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Abstract

The exact solutions of some conformable time fractional PDEs are pre-
sented explicitly. The modified Kudryashov method is applied to construct
the solutions to the conformable time fractional Regularized Long Wave-
Burgers (RLW-Burgers, potential Korteweg-de Vries (KdV) and clannish
random walker’s parabolic (CRWP) equations. Initially, the predicted so-
lution in the finite series of a rational form of an exponential function is
substituted to the ODE generated from the conformable time fractional
PDE by using wave transformation. The coefficients used in the finite series
are determined by solving the algebraic system derived from the coefficients
of the powers of the predicted solution.
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1 Introduction

The last several decades witness giant development on symbolic programming. As
a result of these developments, many effective techniques have been derived to
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solve numerous problems. The power of solving complicated algebraic computa-
tions more rapidly than human directs many researcher to develop, improve and
implement new methods on the computer based platforms. Thus, the solution
techniques for the PDEs have also been moved to the computers to gain time.
Having no general methods to be used for all nonlinear PDEs attracts the re-
searcher to derive new methods to solve them. Due to few of them integrable, the
predicted solution techniques are more common to solve nonlinear PDEs. A pre-
dicted solution is substituted into the solution and the parameters are determined
by algebraic ways in this class of the solution methods. Giving a solution to a
PDE does not require the method to work for another one. This aspect forces the
researchers to try the same method for the solutions of the other PDEs.

The simple equation, first integral, ansatz and various types of expansion methods
are some of the recent efficient techniques that are used to solve nonlinear PDEs.
The developments on the fractional derivatives change the focus of the applied
mathematicians to solve fractional type differential equations. Some look for the
ways to implement the techniques to the fractional forms of the nonlinear PDEs.
The key is the existence and validity of the change rule in addition to necessary
other properties while solving this family of nonlinear PDEs. The fundamental
properties of the conformable fractional derivatives enable the compulsory condi-
tions to implement these methods to fractional nonlinear partial derivatives despite
some constraints.

Here, the modified form of the Kudryashov method is applied to construct the
solution of some conformable time fractional nonlinear PDEs. Before starting the
implementation of the method to generate the solutions, some fundamentals and
properties of the conformable derivative are stated below.

2 Conformable Fractional Derivative

Let a be in (0, 1]. Then, the conformable derivative is given as

D (u(#)) = lim w(t 4+ 7t17%) — u(t)

(1)

for a conformable differentiable function « : [0, 00) — R in the half space ¢ > 0[I].
The conformable derivative has significant properties given below. Assuming the
derivative order o € (0,1}, and supposing that v = v(t) and w = w(t) are a-
differentiable for all £ > 0, the conformable derivative satisfies:

e D%av + bw) = aD*(v) + bD*(w)

o D¥(tP) =ptr~*, VpeR
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D*(\) =0, for all constant function v(t) = A

D*(vw) = vD*(w) + wD*(v)

_ wD*(v) — vD*(w)

° Da(%)

D)) = 1%

dt
for Va,b € R[2, 3].

Some significant properties such as the Taylor series expansion, Laplace transform,
exponential function and the chain rule are defined in [4]. The following theo-
rem completes the required conditions for the implementation of the Kudryashov
method in the modified form to the fractional PDEs in conformable sense.

Theorem 1 Let v be an «a-differentiable function in conformable sense and dif-
ferentiable and suppose that w is also differentiable and defined in the range of v.
Then,

D*(wow)(t) = t'w (t)v'(w(t)) (2)

3 The Modified Kudryashov Method

Consider a nonlinear PDE of the form
F(uvf,vz,vfo‘,vm, .)=0 (3)

where v = v(z,t) and « € (0, 1] stands for the order of the conformable derivative.
The wave transformation

v(a,t) = () = — —t° (4)

reduces the dimension of the and generates and ordinary differential equation
of the form

G(v,v',0",...) =0 (5)

where the prime (') stands for the derivative of v with respect to . The variants
of this transformation is used in the works [5, [6].
Let

o(€) = Y aiP"(€) (®

be a solution to (5) where all a;,0 <i < n are constants satisfying a,, # 0 and

1
PO =g
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is a solution to the ODE

P (&) =PE)(P(E) —1)InA (7)

where d and A are nonzero constants with A > 0 and A # 1. The key in the method
is to determine n by balancing the highest order derivative and the nonlinear terms
in ((5). Thus, the solution @ is formed with unknown coefficients a;. Substituted
it into and rearranging the resultant equation with respect to the powers of
P(§) gives an algebraic system. Solving this algebraic system for a;,0 < ¢ < n
explicitly gives the relations between the parameters of the solutions a;,0 <7 < n
and the remaining parameters derived from structure of the equation or the other
factors.

