<<bAi<a
B2. i<<bAilla
Ci<bAix<a
D2.i<bAilla
E2.illbAilla

Note that the scenario i || b Ai < a is not possible because a < b: in fact, from i | b Aa <b
follows i % a. Moreover, scenario A2 does not include i=g, differently from section V, because in this
case i << b whilea < b A a %< b. Analogously, differently from section V, when i < b the scenario i <
a is possible. Finally, the scenario i < b is not considered because A < B, in fact i =b would lead to the
absurda < b=1i.

In order to demonstrate the >-completeness of DOA, it is proved that the inequality sia < sip is
verified V i for the three scenarios A2, B2 and C2. While for the remaining two scenarios D2 and E2
we will prove that the following two sufficient conditions hold:

Q. SiASSiB

B. Fi*e POF :sia <sivs.

For the sake of simplicity the proof of 3 will be given in Appendix A.
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A A
a b a b
dﬁ,a_,-'-' ' v
Sw sip=dip ' Sip=d;
g
i
> >
scenario A2 or C2 fi scenario B2 or D2 fi
A x b A a, ‘b
f agsi,B: ] f, gsi,B:di,B
& .
E 1y ia
dfi.
i i
> >
scenario C2: limit case fi scenario D2: limit case fi
A u b
A
f 1SiB= VB

scenario E2 fi

Figure 12. Possible scenarios for A>B.

A2, i<<bAi<a

In this case, i strictly dominates b then siz = di = dfis, because b is the solution which provides siz.
Moreover, i < a implies that sia < dfi. (see Rmk.1).
So, in order to demonstrate that sia < sz it is sufficient to demonstrate that dfi. < dfis.
Recalling that:
i<a = fii < foa, v k=1,..n
a<b = fia < fib, Vk=1,.,n Adj:fia<fir
the following inequalities hold:
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0S fou—JfriSSep— ey Vhk=l.,n
0= few=Thi <Jip—Jri k=j
=
dfi,a = Z[fk,a _fk,i]2 + [fj,a _fj,i]z <
= 7)
Z [fk,b _fk,i]z + [fj,b _fj,i]z =df;,
3
=

SiaSdfi,<dfip,=5:p

B2. i<<bAilla

In this case, i strictly dominates b then sis = dis = dfiy, because b is the solution which provides sis.
Moreover, i | | a implies that si4 < rfi« (see Rmk.2).

So, in order to demonstrate that sia < s;z it is sufficient to demonstrate that rfi«< dfis.

Ordering the n objectives f of solution a in such a way that the first n. (with n.<n) are greater
than those of i and recalling that:
illa = fii < fia, Vv k=1,..,1a

fri > fia, V k=n.+1,..,n

i<<b = fii<fiy, vV k=1,..,n
a<b = fea<fin,  Vk=l,.n
then the following inequalities hold:

0< froa=Sei <Sap— Sri Vk=1.,n,
0< fip = Srs Vik=n,+1,.,n
=
fia= Z[fk,a_.fk,i]2+ ZO<
k=1 k=n,+1 (28)

\/Z [fk,b _fk,i]z + Z [fk,h _fk,i]2 =df,
k=1

k=n,+1
=

S;iaStfia<dfip=5:ip

C2. i<bAixa

In this case, i dominates b then siz = diz = dfis, because b is the solution which provides siz.
Moreover, i < a implies that sia < dfi. (see Rmk.1).
So, in order to demonstrate that sia < s;z it is sufficient to demonstrate that dfi. < dfis.
Recalling that:
i<a = fii < fra, Vk=1,.n
a<b = fia < fb, Vk=1,.,n AJj:fia<fip
then the following inequalities hold:
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0< fra=JeiSJiw—Soy Vhk=L.n
0 fow—Svi <Jip—Sei Vk=J
=
dfi, = Z[fk,a _fk,i]z +[fj,a _fj,i]z <

) (29)
Z |'J/k,b _fk,i]2 + [fj,b _fj,i]z =dfp
B
=

SiaSdfig<dfip=5,p

D2. i<bAilla

In this case, i dominates b then sis = diz = dfis, because b is the solution which provides siz.
Moreover, i | | a implies that sia < rfi« (see Rmk.2).

So, in order to demonstrate that si4 < sis it is sufficient to demonstrate that rfi« < dfis.

