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Abstract: In multi-objective optimization problems, the optimization target is to obtain a set of 
non-dominated solutions. Comparing solution sets is crucial in evaluating the performances of 
different optimization algorithms. The use of performance indicators is common in comparing 
those sets and, subsequently, optimization algorithms. A good solution set must be close to the 
Pareto-optimal front, well-distributed, maximally extended and fully filled. Therefore, an effective 
performance indicator must encompass these features as a whole and must be Pareto dominance 
compliant. Unfortunately, some of the known indicators often fail to properly reflect the quality of 
a solution set or cost a lot to compute. This paper demonstrates that the Degree of Approximation 
(DOA) quality indicator, is a weakly Pareto compliant unary indicator that gives a good estimation 
of the match between the approximated front and the Pareto-optimal front. Moreover, DOA 
computation is easy and fast. 

Keywords: multiple criteria analysis; algorithms performance; Pareto optimality; quality indicator 
 

1. Introduction 

The optimized design of industrial applications is often problematic because of the 
simultaneous occurrence of many conflicting targets [1-3]. In real-world optimization problems, the 
decision maker needs to have a wide range of solutions to choose from [4]. Some optimization 
methods solve a single multi-objective function by aggregating different objective functions [5-7]. 
The choice of weights is the major weakness to this approach [5]. Other multi-objective optimization 
algorithms (MOOAs) search for a non-dominated solution set [8-10], i.e. a set of multiple alternative 
solutions. This set is the Approximation Set in the decision space and the Approximated Pareto 
Front (APF) in the objective functions space. The main goal of such algorithms is to provide an APF 
matching the Pareto-optimal one. The problem is to assess how well the approximated front fits the 
optimal one [11]. The notion of optimization algorithms performance involves evaluating the quality 
of the solution and the required computational effort [12]. This proves troublesome in the case of 
multi-objective optimization problems: a good approach would be to use a quality indicator (QI), i.e. 
a function of the APF that simplifies the quantitative performance comparison of different 
optimization algorithms. The simplest comparison method would be to check whether one APF is 
better than another with respect to the Pareto dominance relations [11]. Thus, a QI must be able to 
account for Pareto dominance to properly compare two different algorithms. This is known as 
“completeness” with respect to Pareto dominance relations, and is the most desired property of a QI. 
Moreover, when APFs are incomparable with respect to Pareto dominance relations, more 
information is needed to compare the APFs provided by different MOOAs. In particular, a good 
MOOA should [13-15]: 

1. minimize the APF distance from the Pareto-optimal front;  
2. obtain a good (usually uniform) distribution of the solutions found;  
3. maximize the APF extension i.e., for each objective the non-dominated solutions should 

cover a wide range of values (best case: the global optimum of each objective function must 
be found); 

4. maximize the APF “density” , i.e. high cardinality for the approximation set is desirable.  
Each goal represents a desired feature of the APF: in the following we refer to them as closeness, 

distribution, extension and cardinality, respectively. A unary QI (UQI) estimates one 
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non–dominated solutions set quality by means of a real number [16]; then it is useful to estimate the 
effectiveness of a MOOA.  

Several known UQIs have no or limited completeness as regards Pareto dominance relations 
and are unable to take into account all the features listed previously. Few UQIs overcome these 
limitations despite needing much computational effort.  

This paper demonstrates the ≻-completeness of the UQI called Degree of Approximation 
(DOA) [17]. Moreover it is proved its ability to take into account all the four goals as a whole. 

To our knowledge, hypervolume is the only ⊳-complete UQI, and for this reason is considered 
the best UQI for comparing optimization algorithms. Nevertheless, the relation "⊲" differs from "≺" 
since the former accounts for the case in which an APF contains some solutions of another one but 
the probability of this specific event is very low, and it can be considered null when the objective 
functions’ space belongs to the set of real numbers. Therefore, DOA can be used to evaluate the 
performance of optimization algorithms instead of the Hypervolume since it is proved that DOA is ≻-complete. Note that the calculation of hypervolume is difficult as the number of objective 
functions increases, while the calculation of DOA is usually very simple and fast even in the case of 
many-objective optimization. 

The paper is organized as follows. Section 2 recalls the definitions and terminology typically 
used in multi-objective optimization related to the Pareto dominance concept. Section 3 outlines the 
characteristics of a quality indicator and presents a review of the most common UQIs. Section 4 
describes DOA in detail, while Sections 5 and 6 mathematically demonstrate its ≻≻-completeness ≻-completeness, respectively. Section 7 proves DOA compatibility with respect to the “not better” 
dominance relation. Finally, Section 8 validates DOA with some examples to highlight its accounting 
for closeness, distribution, extension and cardinality. Conclusions are drawn in Section 9 and minor 
details of the proof in Section 6 have been reported in Appendices. 

2. Definition and Terminology  

2.1. Multi-objective optimization problem 

Solving a multi-objective optimization problem means finding the optimal and feasible 
parameter configurations. A feasible solution (configuration) is called a decision vector (x=x1,x2,...,xm) 
and is a point in the decision space (X). An objective vector (y=y1,y2,...,ym), a point in the objective space 
(Y), is linked to each decision vector by means of evaluating function f. So, a multi-objective 
optimization problem, with m decision variables (parameters to be set), n targets (objective functions 
to be optimized), and c constraints (ℓ equality and c-ℓ are inequality constraints), can be 
mathematically represented as follows. 

Maximize or minimize: 
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Without loss of generality, in the following it is assumed that each objective function has to be 
minimized. 

2.2. Pareto dominance 
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Usually, in real-world multi-objective optimization problems, there is no single parameter 
configuration that simultaneously optimizes all objective functions, i.e. a point does not exist in the 
decision space that is a global optimum. Thus, solving a real-world optimization problem means 
offering the designer a set of alternative optimal solutions in the “Pareto dominance” sense. 

Pareto dominance - A decision vector x1 dominates another decision vector x2 iff:  

( ) ( ) ( ) ( )2121 :,...,2,1 xfxfiandnixfxf iiii <∃=≤  (4)

This relation is denoted as x1 ≺ x2. When one or more of these relations are not satisfied, x1 does 
not dominate x2, this condition is denoted as x1 ⊀ x2. It is worth noticing that, for a single objective 
function, the standard relation ‘less than’ is generally used to define the corresponding minimization 
problem, while the symbol ‘≺’ represents a natural extension of ‘<’ in the case of multi-objective 
functions [18]. 

Pareto optimality - A decision vector x’ is said to be Pareto-optimal iff:  

': xxXx ∈∃/  (5)

The set that groups this kind of solutions is known as a Pareto-optimal set, and all the solutions 
of this set are alternative, no one being dominated by the other solutions. 

In addition to dominance, other types of relation between the solutions can be defined: 
• strictly dominance: a decision vector x1 strictly dominates another decision vector x2 (denoted as x1 ≺≺ x2) iff: 

( ) ( ) nixfxf ii ,...,2,121 =<  (6)

• weakly dominance: a decision vector x1 weakly dominates the decision vector x2 (denoted as x1 ≼ x2) 
iff: 

( ) ( ) nixfxf ii ,...,2,121 =≤  (7)

Finally, when x1 is better than x2 with respect to a subset of objective functions but x2 is better 
than x1 with respect to another subset, the two solutions are said incomparable, denoted as x1 || x2 (or 
x2 || x1): 

x1 ⋠ x2   ∧    x2 ⋠ x1    

( )1221 |||| xxorxx  
(8)

Table 1 resumes the dominance relations. It is worth to note that a relation may imply other 
relations: 

x1 ≺≺ x2  x1 ≺ x2  x1 ≼ x2 (9)

x1 ⋠ x2  x1 ⊀ x2  x1 ⊀⊀ x2 (10)

By relating the solutions of one APF A to those of another APF B it is possible to extend the 
dominance relations between two solutions to two APFs. Table 2 shows the relations between two 
APFs. 