4 The Conformable Fractional RLW-Burgers Equa-
tion
Consider the time fractional RLW-Burgers equation of the form for v = v(z,t)
D v+ puy + quug 4+ 1040 + SUe = 0,6 >0, z € R (8)

where Dy is the fractional derivative operator in conformable sense, p, ¢, r, and
s are constant parameters. The integer ordered form of the equation appears
in the work [7] to describe surface water waves propagation in a channel. Some
basic properties covering existence, uniqueness and boundedness of the solutions
of some problems related to RLW-Burgers are expressed in that study. Zhao and
Xuan[8] examine in details the existence and convergence properties of solutions
of the RLW-Burgers equation. The monotone and oscillatory kink type waves are
discussed in details by Zhou and Liu[9]. Some trigonometric and hyperbolic type
exact solutions are derived by using some expansion methods[I0] as some complex
solutions are constructed by direct algebraic method[I1]. (1/G")-expansion method
is also capable of traveling wave solutions to the RLW-Burgers equation[12].

The wave transform reduces the RLW-Burgers equation (§)) to

(—c+pv+ ng +r —esv — K =0 (9)

where " denotes the derivative with respect to the wave variable & and K is inte-
gration constant. Balancing v? and v” gives n = 2. Thus, the predicted solution
should be in the form v(£) = ag + a1 P(€) + aaP?*(£). Substituting this solution
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into the @D and using @ yield
(—6 (In (A))% csap +1/2 qa22) PL¢)

+ (—2 esar (In(A)* 410 (In (4))? esag 4+ 2 In (A) rag + qa1a2) P3(€)

+ (qa0a2 +1In(A)ra; —4 (In(A))? esag — 2 In (A) rag + 3esar (In (A))* + %qm? +(p— c)ag) P2 (&)

+ (—csa1 (In (A))? = In (4) ra1 + qagay — cay —|—pa1) P(€) — cag + pag +1/2qag> — K =0

(10)
When the coefficients of the powers of P() are equated to zero, the system of
algebraic equations

—cag + pag +1/2qag> — K =0
—csay (In (A))? = In (A) ray + qagay — cay + pa; = 0
qagas +1n (A) ra; — 4 (In(A))* esag — 2 In (A) rag + 3esay (In (A))? 4 1/2 qay? — cay + pag = 0
—2¢say (In(A))? + 10 (In (A))* esay + 2 In (A) ray + gaay = 0
—6 (In(A))* esas + 1/2qas® =0
(11)

is obtained. The solution of this system for ag,aq,as,c, K gives two different
solution set for ag # 0. The first one

_ 16 (In(A)?rs —5pln (A)s —r

5 In(A)qgs
ar =0
121In(A)r
DY (12)
‘= n(A)s
1 (6 (In(A))*rs—5pn(A4)s—r) (6 (In (A)’rs+5pln(A) s+ r)
50 ¢ (In (A))*s?

makes the solution to @D as
U<€>_6(ln(A))2rs—5p1n(A)s—T_ 12In(A)r
- 51 (4)gs 5q (1 + dAS)?

where gs # 0. Thus, the solution of the RLW-Burgers equation is expressed
explicitly as

(13)

6 (ln(A))27"s—5pln(A)s—r_ 12In(A)r
5In (A) gs 5q(1+dAx+;m<;>sf>2

vi(§) = (14)
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The second solution to for ag, ai, as, ¢, K is of the form

1-6 (In(A))’rs+5pn(A)s —r

=5 In (A)qgs
24 In(A)r
a; = BT
_12In(A)r
ag = 5—q (15)
1 r
‘T 5m(A)s
K 1 (6 (In (A)?rs —5pln(A) s+ r) (6 (In (A)?rs+5pn(A)s — r)
50 L(n (A)f

Thus, the solution is obtained as

6 Wm(A)rs+5pln(A)s—r  24W(A)r  12ln(A)r
Ve 5l (A4)gs 5q(1+dAS)  5q(1+dAs)? (16)

where ¢s # 0. Using the original variables, the solution to the RLW-Burgers
equation in conformable fractional form is written as

va(, 1) = — (In(A)*rs +5pln(A)s —r 24 In (A) r
Ay 5In (A) gs I_lLﬁ
5gl1+4dA ° "«
12 1In (A) r (17)
to 2

1

5q 1+dAm_g ln(A)sa

5 The Conformable Fractional Potential KAV Equa-
tion
In this section, the conformable time fractional potential KdV equation of the form

D?U+pvi+qvxxm =0 (18)

is solved by using the modified Kudryashov method. The wave transformation ({4))
reduces (18) to

’ / 2 "
—cv +p<v> +qu =0 (19)