Ordering the n objectives f of solution a in such a way that the first n. (with n.<n) are greater
than those of 7 and recalling that:
illa = fii < fia, Vv k=1,..,1a

fri > foa, V k=n.t1,..,n

i<b = fii < fi, Vk=1,.,.n ATh:fui<fup
a<b = fia < fb, Vk=1,.,n AJj:fia<fip
then the following inequalities hold:

0< foa=Jii < Sop—Soi YVh=1.,n,

0< fiap = Jfrs Vk=n,+1l,..,n
=
ia= \/Z [fk,a _fk,i]2 + 20 <
k=1 k=n,+1 (30)

\/Z [fk,b —fk,i]2 + Z [fk,h _fk,i]2 =df;,
k=1

k=n,+1
=

Sia S rfi,a < dfi,b =SB

Note that rfis is strictly lesser than dfiy when 1 <j < n,, since:
Slia =1l < fes = 1) @31)
k=1 k=1

Otherwise sia <siz. In particular, rfia = dfip iff foa = fip ¥V k=1,..,na A fri = fip V k= na+1,..,n. In this case,
obviously, fii < fia = fup with 1 <h < na and fi« < fii = fip with j > na. As said before, the proof that 3 i* €
POF : si»a < sivshas been reported in Appendix A.

E2. illbAilla
In this case, i and b are incomparable then sis = ris = rfis, because b is the solution which provides

sis. Moreover, i | | a implies that sia < rfi (see Rmk.2).
So, in order to demonstrate that si4 < sis it is sufficient to demonstrate that rfis < rfis.
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Ordering the n objectives f of solution a in such a way that the first 7. are greater than those of i,
ordering the 1 objectives f of solution b in such a way that the first n are greater than those of i (with
na<np<mn,sincea<bAillaimplies na<n, whilei || b implies n» < n) and recalling that:
illa = fii < fia, Vv k=1,..,1a

fri > foa, V k=n.t+1,..,n
illb = fii < fib, Vk=1,.,m

fri 2 fiob, V k=nwtl,..,n
a<b = fia < fib, Vk=1,.,n Adj:fia<fir
then the following inequalities hold:

0< foa=JriSSTep—Tri Vhk=Lin,

0< fop = fri Vik=n,+1.,n,
02 frp—frs Vk=n,+1.,n
=

r.f;,a=\/zu[,fk,a_f}f,i]2+ z”0+ iOS (32)
=1

k=n,+1 k=ny+1

\/Z [fk,b _fk,i]z + zh [fk,b _fk,i]z + i 0=rfip
k=1

k=n,+1 k=ny+1

=

SiaStliaStfip =55

It is worth to note that:

rfia < rfib if 110 # 1a;

1fia < 1fip if 16 = a.
In the last case, rfia = rfis iff fva = fir ¥V k=1,..,na. In this case, obviously, fi« < fj» < fji whit j > #a.
As said before, the proof that 3 i* € POF : si4 <si~shas been reported in Appendix A.

7. w-compatibility

In this section it is proved that DOA is a #-compatible quality indicator. The following remarks
are necessary.

Rmk.3

A solution a’ belonging to A does not influence DOA(A) if, V i € POF:

e  sia<dfir when a’ is dominated by i;
*  sia<rfie when 4’ is not dominated by i.

In fact, in this case sia # dfis and sia # rfie, by which follows that DOA(A) does not change its
value if 2’ is moved off from A. These means that an APF B = A\{a’} has the same quality indicator
value, i.e. DOA(A) = DOA(B). Using DOA seems B equivalent to A while A, having one more
solution, is better than B [11]. Then the proposed method is not a =-complete quality indicator. On
the other hand, DOA together with its interpretation function is a >-complete comparison method,
as it is demonstrated before.

Rmk.4

The relation A < B is equivalent to assume that B=C U D, where CS A, DN A= and V be D 3
ae A : a < b. Note that, when C = @ then A < B. Hence, the difference between case A <Band A <B s
that in the latter B could contains some solutions of A. Moreover, obviously, only the last case
includes B € A (i.e. D = ©). For these reasons when A < B, DOA (A) is never greater than DOA (B).

Rmk.5

The relation A || B involves that DOA (A) can be greater or less than or equal to DOA (B).

For two generic APF A and B, the >-completeness of DOA, together with Rmks 3-5, imply that
if DOA (A) < DOA (B) then A < Bor A < Bor A || B, i.e. it is sure that B 4 A. Then DOA is a
#-compatible unary quality indicator.
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8. DOA validation

To demonstrate that DOA takes into account all features (closeness, distribution, extension,
cardinality) three typical POFs have been considered:

° convex and connected;
e non-convex and connected;

e convex and disconnected.