 

Table 1. Dominance relations between two solutions [11]. 

Symbol Relation Description 

x1 ≺≺ x2 
strictly dominance 

x1 strictly dominates x2 
x1 is better than x2 with respect to each objective function 

x1 ≺ x2 
dominance 

x1 dominates x2 

x1 is not worse than x2 with respect to each objective function and x1 is 

better than x2 by at least one objective function 

x1 ≼ x2 weakly dominance x1 is not worse than x2 with respect to each objective function 
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x1 weakly dominates x2 

x1 || x2 
Incomparability 

x1 and x2 are incomparable 
x1 and x2 do not weakly dominate each other 

 

Table 2. Dominance Relations between two APFs [11]. 

Symbol Relation Description 

A ≺≺ B A strictly dominates B each solution belonging to B is strictly dominated by a solution belonging to A 

A ≺ B A dominates B each solution belonging to B is dominated by a solution belonging to A 

A ⊲ B A is better than B each solution belonging to B is weakly dominated by a solution belonging to A, and A ≠ B 

A ≼ B A weakly dominates B each solution belonging to B is weakly dominated by a solution belonging to A 

A || B A and B are incomparable A and B do not weakly dominate each other 

3. Quality Indicator 

3.1. Definitions 

A quality indicator QI is a function q: S →ℝ, where S is the objective functions space, that 
assigns a real value to a set of APFs belonging to S related to a multi-objective optimization problem. 
When the function q has just one argument (i.e. one APF), the quality indicator is called “unary”, 
when it has two arguments (i.e. two APFs) it is called “binary”, and so on. 

The aim of a QI is to compare APFs and so QIs are mainly used to indicate if a multi-objective 
optimization algorithm works any better than others. Some QIs can also be applied as the acceptance 
criterion to the selection operator of the stochastic search algorithms [19], but DOA is not devised for 
such a scope.  

3.2 Comparison Methods 

This paper focuses on the use of QIs for evaluating the performances of different optimization 
algorithms. To do this the QI results must be interpreted by means of an interpretation function E : ℝq → Bool, where q depends on the size of the QI set. Figure1 shows some examples of interpretation 
functions (A and B are two APFs). 

Finally, the combination of a quality indicator, I, and an interpretation function, E, is called a 
comparison method [11], and is referred to as CI,E: CI,E(A,B)=E(I(A),I(B)). 

3.3 Compatibility and Completeness 

Usually, one or a set of QIs can be useful to compare different optimization algorithms to figure 
out which works better on a particular class of problems.  

Non–dominated solutions are preferred to the dominated ones from the designer’s point of 
view. Then, when a comparison method shows that APF A is preferable to APF B, A must be better 
than B. In a similar way, when A is better than B, a comparison method must indicate that A is 
preferable to B. Such features are known as ⊳-compatibility and ⊳-completeness [11].  

Let ► be an arbitrary dominance relation among those defined in Table 2 (≻≻ or ≻ or ⊳). A 
comparison method CI,E is said ►-compatible if for each possible pair of APFs A and B: 

( ) trueisBAC EI ,,
  

A◄B 
(11)

A comparison method CI,E is said ►-complete if for each possible pair of APFs A and B: 

A◄B  
( ) trueisBAC EI ,,   (12)
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It has been demonstrated [11] that a comparison method based on a UQI (or on a finite 
combination of UQIs) that is both ⊳-compatible and ⊳-complete cannot exist. Moreover, Pareto 
dominance is sufficient but not necessary to consider an APF preferable to another: there are pairs of 
APFs with considerable quality difference which are considered, by Pareto dominance relations, as 
not comparable [16]. Hence, if a comparison method based on UQI were ⊳-compatible, the indicator 
could not provide any preference in the case of two incomparable APFs. Therefore, it would be 
better if the UQI were only compatible with ⋫ [20] and it should take into account all the features 
(closeness, distribution, extension, cardinality) that are desirable for an APF.   

Finally, while a comparison method ⊳-complete is necessary (i.e. when APF A is better than 
APF B the comparison method must highlight it), when a comparison method shows that A is 
preferable to B, one of the following two cases must hold:   
• A is “better” than B (A ⊲ B); 
• A and B are incomparable and A outperforms B with respect to closeness, distribution, 

extension and cardinality. 
 

q = 1 

q>1  (a QI  made up by combining q QIs) 

A 
B 

I(A) 
I(B) E(I(A),I(B)) 

true
 
false 

A 

 
B 

I(A) 
I(B) E(I(A),I(B)) 

true
 

false 

I1(A) 
I2(A) 
… 
Iq(A) 
 

I1(B) 
I2(B) 
… 
Iq(B) 

 

Figure 1. Comparison method. 

3.4 Closeness, distribution, extension and cardinality 

The main target of an optimization algorithm to solve a multi-objective optimization problem is 
to find an APF as similar as possible to the POF. Hence, as said before, the APF must be: 
• close to the POF; Figure 2 represents the extreme cases: an APF exhibiting good closeness only, 

and an APF with all good features but not close to the POF;  
• well distributed (usually uniform); Figure 3 shows an APF exhibiting a uniform distribution 

only and an APF with all good features but not uniformly distributed;  
• very extended (in the best case the global optimum of each objective function belongs to the 

APF); Figure 4 shows an APF with only a good extension and one with all good features but not 
extended; 

• with high cardinality; Figure 5 shows an APF with good cardinality only and an APF with all 
good features but a poor cardinality.  
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POF 

f2 

f1 

APF ● ▲
closeness poor good

distribution good poor
extension good poor

cardinality good poor

Figure 2. An APF (●) with all good features but not close to the POF and another (▲ ) that is only 
close to the POF. 

POF 

APF ● ▲
closeness good poor

distribution poor good
extension good poor

cardinality good poor

f2 

f1 

Figure 3. An APF (●) with all good features but not uniformly distributed and another (▲ ) that is 
only uniformly distributed. 

f2 

f1

POF 

APF ● ▲
closeness good poor

distribution good poor
extension poor good

cardinality good poor

Figure 4. An APF (●) with all good features but not extended and another (▲ ) that is only extended. 

POF 

f2 

f1 

f2 

f1 

APF ● ▲
closeness good poor

distribution good poor
extension good poor

cardinality poor good

Figure 5. An APF (●) with all good features but with poor cardinality and another (▲ ) that has only 
high cardinality 
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Figure 6 shows an APF with all the desired features. A good QI must take into account all these 
features to give a correct measure of APF quality. 

 
APF 

 

POF 

closeness good 
distribution good 
extension good 
cardinality good 

f2 

f1 

Figure 6.  An APF with all the desired features. 

Table 3 points out if a specific feature partially  or totally  affects the value of some UQIs. A 
heuristic approach has been applied to determine whether a feature (closeness, distribution, 
extension, cardinality) affects the QI value. In particular, an APF B obtained by improving a given 
feature of another APF A is expected to have an indicator value better than that of A when the 
indicator is sensitive to this feature. For example, if an APF is gradually moved towards the POF and 
the indicator increasingly improves, then the indicator is influenced by the closeness feature. An 
indicator is “partially” affected by a feature when it sometimes improves and other times it does not 
change. 