6


http://dx.doi.org/10.20944/preprints201612.0084.v1
https://doi.org/10.1080/17455030.2017.1416702

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 December 2016 d0i:10.20944/preprints201612.0084.v1

where " denotes the derivative with respect to the wave variable £. The balance

between (v’)2 and v gives the degree of the predicted solution as n = 2. Thus,
the predicted solution v(§) = ag + a1 P(§) is substituted to the to give

(6 (1n (A))" gay + (10 (A))” pa?) P*(€) + (~12 (In (A)) gar — 2 (1n (4))pas?) P* (€)
+ (7 (In (A))3 qa; + (In (A))Zpal2 —1In(A) cal) P%(¢) + (— (In (A))3 qa; +1In (A) cal) P =0

(20)
When the coefficients of each power of P(£) to zero, the algebraic system of equa-
tions
—(In(A))? ga; +1n(A) ca; = 0
7 (In(A))? gay + (In (A))* pay® — In (A) ca; =0 21)
—12 (In (A))* qa; — 2 (In(A))* pa,> =0
6 (In (A))® ga; + (In (A))*pa® = 0
The solution set of this system for {ag, a;, c} gives
In (A
P G
p (22)
¢=(In(4)*q
for arbitrary constant ag. The solution of is constructed as
In(A)g 1
=ag — 2
o) = a6 (23

where p # 0 and ag is an arbitrary constant. Thus, the solution of the conformable
fractional potential KAV takes the form

In(A)q 1

v(z,t) =a9—6 (24)

with a nonzero q.

6 The Conformable Fractional CRWP Equation
Consider the conformable time fractional CRWP equation given in the form
D v + pu, + quug + 10, =0 (25)

This equation models the motion of two populations interacting each other but
wishing to live separately for o = 1[13, 14]. Some exact solutions of the CRWP
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equation including some trigonometric and hyperbolic functions besides Jacobi
elliptic functions are derived in those studies. Afterwards, the Jumarie time frac-
tional form of the equation is solved exactly by using the Kudryashov method[I5].
The wave transformation reduces the CRWP equation to

—(c—p)v + g (UQ)I +r" =0 (26)

Integration the last equation once gives
—(c—p)v+ gUQ) +rm =K (27)

where K is constant of integration. The balance between the nonlinear and the
highest order derivative terms occurs for n = 1. The predicted solution is con-
structed as ag + a1 P(§), a1 # 0. Substituting this solution and its derivative to
(refcrwpode) gives

1 1
(— qai® + raq In (A)) P?(&)+(—rayIn (A) + qaga; — cay + pay) P (€)+= qag*—cagt+pag—K =0

2 2
(28)
This system requires
1
§qa02—cao+pa0—K:O
—ray In (A) 4+ qapa; — cay + pa; =0 (29)
1
5 qa;®> +ra;ln(A) =0
The solution sets for this algebraic equation system can be determined as
rin(A) + \/7“2 (In(A))* — 2¢K
ag —
q
4 = -2 rin (A) (30)
q
¢ = \/r2(In (4))* — 24K +p
and
—rin(A) + /2 (In (4))* - 29K
ag = —
q
o = -2 rin (A) (31)



http://dx.doi.org/10.20944/preprints201612.0084.v1
https://doi.org/10.1080/17455030.2017.1416702

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 December 2016 d0i:10.20944/preprints201612.0084.v1

Thus, the solutions generated from these two sets are constructed as

rin (A) + TQ(IH(A))Z—QC]K_zrln(A) 1

e ’ NS
L OL V()P 20K ) 1
vsis) = q qg 14+ dAS
Finally, the solutions of the conformable fractional CRWP equation are formed
as
rln(A) +/r2 (I (A) ~2gK  pin(A) |
vy(z,t) = -2 7
q q o= (/P (In(A)°—2¢K+p) —
1+dA( (in()*~24K+p) —
—rin(A) /12 (0 (A)° —2¢K 1y (4) |
'U5($, t) = — q -2 q 1
o+ (1/r2(n(A))? =2 gK+p) —
L+ dA (V)P -2k +p) —

(33)

for nonzero gq.

7 Conclusion

The explicit exact solutions to some time fractional nonlinear PDEs in conformable
sense are constructed by using the modified Kudryashov method. The existence of
chain rule for the conformable derivative gives opportunity to reduce the related
PDEs to compatible ODEs of integer orders. The predicted solution having the
finite series of rational exponential function is substituted to the resultant ODE.
Afterwards, the unknown parameters are determined by using fundamental algebra
operations.

The solutions of conformable fractional RLW-Burgers, potential KAV and CRWP
equations are obtained. The forms of the solution contains a finite series of powers
of rational exponential functions.
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