In particular, the DOA unary quality indicator has been computed for different examples of
APFs. Both POFs and APFs are drawn in Figure 13-15. Table 4 shows the values of DOA for the APFs
considered.

Let's examine the strategy adopted to choose the examples of APF for each POF: the APF B
obtained by improving a given feature of APF A is expected to have a better indicator value than
that of A if the indicator is sensitive to this feature. For example, if an APF is gradually moved
towards the POF and the indicator increasingly improves, then the indicator is influenced by the
“closeness” feature. The validation was performed according to these considerations. Hence, from
an APF (APF1, indicated in the figures by symbol ¢) with only poor features, the second APF (APF2,
indicated by +) is created by improving APF1 “closeness” that is by converging APF1 on the POF.
Therefore, APF2 has better closeness than APF1 but the same distribution, extension and cardinality.
The third APF (APF3, indicated by o) is obtained by improving the “distribution” of APF2 by
uniformly distributing the solutions of APF2. APF3 has better distribution than APF2 but the same
closeness, extension and cardinality. The fourth APF (APF4, indicated by o) is created by improving
the extension of APF3, preserving the other features. Finally, the fifth APF (APF5, indicated by e) is
created by adding new points to APF4, and hence improving the cardinality of APF5 with respect to
the fourth APF. It is worth noting that it does not matter in which order the different features are
added to the initial APF1, and the order used in Table 4 simply follows the features” description
given in the Introduction.

Whatever the characteristics of the POF, such a strategy highlights that the value of DOA
decreases when one feature improves.

The results in Table 4 highlight the >-completeness of DOA too. In fact, the first APF is
dominated by the others and it has an DOA value worse than those of the other APFs.

Table 4. DOA Evaluation for some typical POF
(symbol in brackets is the marker associated to the APF in figure 13,14,15)

POF APF Closeness Distribution Extension Cardinality DOA
APF1(0) poor poor poor poor 0.71040
Convex and APF2(+) good poor poor poor 0.16940
connected APF3(0) good good poor poor 0.16287
(see Figure 13) APF4( ) good good good poor 0.10253
APF5(") good good good good 0.06431
APF1(0) poor poor poor poor 0.79167
Non-convex and APF2(+) good poor poor poor 0.24303
connected APF3(0) good good poor poor 0.23465
(see Figure 14) APF4( ) good good good poor 0.09301
APF5(") good good good good 0.06993
APF1(0) poor poor poor poor 0.69510
Convex and APF2(+) good poor poor poor 0.16866
disconnected APF3(0) good good poor poor 0.16810
(see Figure 15) APF4( ) good good good poor 0.07254

APF5(") good good good good 0.06331
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Figure 14. Non-convex and connected POF (solid line)..
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Figure 15. Convex and disconnected POF (solid line)..

9. Conclusion

Evaluating the performance of multi-objective optimization algorithms (MOOAs) is very
difficult because their comparison involves comparing APFs. Qls are used to measure the goodness
of the APF provided by different optimization algorithms to highlight which works better.

Therefore, a QI must be able to account for Pareto dominance to properly compare two different
algorithms. Moreover, when APFs are incomparable, further data (closeness, distribution, extension
and cardinality) must be taken into account to compare the APFs provided by different MOOAs.
Few UQIs are >-complete and able to account for the aforementioned features but they need much
computational effort.

This paper has described the DOA unary quality indicator that could be very useful in assessing
the performance of an MOOA by estimating the match between the approximation front found by
the MOOA and the optimal one. It has been proved that it is >-complete, #=-compatible and requires
little computational cost. Moreover, a numerical validation was carried out to demonstrate that it
accounts for closeness, distribution, extension and cardinality. An implementation of the DOA
indicator is available online: http://wwwelfin.diees.unict.it/esg/DOA html.

The major drawback of the proposed indicator is that it is not =-complete. Even though the
dominance relation A < B differs from A < B since the former accounts for the case in which B
contains some solutions of A, the probability of this specific event is next to nil. Nevertheless, a
future development of this work is to properly modify DOA to make it >-complete, maintaining low
computational complexity.
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Appendix A

II.
III.

Iv.