The Average Distance from Reference Set indicator [21] (also called Inverted Generational 
Distance), the Completeness indicator [23,24], the Potential function indicator [19] and the 
Hypervolume indicator [21, 26] account for all the features but they present some drawbacks.  

Table 3. Summary of selected UQIs and features that influence their value. 

Indicator Closeness Distribution Extension Cardinality 

Average Distance from Reference Set [21]     

Chi-Square-Like Deviation Measure [22]    

Completeness Indicator [23, 24]     

Enclosing hypercube [11]      

Generational Distance [25]     

Hypervolume [21, 26]     

M1* [13]     

M2* [13]     

M3* [13]     

Maximum Pareto Front Error [25]     

Outer Diameter [18]     

Overall Nondominated Vector Generation [25]     

Overall Pareto Spread [27]    

Potential function indicator [19]     

Seven Points Average Distance [28]     

Spacing [29]     

Unary ε-indicator [11, 18]     

Uniform distribution [30]     

Worst Distance from Reference Set [21]     

Δ [8]      
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The Average Distance from Reference Set indicator has the same complexity of DOA, but it is ≻≻-complete only [11]. 
The Completeness and Potential function indicators are as ≻-complete as the DOA indicator. 

Nevertheless, the Completeness indicator cannot be directly computed, but can be estimated by 
drawing samples from the feasible set and computing completeness for these samples. The 
confidence interval for the true value can be evaluated with any reliability value, given sufficiently 
large samples [18]. For the Potential function indicator similar considerations hold. Hence, the 
drawback of both indicators is the high computational cost.  

To our knowledge, Hypervolume is the only ⊳-complete UQI, and so is considered the best 
UQI for comparing optimization algorithms. Nevertheless, the relation A ⊲ B differs from A ≺ B 
since the former accounts for the case in which B contains some solutions of A but the probability of 
this specific event is very low, and it can be considered null when the objective functions’ space 
belongs to the set of real numbers.  

Moreover, Hypervolume running time grows exponentially with the number of objective 
functions [31-34]. The most obvious method for calculating Hypervolume is the inclusion-exclusion 
algorithm, with complexity O(n2m), where n is the number of objectives and m is the number of APF 
points. The fastest methods for calculating Hypervolume (e.g. LebMeasure [35], HSO [36]) lead to a 
O(m2n3) complexity. The DOA indicator has a lower computational cost, presenting a O(nMm) 
complexity, where M is the number of POF points. 

4. The weakly Pareto compliant quality indicator 

The comparison method based on DOA and its associated interpretation function is ≻-complete. While the Hypervolume indicator needs to know the reference point, the DOA 
calculation needs the knowledge of the POF, like the Average Distance from Reference Set indicator. 
This is not a drawback in multi-objective algorithm benchmarking which is usually carried out for 
problems with known POF.  

In detail, for an APF A, DOA is computed as follows.  
First, given a solution i belonging to the POF, Di,A, is determined from the sub-set of A 

containing the solutions dominated by i (Figure 7). Hence, if the number of components belonging to 
Di,A is not null (i.e. |Di,A|>0), for each approximated solution a ∈ Di,A the Euclidean distance dfi,a 
between a and i is computed as: 

[ ]
=

−=
n

k
ikakai ffdf

1

2
,,,

 (13)

with: 
n number of objective functions,  
fk,a value of k-th objective function of the approximated solution a, 
fk,i value of k-th objective function of optimal solution i. 

Euclidean distance di,A (Figure 8) between i and the nearest approximated solution belonging to 
Di,A is computed in the objective function space as: 

( )






=∞
>∈

=
0

0min

,

,,,
,

Ai

AiAiai
Ai Dif

DifDadf
d  (14)

Another quantity ri,A (similarly to di,A) is computed for i considering the solutions of A not 
dominated by i (i.e. A\Di,A): 

( )






=∞
>∈

=
0\

0\\min

,

,,,
,

Ai

AiAiai
Ai DAif

DAifDAarf
r  (15)

where rfi,a is a ‘reduced’ distance (Figure 9) between i and a non dominated solution a of A (i.e. ∀ a ∈ 
A : i || a), i.e. computed only for objectives k with fk,a ≥ fk,i: 
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( )[ ]
=

−=
n

k
ikakai ffrf

1

2
,,, ,0max  (16)

Note that, rfi,a is equal to dfi,a when a ∈ Di,A. Moreover, defining na (na < n) as the number of 
functions for which the fk,a-fk,i ≥ 0 (fk,a ≥ fk,i, k=1,..,na and fk,a < fk,i, k= na+1,..,n) expression (16) can be 
rewritten as: 

( ) ( )[ ] 
= +=

+−=
a

a

n

k

n

nk
iaai kfkfrf

1 1

2
, 0  (17)

Finally, defining 

si,A = min(di,A,ri,A) (18)

the DOA indicator for the APF A is computed as: 


=

=
POF

i
Ais

POF
ADOA

1
,

1
)(  (19)

 

f2 

f1 

A 
POFDi,A 

i 

a1 a2

a9

a3

a4 a5

a6
a7 a8

Figure 7.  Di,A of a point i belonging to the POF (example with n=2). 

f2 

f1 

Di,A 
POF

i 

di,A=dfi,a4 

a3

a4 a5

a6
a7 a8

Figure 8.  di,A  of a point i belonging to the POF. 
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a2
a1 

f2 

rf
i,a

1 
f1 

A\Di,A

POF 

i 

ri,A=rfi,a2
 rf

i,a
2 

a9
rfi,a9

 

Figure 9.  ri,A  of a point i belonging to the POF. 

 Considering two APFs A and B, the proposed quality indicator needs interpreting [11] to 
affirm either that “A is preferable to B” or “B is preferable to A” or “A and B are equivalent”: the 
proposed obvious interpretation function is illustrated in Figure 10. Moreover, DOA changes with 
arbitrary scaling of the objective functions, since the DOA indicator is a distance-based metric, while 
the relationship between DOA (A) and DOA (B) does not change. 

In the following, it is demonstrated that A ≺ B implies “A is preferable to B”, that is  
DOA (A) < DOA (B), in order to affirm that DOA is a ≻-complete quality indicator. 

For the sake of clarity, the ≻≻-completeness of DOA is demonstrated before proving its ≻-completeness. 
 

E(I(A);I(B)) 
true  when DOA(A) < DOA(B) 
 
false  otherwise 

 

 
Figure 10.  Interpretation function: pseudo-code to compare A and B by means of DOA(A) and 
DOA(B). 

5. ≻≻-completeness 

DOA is a ≻≻-complete quality indicator if DOA(A) < DOA(B) for any pair of APF A and B, with 
A ≺≺ B.  

In the hypothesis that A ≺≺ B, each solution of B is strictly dominated by, at least, one solution 
of A. To demonstrate that DOA(A) < DOA(B) is sufficient to prove that si,A is always lesser than si,B 
for each point i ∈ POF. In other words, 
if 

si,A < si,B ∀ i ∈ POF  (20)

then 

)(
11

)(
1

,
1

, BDOAs
POF

s
POF

ADOA
POF

i
Bi

POF

i
Ai =<= 

==

 (21)

Considering a point i ∈ POF, in the following, b indicates the solution belonging to B which 
provides si,B and a a solution of A that strictly dominates b (a ≺≺ b); only four scenarios are possible 
(see Figure 11): 

A1. i ≺≺ b Λ i ≼ a   
B1. i ≺≺ b Λ i || a  
C1. i ≺ b Λ i || a  
D1. i || b Λ i || a  
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scenario A1: most relevant case

f2 

f1 

i 

dfi,a 

a 

b 

si,B=di,B 

 

b 
f2 

f1 

i 

a 

rfi,a si,B=di,B 

 

scenario B1 or C1 
 

f2 

f1 

i 

a 

b 

si,B=di,B 

 

rfi,a 

scenario C1: limit case 

 

f2 

f1 

i 

b 

si,B= ri,B 

rf
i,a

 

scenario D1

rf
i,b

 

a 

Figure 11. Possible scenarios for A≻≻B. 

Note that the other scenarios i ≼ b Λ i ≼ a and i || b Λ i ≼ a are not possible because a ≺≺ b: in 
fact, from either i ≼ b Λ a ≺≺ b and i || b Λ a ≺≺ b follows i ⋠ a.  

Moreover, it is worth to put in evidence the following remarks: 
Rmk.1 i ≼ a implies that si,A ≤ dfi,a, in detail: 

• si,A = dfi,a iff si,A = di,A Λ di,A = dfi,a; 
• si,A < dfi,a either if si,A = di,A Λ di,A = dfi,a* < dfi,a (where a*∈A and a* ≠ a) or if si,A = ri,A (this implies that 

ri,A < di,A ≤ dfi,a). 
Rmk.2 i || a implies that si,A ≤ rfi,a, in detail: 

• si,A = rfi,a iff si,A = ri,A Λ ri,A = rfi,a; 
• si,A < rfi,a either if si,A = ri,A Λ ri,A = rfi,a* < rfi,a (where a*∈A and a* ≠ a) or if si,A = di,A (this implies that 

di,A < ri,A ≤ rfi,a). 
Finally, the inequality si,A < si,B will be proved for the four scenarios A1-D1: this inequality 

naturally implies the ≻≻-completeness of the DOA indicator. 
 
A1.   i ≺≺ b Λ i ≼ a 
 
In this case, i strictly dominates b then si,B = di,B = dfi,b, because b is the solution which provides si,B. 

Moreover, i ≼ a implies that si,A ≤ dfi,a (see Rmk.1). 
So, in order to demonstrate that si,A < si,B it is sufficient to demonstrate that dfi,a < dfi,b. 
Recalling that:  

i ≼ a   fk,i ≤ fk,a, ∀ k=1,..,n  
a ≺≺ b  fk,a < fk,b, ∀ k=1,..,n 
the following inequalities hold:  
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(22)

□ 
 
B1.   i ≺≺ b Λ i || a 
 
In this case, i strictly dominates b then si,B = di,B = dfi,b, because b is the solution which provides si,B. 

Moreover, i || a implies that si,A ≤ rfi,a (see Rmk.2). 
So, in order to demonstrate that si,A < si,B it is sufficient to demonstrate that rfi,a < dfi,b. Proof is 

given in the next section because scenario C encompasses scenario B.  
 
C1.   i ≺ b Λ i || a   
 
In this case, i dominates b then si,B = di,B = dfi,b, because b is the solution which provides si,B. 

Moreover, i || a implies that si,A ≤ rfi,a (see Rmk.2). 
So, in order to demonstrate that si,A < si,B is sufficient to demonstrate that rfi,a < dfi,b. 
Ordering the n objective functions of solution a in such a way that the first na (with na<n) are 

greater than those of i and recalling that:  
i || a  fk,i < fk,a, ∀ k=1,..,na  
     fk,i ≥ fk,a, ∀ k=na+1,..,n 
i ≺ b   fk,i ≤ fk,b, ∀ k=1,..,n 
a ≺≺ b  fk,a < fk,b, ∀ k=1,..,n 
then the following inequalities hold:  

[ ]

[ ] [ ]

BibiaiAi

bi

n

nk
ikbk

n

k
ikbk

n

k

n

nk
ikakai

aikbk

aikbkikak

sdfrfs

dfffff

ffrf

nnkff
nkffff

a

a

a

a

,,,,

,
1

2
,,

1

2
,,

1 1

2
,,,

,,

,,,,

0

,..,10

,..,10

=<≤


=−+−

<+−=



+=∀−≤

=∀−<−<



 

+==

= +=

 

(23)

□ 
 
D1.  i || b Λ i || a 
 
In this case, i and b are incomparable then si,B = ri,B = rfi,b, because b is the solution which provides 

si,B. Moreover, i || a implies that si,A ≤ rfi,a (see Rmk.2). 
So, in order to demonstrate that si,A < si,B it is sufficient to demonstrate that rfi,a < rfi,b. 
Ordering the n objective functions of solution a in such a way that the first na are greater than 

those of i, ordering the n objective functions of solution b in such a way that the first nb are greater 
than those of i (with na ≤ nb < n, since a ≻≻ b Λ i || a implies na ≤ nb, while i || b implies nb < n) and 
recalling that:  
i || a  fk,i < fk,a, ∀ k =1,..,na  
     fk,i ≥ fk,a, ∀ k =na+1,..,n 
i || b  fk,i < fk,b, ∀ k =1,..,nb  
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     fk,i ≥ fk,b, ∀ k =nb+1,..,n 
a ≺≺ b  fk,a < fk,b, ∀ k =1,..,n 
then the following inequalities hold:  
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(24)

□ 

6. ≻-completeness 

In this section is proved that DOA is a ≻-complete quality indicator. Consider any pair of APF 
A and B, with A≺B, the ≻-completeness of DOA is demonstrated by proving that si,A is never greater 
than si,B (for each point i ∈ POF) and always exists a point i* ∈ POF for which si*,A is lesser than si*,B: 
if 

si,A ≤ si,B ∀ i ∈ POF Λ ∃ i* ∈ POF : si*,A < si*,B  (25)

then 
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(26)

In the following, b indicates the solution belonging to B which provides si,B for a point i ∈ POF 
and a a solution of A that dominates b (a ≺ b). Moreover, the ≻-completeness of DOA is proved in the 
worst and most general case, i.e. when ∀ b∈B ∄ a∈A : a ≺≺ b (i.e. a ≺ b Λ a ⊀⊀ b, limit case); only five 
scenarios are possible (see Figure12): 

A2. i ≺≺ b Λ i ≺ a   
B2. i ≺≺ b Λ i || a  
C2. i ≺ b Λ i ≼ a  
D2. i ≺ b Λ i || a  
E2. i || b Λ i || a  

 
Note that the scenario i || b Λ i ≼ a is not possible because a ≺ b: in fact, from i || b Λ a ≺ b 

follows i ⋠ a. Moreover, scenario A2 does not include i=a, differently from section V, because in this 
case i ≺≺ b while a ≺ b Λ a ⊀⊀ b. Analogously, differently from section V, when i ≺ b the scenario i ≼ 
a is possible. Finally, the scenario i ≼ b is not considered because A ≺ B, in fact i = b would lead to the 
absurd a ≺ b = i.  

In order to demonstrate the ≻-completeness of DOA, it is proved that the inequality si,A < si,B is 
verified ∀ i for the three scenarios A2, B2 and C2. While for the remaining two scenarios D2 and E2 
we will prove that the following two sufficient conditions hold: 

α.  si,A ≤ si,B  
β.  ∃ i* ∈ POF : si*,A < si*,B. 

For the sake of simplicity the proof of β will be given in Appendix A. 
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scenario A2 or C2
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scenario B2 or D2
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scenario C2: limit case 
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scenario D2: limit case 
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a b 

si,B= ri,B 
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i,a

 

scenario E2

rf
i,b

 

Figure 12. Possible scenarios for A≻B. 