VL

(@)
(b)
(©

Hypothesis:

A <B.

Thesis:

3i* € POF : sira = dira <sivp.

Reductio ad absurdum:

In this proof some remarks must be taken into account:
dfiar = dira = dfire < dfire Y 0’ € Dira

Aferar <tina = dfira <tfiraV a’’ € A\ Dina

when i < a < b = dfi. < dfis (see Section C2)

wheni Il ani<bAa<b= rfie<dfis (see Section D2)

wheni |l anill bAa<b= rfia<rfiv (see Section E2)

1i*e POF and 3 a*c A : sia=dra=dfire<ria (proved in Appendix B).

Assume the opposite of the thesis:

Si*B < Si*A

by (33) and Rmks. (VI), follows:

Fb’e Dip : sins = dfiry (< dfina = siva)

or

Fb”e B\Dip : st = rfirp” (< dfirar = si%,4)
Considering inequality (34), three scenarios are to be analyzed:
a*<b
a’<b’,wherea’ € Dia
a” <b’,wherea” € A\Dia

In scenario (a), from Rmk. (III), follows:
Spr g =dp g =Af e gx <df ey =S p = Sinp > Six 4
that is in contradiction with (33).
In scenario (b), by considering Rmks. (I) and (III), follows:
Spx g = di*’A = dfi*,a* < df,-*’av < dfl-*’bv =Spp = Spp > Sy
that is in contradiction with (33).
In scenario (c), by considering Rmks. (II) and (IV), follows:

Sip g =dp g =Afpe o <10 SAf ey =Sppp = Spep > Spx 4

* "

that is in contradiction with (33).
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(33)

(34)

(35)

(36)

(37)

(38)

Considering (35), sis = rfp implies i* || b”, i.e. A a € Dina: a < b”. Hence only one scenario
have to be analyzed, in particular a”” < b”", where a” € A\Dia.

By considering Rmks. (II) and (V), follows:

Spp g =dp g =Afpe g <10 STfjapn =Spnp = Spep > Six y

* "

that is in contradiction with (33).
m

(39)
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Appendix B

Hypothesis:

A is a generic APF

Thesis:

die POF and Jae A : sia =dia = dfia<ria.

Proof

The proof is given by induction, starting from |Al = 1 and adding to A other solutions
recursively. First, only two objective functions (n=2) are considered, then the same procedure is used
for the general case (n > 2).

Proof by induction with n=2.

Hypothesis |Al =1

Proof.

Being A={a} and recalling that POF < A, follows that there exist a solution i € POF for which i <
a, then ae Diaand |A\D;ial =0. This implies that:

d; g=df, <o
Tiqa =
R (40)
Sia=d;g=df; . <74
u]
Hypothesis |Al =2
Proof.
Being A={a,a2}, if 3ie POF :i < a1 A i < a2, then a1 and a2 belong to Dia and |A\D;al =0:
di,A = dfi,a = mm( dfi,al’ df},aZ) < oo
Tiqg =
" (41)

Sia=dig=dfi, <14

where a is equal to the solution which provides si4 between a: and a..

On the other hand, when there not exists such solution 7, recalling that POF < A, then exist two
solutions i1, i2 € POF for which iz < a1 and i2 < 2. Obviously, i1 || a2 and iz || a1. Hence, without loss
of generality it is assumed that:

Jii2 € fie2 < Jrn S S

Son € So.m < o2 € fra2 (42)
The thesis is proved if siza = di1,a = dfiva < tfirez = rina V si,a = diza = dfizez < tfizar = rizA.
The proof is by reductio ad absurdum. Supposing that:
sitA=ti1,a=rfia<dfiia=dina A si,4=ri2a=1fi2,a<dfia=di,a (43)
in which:
a2 = fra2 = Jop
dfiya = \/[fl,al = fii ]2 + [fZ,al - f2,i1]2 44
rfi2,a1 = fl,al - fl,i2 ( )
dfin.42 = \/[fl,aZ - fin ]2 + [fz,az - f2,i2]2
Note that:
\/[fl,al - fl,il]z + [fz,a1 - fZ,il]z <ot =Nt Sra — fon
(45)

\/[fl,az - fl,[Z]z + [fz,az - fon ]2 <fraz = Nriot Sra2 = Soi
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because the quantities in the brackets are not negative. By (43) and (45) follows:

Srar = Son =1 < < fra = frn+ Som — f2n

Srat = Jii2 =i <202 < Jra2 = Sriz + S2a2 = Foi2

= (46)
0<—fom* fon+fia—Sint Sfoa— Fon

0<—fra+ frio * fraz = frio + fra2 = fai2

then

0< [— Srat frpt fra = Sia+ fia _fl,iz] +
+[— Srar ¥ Jon+ foa = Foin ¥ fra2 = foi2 ]: (47)
= fraz =S ¥ Soa — fon2

that leads to an absurdity because, by (42), it is:

Sra2 = f10 <0

Frat~ fons <0 (48)

o
Adding to A other solutions recursively, the previous procedure can be applied to demonstrate
that the thesis is always true whatever | Al is.

Proof by induction with n=3.

Hypothesis 1Al =1

Proof. The proof is the same provided for n=2 in (40).

Hypothesis |Al =2

Proof.

Being A={a1,a2},if 3ie POF:i< a1 Ai< a2 then a and az2belongto Diaand |A\Dial =0= The
proof is the same provided in (41).

On the other hand, when there not exists such solution i, recalling that POF < A then exist two
solutions i1, iz € POF for which i1 < a1 and i2 < a2. Obviously, i1 | | a2 and iz | | a1. Hence, without loss
of generality it is assumed that:

Sri2 € fra2 < frin € fra
o £ So,m < Sa2 S a2 (49)
L1 € o < fri2 € o2

Likewise for the case of two objective functions the thesis it will be proved that si;a = dir.a = dfira
<tfiL2 =riLAV siza = diza= dfie < rfia = ria.
The proof is by reductio ad absurdum.

Assuming that:
(50)
sipa=tisa=rfie<dfia=dia N Sia=tis=tfoa<dfoo=dia
which imply:
fita2 = \/[fz,az - fz,n]z + [f3,az - f3,il]2 <
\/[fl,al - fl,il]2 + [fz,al - fz,n]2 + U},al - f3,i1]2 =dfiia
= (51)

[fz,az - fz,n]z + [f3,a2 - f3,i1]2 <
[fl,al - fin ]2 + [fz,al - fz,u]z + [fs,al - f3,i1]2

and
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final = Jia = fii2 <

\/[fl,zﬂ = N2 ]2 + [fz,az =l ]2 + [fB,aZ -3 ]2 =dfi2.a2

=
[fl,al _fl,i2]2 <
M,aZ - fl,i2]2 + [fZ,aZ - fz,tz]z + U3,a2 -3 ]2

Summing each member of (51) and (52) follows:

[fl,al - fl,iZ]z + [fz,az - f2,il]2 + [fs,az - f3,i1]2 <
[fl,al - fl,il]z + [fZ,al - fz,il]2 + [fz,al - f3,i1]2 +
+ [fl,az - fl,i2]2 + [f2,a2 - f2,i2]2 + [f3,a2 - f3,i2]2
= (53)
0< [fl,al - f1,f1]2 + [fl,aZ - fl,i2]2 - [fl,al - fl,i2]2 +
+ [fz,al - fz,n]z + [fz,az - fon ]2 - [fz,az - fz,u]2 +
+ [f3,a1 - fin ]2 + [f},aZ - fs,iz]z - [fS,a2 = f31 ]2

Note that the quantities in the brackets are not negative and hence:

0< [,fl,al - fl,i1]2 + [fl,a2 - fl,f2]2 - [,fl,al - fl,i2]2
+ [fz,al = fan ]2 + UZ,aZ - 22 ]2 - [fz,az = fan ]2 +
+ [f},a] - faa ]2 + [f},aZ - f3,i2]2 - [f3,a2 = f31 ]2 <
< Ul,al = fint fiaz _f],i2]2 - [fl,al _fl,iZ]z +
+ [fz,m = font fra2 _f2,i2]2 - [fZ,aZ _f2,i1]2 + (54)
+ [fB,al —f3ifsa2 — f3,i2]2 - [f3,a2 - f},il]z <
<Sra = Srat Sra2 = Sri2 = Sra t S +
+ Sou = Soint ¥ S22 = Sri2 = Sra2 t on
+ Saa = S S302 = Sri2 = Sra2 3 =
=frar = fint foa = oot o — o2

(52)

that leads to an absurdity because, by (49), it is:

Sraz = f10 <0
Sra = S22 <0 (55)
Sy = f3,2 <0

o
The cases with n>3 can be proved in a similar way.
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