A2.  i ≺≺ b Λ i ≺ a   
 
In this case, i strictly dominates b then si,B = di,B = dfi,b, because b is the solution which provides si,B. 

Moreover, i ≺ a implies that si,A ≤ dfi,a (see Rmk.1). 
So, in order to demonstrate that si,A < si,B it is sufficient to demonstrate that dfi,a < dfi,b. 
Recalling that:  

i ≺ a   fk,i ≤ fk,a, ∀ k=1,..,n  
a ≺ b  fk,a ≤ fk,b, ∀ k=1,..,n Λ ∃ j : fj,a < fj,b  
the following inequalities hold:  
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(27)

□ 
 
B2.  i ≺≺b Λ i || a   
 
In this case, i strictly dominates b then si,B = di,B = dfi,b, because b is the solution which provides si,B. 

Moreover, i || a implies that si,A ≤ rfi,a (see Rmk.2).  
So, in order to demonstrate that si,A < si,B it is sufficient to demonstrate that rfi,a< dfi,b. 
Ordering the n objectives f of solution a in such a way that the first na (with na<n) are greater 

than those of i and recalling that:  
i || a  fk,i < fk,a, ∀ k=1,..,na  
     fk,i ≥ fk,a, ∀ k=na+1,..,n 
i ≺≺ b  fk,i < fk,b, ∀ k=1,..,n 
a ≺ b  fk,a ≤ fk,b, ∀ k=1,..,n  
then the following inequalities hold: 
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(28)

□ 
 
C2.  i ≺ b Λ i ≼ a   
 
In this case, i dominates b then si,B = di,B = dfi,b, because b is the solution which provides si,B. 

Moreover, i ≼ a implies that si,A ≤ dfi,a (see Rmk.1). 
So, in order to demonstrate that si,A < si,B it is sufficient to demonstrate that dfi,a < dfi,b. 
Recalling that:  

i ≼ a   fk,i ≤ fk,a, ∀ k=1,..,n  
a ≺ b  fk,a ≤ fk,b, ∀ k=1,..,n Λ ∃ j : fj,a < fj,b  
then the following inequalities hold: 
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(29)

□ 
 
D2.  i ≺ b Λ i || a   
 
In this case, i dominates b then si,B = di,B = dfi,b, because b is the solution which provides si,B. 

Moreover, i || a implies that si,A ≤ rfi,a (see Rmk.2). 
So, in order to demonstrate that si,A ≤ si,B it is sufficient to demonstrate that rfi,a ≤ dfi,b. 
Ordering the n objectives f of solution a in such a way that the first na (with na<n) are greater 

than those of i and recalling that:   
i || a  fk,i < fk,a, ∀ k=1,..,na  
      fk,i ≥ fk,a, ∀ k=na+1,..,n 
i ≺ b   fk,i ≤ fk,b, ∀ k=1,..,n Λ ∃ h : fh,i < fh,b 
a ≺ b  fk,a ≤ fk,b, ∀ k=1,..,n Λ ∃ j : fj,a < fj,b  
then the following inequalities hold: 
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(30)

□ 
Note that rfi,a is strictly lesser than dfi,b when 1 ≤ j ≤ na, since: 
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Otherwise si,A ≤ si,B. In particular, rfi,a = dfi,b iff fk,a = fk,b ∀ k=1,..,na Λ fk,i = fk,b ∀ k= na+1,..,n. In this case, 
obviously, fh,i < fh,a = fh,b with 1 ≤ h ≤ na and fj,a < fj,i = fj,b with j > na. As said before, the proof that ∃ i* ∈ 
POF : si*,A < si*,B has been reported in Appendix A. 

 
E2.  i || b Λ i || a   
 
In this case, i and b are incomparable then si,B = ri,B = rfi,b, because b is the solution which provides 

si,B. Moreover, i || a implies that si,A ≤ rfi,a (see Rmk.2).  
So, in order to demonstrate that si,A ≤ si,B it is sufficient to demonstrate that rfi,a ≤ rfi,b.  
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Ordering the n objectives f of solution a in such a way that the first na are greater than those of i, 
ordering the n objectives f of solution b in such a way that the first nb are greater than those of i (with 
na ≤ nb < n, since a ≺ b Λ i || a implies na ≤ nb, while i || b implies nb < n) and recalling that:  
i || a  fk,i < fk,a, ∀ k=1,..,na  
     fk,i ≥ fk,a, ∀ k=na+1,..,n  
i || b  fk,i < fk,b, ∀ k =1,..,nb  
     fk,i ≥ fk,b, ∀ k =nb+1,..,n 
a ≺ b  fk,a ≤ fk,b, ∀ k=1,..,n Λ ∃ j : fj,a < fj,b 
then the following inequalities hold: 
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(32)

□ 
It is worth to note that: 

rfi,a < rfi,b if nb ≠ na; 
rfi,a ≤ rfi,b if nb = na.  

In the last case, rfi,a = rfi,b iff fk,a = fk,b ∀ k=1,..,na. In this case, obviously, fj,a < fj,b ≤ fj,i whit j > na. 
As said before, the proof that ∃ i* ∈ POF : si*,A < si*,B has been reported in Appendix A. 

7.  ⋫-compatibility 

In this section it is proved that DOA is a ⋫-compatible quality indicator. The following remarks 
are necessary. 

Rmk.3  
A solution a’ belonging to A does not influence DOA(A) if, ∀ i ∈ POF: 

• si,A < dfi,a’ when a’ is dominated by i; 
• si,A < rfi,a’ when a’ is not dominated by i. 

In fact, in this case si,A ≠ dfi,a’ and si,A ≠ rfi,a’, by which follows that DOA(A) does not change its 
value if a’ is moved off from A. These means that an APF B = A\{a’} has the same quality indicator 
value, i.e. DOA(A) = DOA(B). Using DOA seems B equivalent to A while A, having one more 
solution, is better than B [11]. Then the proposed method is not a ⊳-complete quality indicator. On 
the other hand, DOA together with its interpretation function is a ≻-complete comparison method, 
as it is demonstrated before.  

Rmk.4 
The relation A ⊲ B is equivalent to assume that B = C ⋃ D, where C ⊊ A, D ⋂ A = Ø and ∀ b∈D ∃ 

a∈A : a ≺ b. Note that, when C = Ø then A ≺ B. Hence, the difference between case A ≺ B and A ⊲ B is 
that in the latter B could contains some solutions of A. Moreover, obviously, only the last case 
includes B ⊊ A (i.e. D = Ø). For these reasons when A ⊲ B, DOA (A) is never greater than DOA (B). 

Rmk.5  
The relation A || B involves that DOA (A) can be greater or less than or equal to DOA (B). 
For two generic APF A and B, the ≻-completeness of DOA, together with Rmks 3-5, imply that 

if DOA (A) < DOA (B) then A ≺ B or A ⊲ B or A || B, i.e. it is sure that B ⋪ A. Then DOA is a ⋫-compatible unary quality indicator. 
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8.  DOA validation 

To demonstrate that DOA takes into account all features (closeness, distribution, extension, 
cardinality) three typical POFs have been considered: 
• convex and connected; 
• non-convex and connected; 
• convex and disconnected. 

In particular, the DOA unary quality indicator has been computed for different examples of 
APFs. Both POFs and APFs are drawn in Figure 13-15. Table 4 shows the values of DOA for the APFs 
considered.  

Let's examine the strategy adopted to choose the examples of APF for each POF: the APF B 
obtained by improving a given feature of APF A is expected to have a better indicator value than 
that of A if the indicator is sensitive to this feature. For example, if an APF is gradually moved 
towards the POF and the indicator increasingly improves, then the indicator is influenced by the 
“closeness” feature. The validation was performed according to these considerations. Hence, from 
an APF (APF1, indicated in the figures by symbol ) with only poor features, the second APF (APF2, 
indicated by + ) is created by improving APF1 “closeness” that is by converging APF1 on the POF. 
Therefore, APF2 has better closeness than APF1 but the same distribution, extension and cardinality. 
The third APF (APF3, indicated by ○) is obtained by improving the “distribution” of APF2 by 
uniformly distributing the solutions of APF2. APF3 has better distribution than APF2 but the same 
closeness, extension and cardinality. The fourth APF (APF4, indicated by □) is created by improving 
the extension of APF3, preserving the other features. Finally, the fifth APF (APF5, indicated by •) is 
created by adding new points to APF4, and hence improving the cardinality of APF5 with respect to 
the fourth APF. It is worth noting that it does not matter in which order the different features are 
added to the initial APF1, and the order used in Table 4 simply follows the features’ description 
given in the Introduction. 

Whatever the characteristics of the POF, such a strategy highlights that the value of DOA 
decreases when one feature improves.  

The results in Table 4 highlight the ≻-completeness of DOA too. In fact, the first APF is 
dominated by the others and it has an DOA value worse than those of the other APFs. 

Table 4. DOA Evaluation for some typical POF  
(symbol in brackets is the marker associated to the APF in figure 13,14,15)  

POF APF Closeness Distribution Extension Cardinality DOA 

Convex and 

connected 

(see Figure 13) 

APF1() poor poor poor poor 0.71040 

APF2(+) good poor poor poor 0.16940 

APF3(○) good good poor poor 0.16287 

APF4( ) good good good poor 0.10253 

APF5(·) good good good good 0.06431 

Non-convex and 

connected 

(see Figure 14) 

APF1() poor poor poor poor 0.79167 

APF2(+) good poor poor poor 0.24303 

APF3(○) good good poor poor 0.23465 

APF4( ) good good good poor 0.09301 

APF5(·) good good good good 0.06993 

Convex and 

disconnected 

(see Figure 15) 

APF1() poor poor poor poor 0.69510 

APF2(+) good poor poor poor 0.16866 

APF3(○) good good poor poor 0.16810 

APF4( ) good good good poor 0.07254 

APF5(·) good good good good 0.06331 
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Figure 13.  Convex and connected POF (solid line). 

Figure 14.  Non-convex and connected POF (solid line).. 
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Figure 15.  Convex and disconnected POF (solid line).. 

9.  Conclusion 

Evaluating the performance of multi-objective optimization algorithms (MOOAs) is very 
difficult because their comparison involves comparing APFs. QIs are used to measure the goodness 
of the APF provided by different optimization algorithms to highlight which works better.  

Therefore, a QI must be able to account for Pareto dominance to properly compare two different 
algorithms. Moreover, when APFs are incomparable, further data (closeness, distribution, extension 
and cardinality) must be taken into account to compare the APFs provided by different MOOAs. 
Few UQIs are ≻-complete and able to account for the aforementioned features but they need much 
computational effort. 

This paper has described the DOA unary quality indicator that could be very useful in assessing 
the performance of an MOOA by estimating the match between the approximation front found by 
the MOOA and the optimal one. It has been proved that it is ≻-complete, ⋫-compatible and requires 
little computational cost. Moreover, a numerical validation was carried out to demonstrate that it 
accounts for closeness, distribution, extension and cardinality. An implementation of the DOA 
indicator is available online: http://wwwelfin.diees.unict.it/esg/DOA.html. 

The major drawback of the proposed indicator is that it is not ⊳-complete. Even though the 
dominance relation A ⊲ B differs from A ≺ B since the former accounts for the case in which B 
contains some solutions of A, the probability of this specific event is next to nil. Nevertheless, a 
future development of this work is to properly modify DOA to make it ⊳-complete, maintaining low 
computational complexity. 
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Appendix A 

Hypothesis:  
A ≺ B. 
Thesis:  
∃ i* ∈ POF : si*,A = di*,A < si*,B. 
Reductio ad absurdum:  
In this proof some remarks must be taken into account: 

I. dfi*,a* = di*,A  dfi*,a* ≤ dfi*,a’ ∀ a’ ∈ Di*,A 
II. dfi*,a* < ri*,A  dfi*,a* < rfi*,a’’ ∀ a’’ ∈ A\ Di*,A 
III. when i ≼ a ≺ b  dfi,a < dfi,b (see Section C2) 
IV. when i || a ∧ i ≺ b ∧ a ≺ b  rfi,a ≤ dfi,b (see Section D2) 
V. when i || a ∧ i || b ∧ a ≺ b  rfi,a ≤ rfi,b (see Section E2) 
VI. ∃ i* ∈ POF and ∃ a*∈A : si*,A = di*,A = dfi*,a* < ri*,A  (proved in Appendix B). 

Assume the opposite of the thesis: 

si*,B ≤ si*,A (33)

by (33) and Rmks. (VI), follows: 

∃ b’∈ Di*,B : si*,B = dfi*,b’ (≤ dfi*,a* = si*,A) (34)

or 

∃ b’’∈ B\Di*,B : si*,B = rfi*,b’’ (≤ dfi*,a* = si*,A) (35)

Considering inequality (34), three scenarios are to be analyzed: 
(a) a* ≺ b’ 
(b) a’ ≺ b’, where a’ ∈ Di*,A 
(c) a’’ ≺ b’, where a’’ ∈ A\Di*,A 

In scenario (a), from Rmk. (III), follows: 

AiBiBibiaiAiAi sssdfdfds *,*,*,'*,**,*,*, >=<==  (36)

that is in contradiction with (33). 
In scenario (b), by considering Rmks. (I) and (III), follows: 

AiBiBibiaiaiAiAi sssdfdfdfds *,*,*,'*,'*,**,*,*, >=<≤==  (37)

that is in contradiction with (33). 
In scenario (c), by considering Rmks. (II) and (IV), follows:  

AiBiBibiaiaiAiAi sssdfrfdfds *,*,*,'*,''*,**,*,*, >=≤<==  (38)

that is in contradiction with (33). 
Considering (35), si*,B = rfi*,b’’ implies  i* || b’’, i.e. ∄ a ∈ Di*,A : a ≺ b’’. Hence only one scenario 

have to be analyzed, in particular a’’ ≺ b’’ , where a’’ ∈ A\Di*,A.  
By considering Rmks. (II) and (V), follows: 

AiBiBibiaiaiAiAi sssrfrfdfds *,*,*,''*,''*,**,*,*, >=≤<==  (39)

that is in contradiction with (33). 
□ 
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Appendix B 

Hypothesis:  
A is a generic APF 
Thesis:  
∃ i ∈ POF and ∃ a∈A : si,A = di,A = dfi,a< ri,A. 
Proof  
The proof is given by induction, starting from |A| = 1 and adding to A other solutions 

recursively. First, only two objective functions (n=2) are considered, then the same procedure is used 
for the general case (n > 2). 

Proof by induction with n=2.  

Hypothesis |A| = 1 
Proof. 
Being A={a} and recalling that POF ≼ A, follows that there exist a solution i ∈ POF for which i ≼ 

a, then  a ∈ Di,A and |A\Di,A| = 0. This implies that: 

AiaiAiAi

Ai

aiAi

rdfds

r
dfd

,,,,

,

,,

<==


∞=

∞<=

 
(40)

□ 
Hypothesis |A| = 2 
Proof. 
Being A={a1,a2}, if ∃ i ∈ POF : i ≼ a1 ∧ i ≼ a2, then a1 and a2 belong to Di,A and |A\Di,A| = 0: 

AiaiAiAi

Ai

aiaiaiAi

rdfds

r
dfdfdfd

,,,,

,

2,1,,, ),min(

<==


∞=

∞<==

 
(41)

where a is equal to the solution which provides si,A between a1 and a2. 
On the other hand, when there not exists such solution i, recalling that POF ≼ A, then exist two 

solutions i1, i2 ∈ POF for which i1 ≼ a1 and i2 ≼ a2. Obviously, i1 || a2 and i2 || a1. Hence, without loss 
of generality it is assumed that: 

2,22,21,21,2

1,11,12,12,1

aiai

aiai

ffff
ffff

≤<≤

≤<≤  (42)

The thesis is proved if si1,A = di1,A = dfi1,a1 < rfi1,a2 = ri1,A ∨ si2,A = di2,A = dfi2,a2 < rfi2,a1 = ri2,A.  
The proof is by reductio ad absurdum. Supposing that: 

si1,A=ri1,A=rfi1,a2<dfi1,a1=di1,A ∧ si2,A=ri2,A=rfi2,a1<dfi2,a2=di2,A (43)

in which: 

[ ] [ ]

[ ] [ ]2
2,22,2

2
2,12,12,2

2,11,11,2

2
1,21,2

2
1,11,11,1

1,22,22,1

iaiaai

iaai

iaiaai

iaai

ffffdf

ffrf

ffffdf

ffrf

−+−=

−=

−+−=

−=

 
(44)

Note that: 

[ ] [ ]
[ ] [ ] 2,22,22,12,1

2
2,22,2

2
2,12,1

1,21,21,11,1
2

1,21,2
2

1,11,1

iaiaiaia

iaiaiaia

ffffffff

ffffffff

−+−<−+−

−+−<−+−  (45)
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because the quantities in the brackets are not negative. By (43) and (45) follows: 

2,22,22,12,12,11,1

1,21,21,11,11,22,2

2,22,22,12,12,21,22,11,1

1,21,21,11,11,12,11,22,2

0

0

iaiaia

iaiaia

iaiaaiaiia

iaiaaiaiia

ffffff
ffffff

ffffdfrfff
ffffdfrfff

−+−++−<

−+−++−<


−+−<<=−

−+−<<=−

 
(46)

then 

[ ]
[ ]

2,21,21,12,1

2,22,21,21,21,22,2

2,12,11,11,12,11,10

iaia

iaiaia

iaiaia

ffff
ffffff

ffffff

−+−=

=−+−++−+

+−+−++−<
 (47)

that leads to an absurdity because, by (42), it is: 

0

0

2,21,2

1,12,1

<−

<−

ia

ia

ff
ff  (48)

□ 
Adding to A other solutions recursively, the previous procedure can be applied to demonstrate 

that the thesis is always true whatever |A| is.  

Proof by induction with n=3.  

Hypothesis |A| = 1 
Proof. The proof is the same provided for n=2 in (40). 
Hypothesis |A| = 2 
Proof. 
Being A={a1,a2}, if ∃ i ∈ POF : i ≼ a1 Λ i ≼ a2, then  a1 and a2 belong to Di,A and |A\Di,A| = 0  The 

proof is the same provided in (41). 
On the other hand, when there not exists such solution i, recalling that POF ≼ A then exist two 

solutions i1, i2 ∈ POF for which i1 ≼ a1 and i2 ≼ a2. Obviously, i1 || a2 and i2 || a1. Hence, without loss 
of generality it is assumed that: 

2,32,31,31,3

2,22,21,21,2

1,11,12,12,1

aiai

aiai

aiai

ffff
ffff

ffff

≤<≤

≤<≤

≤<≤
 (49)

Likewise for the case of two objective functions the thesis it will be proved that si1,A = di1,A = dfi1,a1 
< rfi1,a2 = ri1,A ∨ si2,A = di2,A = dfi2,a2 < rfi2,a1 = ri2,A.  

The proof is by reductio ad absurdum.  
Assuming that: 

si1,A=ri1,A=rfi1,a2<dfi1,a1=di1,A ∧  si2,A=ri2,A=rfi2,a1<dfi2,a2=di2,A
(50)

which imply: 

[ ] [ ]
[ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ]2

1,31,3
2

1,21,2
2

1,11,1

2
1,32,3

2
1,22,2

1,1
2

1,31,3
2

1,21,2
2

1,11,1

2
1,32,3

2
1,22,22,1

iaiaia

iaia

aiiaiaia

iaiaai

ffffff

ffff

dfffffff

ffffrf

−+−+−

<−+−



=−+−+−

<−+−=

 (51)

and 
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[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]2

2,32,3
2

2,22,2
2

2,12,1

2
2,11,1
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2
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2

2,22,2
2

2,12,1

2,11,11,2

iaiaia

ia

aiiaiaia

iaai

ffffff

ff

dfffffff

ffrf

−+−+−

<−



=−+−+−

<−=

 
(52)

Summing each member of (51) and (52) follows: 

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]2

1,32,3
2

2,32,3
2

1,31,3

2
1,22,2

2
2,22,2

2
1,21,2

2
2,11,1

2
2,12,1

2
1,11,1

2
2,32,3

2
2,22,2

2
2,12,1

2
1,31,3

2
1,21,2

2
1,11,1

2
1,32,3

2
1,22,2

2
2,11,1

0

iaiaia

iaiaia

iaiaia

iaiaia

iaiaia
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ffffff

ffffff

ffffff

ffffff

ffffff

ffffff

−−−+−+

+−−−+−+

+−−−+−<



−+−+−+

+−+−+−

<−+−+−

 
(53)

Note that the quantities in the brackets are not negative and hence: 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]
[ ] [ ]
[ ] [ ]
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1,32,32,32,31,31,3

1,22,22,22,21,21,2
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2
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2
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2
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2
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2
2,11,1

2
2,12,11,11,1

2
1,32,3

2
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2
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2
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2
2,22,2

2
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2
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2
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2
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+−−−+−+
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(54)

that leads to an absurdity because, by (49), it is: 

0

0

0

2,31,3

2,21,2

1,12,1

<−

<−

<−

ia

ia

ia

ff
ff
ff

 (55)

□ 
The cases with n>3 can be proved in a similar way.   
 

References 

1. E. Zitzler, L. Thiele, Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case 
Study,  in Parallel Problem Solving from Nature-PPSN V, Ed.: Springer/Heidelberg, Berlin 1498 (1998) 
292–301. 

2. Y. Lei, M. Gong, J. Zhang, W. Li, L. Jiao, Resource allocation model and double-sphere crowding distance 
for evolutionary multi-objective optimization, European Journal of Operational Research 234 (2014) 
197-208. 

3. R. Wang, R.C. Purshouse, P.J. Fleming, Preference-inspired co-evolutionary algorithms using weight 
vectors, European Journal of Operational Research, 243 (2015) 423-441. 

4. A. Sinha, P. Korhonen, J. Wallenius, K. Deb, An interactive evolutionary multi-objective optimization 
algorithm with a limited number of decision maker calls, European Journal of Operational Research 233 
(2014) 674-688. 

5. A. Ghosh, S. Dehuri, Evolutionary Algorithms for Multi-Criterion Optimization: A Survey, International 
Journal of Computing & Information Sciences 2 (2004) 38-57  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2016                   doi:10.20944/preprints201612.0088.v1

Peer-reviewed version available at Math. Comput. Appl. 2017, 22, 25; doi:10.3390/mca22010025

http://dx.doi.org/10.20944/preprints201612.0088.v1
http://dx.doi.org/10.3390/mca22010025


 25 of 26 

 

6. E. Dilettoso,  S. A. Rizzo, N. Salerno, A Parallel Version of the Self-Adaptive Low-High Evaluation 
Evolutionary-Algorithm for Electromagnetic Device Optimization,  IEEE Transactions on Magnetics 50 
(2014) 633-636. Free code available online at: http://wwwelfin.diees.unict.it/esg/ricerca/psalhe/index.phtml 

7. J. Wilfried, C. Blume. Pareto Optimization or Cascaded Weighted Sum: A Comparison of Concepts. 
Algorithms 7.1 (2014): 166-185. 

8. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, NJ (2001). 
9. B. Chen, W. Zeng, Y. Lin and D. Zhang, A New Local Search-Based Multiobjective Optimization 

Algorithm, IEEE Transactions on Evolutionary Computation, 19 (2015) 50-73.  
10. E.G. Talbi, M. Basseur, A.J. Nebro, E. Alba, Multi-objective optimization using metaheuristics: 

non-standard algorithms, International Transactions in Operational Research 19(2012) 283–30. 
11. E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. Fonseca, Performance assessment of multiobjective 

optimizers: an analysis and review, IEEE Transactions on Evolutionary Computation 7 (2003) 117-132.  
12. C. M. Fonseca, P. J. Fleming, On the performance assessment and comparison of stochastic multiobjective 

optimizers, in Parallel Problem Solving from Nature (PPSN-IV), Ed. Springer, Berlin, Germany (1996) 
584–593. 

13. E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical results,  
Evolutionary Computation 8 (2000) 173-195.  

14. P.K. Shukla, K. Deb, On finding multiple Pareto-optimal solutions using classical and evolutionary 
generating methods, European Journal of Operational Research, 181 (2007) 1630-1652.  

15. Y. Chen, X. Zou, W. Xie, Convergence of multi-objective evolutionary algorithms to a uniformly 
distributed representation of the Pareto front, Information Sciences 181 (2011) 3336–3355.  

16. G. Lizárraga, M. J. Gomez, M. G. Castañon, J. Acevedo-Davila, S. B. Rionda, Why Unary Quality Indicators 
Are Not Inferior to Binary Quality Indicators, in MICAI 2009 Advances in Artificial Intelligence, Ed. 
Springer, Berlin, Germany, 5845 (2009) 646-657 

17. E. Dilettoso,  S. A. Rizzo, N. Salerno, A new indicator to assess the quality of a Pareto approximation set 
applied to improve the optimization of a magnetic shield, Scientific Computing in Electrical Engineering, 
Zurich, Switzerland, September 11-14, 2012. 

18. E. Zitzler, J. D. Knowles, L. Thiele, Quality assessment of pareto set approximations, in Multiobjective 
Optimization, ser. Lecture Notes in Computer Science, Ed. Springer, Berlin, Germany 5252 (2008), 373-404. 

19. M. Laumanns, R. Zenklusen, Stochastic convergence of random search methods to fixed size Pareto front 
approximations, European Journal of Operational Research, 213 (2011) 414-421 

20. C.M. Fonseca, J.D. Knowles, L. Thiele, E. Zitzler, A tutorial on the performance assessment of stochastic 
multiobjective optimizers,  available online at 
http://www.tik.ee.ethz.ch/pisa/publications/emo-tutorial-2up.pdf  

21. P. Czyzak, A. Jaskiewicz, Pareto simulated annealing-a metaheuristic technique for multiobjective 
combinatorial optimization, Journal of Multi-Criteria Decision Analysis 7 (1998) 34–47.  

22. N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms, 
Evolutionary Computation 2 (1994) 221-248  

23. A.V. Lotov, G.K. Kamenev, V.E. Berezkin, Approximation and Visualization of  Pareto-Efficient Frontier 
for Nonconvex Multiobjective Problems,  Doklady Mathematics 66 (2002) 260–262. 

24. A.V. Lotov, V.A. Bushenkov, G.K. Kamenev, Interactive Decision Maps. Approximation and Visualization 
of Pareto Frontier, Kluwer, Boston, 2004 

25. D. A. Van Veldhuizen, Multiobjective evolutionary algorithms: Classifications, analyzes, and new 
innovations, Ph.D. dissert., Graduate School of Eng. of the Air Force Inst. of Technol., Air Univ., 1999. 

26. N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated 
hypervolume, European Journal of Operational Research 181 (2007) 1653-1669. 

27. J. Wu, S. Azarm, Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set, 
Transactions of the ASME, Journal of Mechanical Design 123 (2001) 18-25.  

28. J. R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. M.S. 
Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA, 
1995. 

29. D. A. Van Veldhuizen, G.B. Lamont, On measuring multiobjective evolutionary algorithm performance. In 
Proc. of the 2000 Congress on Evolutionary Computation., La Jolla, CA, (2000) 204-211. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2016                   doi:10.20944/preprints201612.0088.v1

Peer-reviewed version available at Math. Comput. Appl. 2017, 22, 25; doi:10.3390/mca22010025

http://dx.doi.org/10.20944/preprints201612.0088.v1
http://dx.doi.org/10.3390/mca22010025


 26 of 26 

 

30. K. C. Tan, E. F. Khor, T. H. Lee, Evolutionary Algorithms for Multi-Objective Optimization: Performance 
Assessments and Comparisons, Journal of Artificial Intelligence Review 17 (2002) 253–290. 

31. L. While, A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume, in Evolutionary 
Multi-Criterion Optimization, Lec. Notes in Computer Science, Ed.: Springer/Heidelberg, Berlin 3410 
(2005) 326–40.   

32. L. While, L. Bradstreet, L. Barone, P. Hingston, Heuristics for Optimising the Calculation of Hypervolume 
for Multi-objective Optimisation Problems, in IEEE Congress on Evolutionary Computation, Edinburgh, 
Scotland (2005) 2225–2232.  

33. C.M. Fonseca, L. Paquete, M. López-Ibáñez, An Improved Dimension-Sweep Algorithm for the 
Hypervolume Indicator, in IEEE Cong. on Evolutionary Computation, Vancouver, Canada (2006) 
1157–1163.  

34. N. Beume, G. Rudolph, Faster S-Metric Calculation by Considering Dominated Hypervolume as Klee’s 
Measure Problem, in Proc. of the 2nd IASTED Conference on Computational Intelligence (2006) 231–236. 

35. J. Knowles, D. Corne, and M. Fleischer, “Bounded archiving using the lebesgue measure,” in Proc. 
Congr.Univ. Maryland, vol. 4, H. Abbass and B. Verma, Eds. (2003) 2490–2497 

36.  L. While, L. Barone, P. Hingston, S. Huband, A Faster Algorithm for Calculating Hypervolume, IEEE 

Transactions On Evolutionary Computation 10 (2006) 29-38 

© 2016 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons by 
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2016                   doi:10.20944/preprints201612.0088.v1

Peer-reviewed version available at Math. Comput. Appl. 2017, 22, 25; doi:10.3390/mca22010025

http://dx.doi.org/10.20944/preprints201612.0088.v1
http://dx.doi.org/10.3390/mca22010025

