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Abstract: Many clinical research datasets have a large percentage of missing values that directly 
impacts their usefulness in yielding high accuracy classifiers when used for training in supervised 
machine learning. While missing value imputation methods have been shown to work well with 
smaller percentages of missing values, their ability to impute sparse clinical research data can be 
problem specific. We previously attempted to learn quantitative guidelines for ordering cardiac 
magnetic resonance imaging during the evaluation for pediatric cardiomyopathy, but missing data 
significantly reduced our usable sample size. In this work, we sought to determine if increasing the 
usable sample size through imputation would allow us to learn better guidelines. We first review 
several machine learning methods for estimating missing data. Then, we apply four popular 
methods (mean imputation, decision tree, k-nearest neighbors, and self-organizing maps) to a 
clinical research dataset of pediatric patients undergoing evaluation for cardiomyopathy. Using 
Bayesian Rule Learning (BRL) to learn ruleset models, we compared the performance of imputation-
augmented models versus unaugmented models. We found that all four imputation-augmented 
models performed similarly to unaugmented models. While imputation did not improve 
performance, it did provide evidence for the robustness of our learned models. 

Keywords: missing value imputation; machine learning; decision tree imputation; k-nearest 
neighbors imputation; self-organizing map imputation 

 

1. Introduction 

In biomedical research, samples with missing values are typically discarded to obtain a complete 
dataset. This method, known as listwise deletion or complete case analysis, reduces the sample size 
available for analysis and may bias the results [1,2]. Many statistical methods have been proposed to 
impute missing values, including last value carried forward, mean imputation, expectation 
maximization, and multiple imputation. 

Since the early 2000’s, a new paradigm of thinking has emerged where missing values are treated 
as unknown values to be learned through a machine learning model. In this framework, data samples 
with observed values for a particular variable are used as a training set for a machine learning model, 
which is then applied to the data samples with missing values to impute them. Both clustering 
(unsupervised) and classification (supervised) algorithms can be adapted for imputation. 

In our previous work on the evaluation of pediatric patients for cardiomyopathy, we attempted 
to learn quantitative clinical guidelines for ordering cardiac magnetic resonance imaging (MRI) based 
on quantitative metrics from previous echocardiography [3]. Current guidelines indicate obtaining a 
cardiac MRI if echocardiography is inconclusive in the evaluation of cardiomyopathies. As this 
guideline is highly dependent on physician expertise, we sought to identify objective, quantitative 
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markers on echocardiography that would be predictive of a subsequent positive cardiac MRI. We 
chose to predict positive cardiac MRIs as our classification task because they have prognostic as well 
as diagnostic value beyond echocardiography [4]. An accurate prediction of a subsequent positive 
MRI provides evidence for ordering the follow-up MRI, while an accurate prediction of a non-
positive MRI can justify avoiding the scan. Our goal is to provide physicians with quantitative 
evidence for whether a follow-up cardiac MRI is likely to be useful. 

We obtained a dataset of echocardiographic measurements and follow-up cardiac MRIs from 88 
pediatric patients undergoing evaluation for cardiomyopathy. This dataset contained missing values 
because not all echocardiographic measurements were recorded after an exam (see Table 1 for more 
details). After removing variables with a large number of missing values followed by listwise deletion 
to remove the rest of the missing values, we were left with 14 variables and 50 patients for our 
analysis. We used Bayesian Rule Learning (BRL), a variant of the Rule Learning algorithm that 
outputs probabilistic scores for each rule learned [5], to generate a ruleset that was predictive of a 
subsequent positive cardiac MRI. BRL generates a set of rules, an example of which can be seen in 
Figure 1. BRL performs better than logistic regression and on par with methods like SVM and 
decision trees on our data, and offers the advantages of human-readable rules with probabilistic 
confidence scores for each rule. The confidence scores make BRL especially suitable for small datasets 
like ours where some learned rules may have weak evidence. 

0. If (EF is between 0.395 and 0.480) & (IVSd z-score is Normal) then (MRI will be Non-Positive) 
 Posterior Odds=3.3, Posterior Probability=0.767 

1. If (EF is greater than 0.480) & (IVSd z-score is Normal) then (MRI will be Non-Positive) 
 Posterior Odds=3.3, Posterior Probability=0.767 

2. If (EF is less than 0.395) then (MRI will be Positive) 
 Posterior Odds=10.0, Posterior Probability=0.909 

3. If (EF is greater than 0.480) & (IVSd z-score is High) then (MRI will be Positive) 
 Posterior Odds=10.0, Posterior Probability=0.909 

4. If (EF is between 0.395 and 0.480) & (IVSd z-score is High) then (MRI will be Positive) 
 Posterior Odds=10.0, Posterior Probability=0.909 

5. If (EF is greater than 0.480) & (IVSd z-score is Low) then (MRI will be Positive) 
 Posterior Odds=10.0, Posterior Probability=0.909 

6. If (EF is between 0.395 and 0.480) & (IVSd z-score is Low) then (MRI will be Positive) 
 Posterior Odds=10.0, Posterior Probability=0.909

Figure 1. Example ruleset generated using Bayesian Rule Learning (BRL). 

Using BRL on our data after removing variables and samples with missing values, our learned 
rulesets on the 50 patients achieved around 90% specificity and 50% sensitivity in 10-fold cross-
validation. In this paper, we sought to test two hypotheses: One, does increasing our dataset’s usable 
sample size through missing value imputation increase model performance? Two, does increasing 
our dataset’s usable sample size as well as variable count through imputation increase model 
performance? Finally, we sought to answer the question: When and why is imputation worth doing? 

In section 2, we first provide a brief review and summarize the current literature on machine 
learning methods for missing value imputation. In section 3, we then evaluate the impact of several 
imputation methods on the performance of our previously described rule learning task. 

2. Background: Review of Current Machine Learning Imputation Methods 

2.1. Introduction and the Nature of Missingness 

When imputing missing values, the nature, or mechanism, of the missingness is important. 
Missing data mechanisms can be categorized into three types: missing completely at random 
(MCAR), missing at random (MAR), or missing not at random (MNAR) [6,7]. Simple methods like 
listwise deletion or mean imputation will only be unbiased when data is MCAR. Most current 
imputation methods assume MAR in order to produce unbiased results. Unfortunately, proving that 
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the pattern of missingness in a real world dataset is MAR, without background knowledge of the 
actual mechanism itself, is impossible.[8] Indeed, most real world scenarios likely involve some 
degree of MNAR, where whether a value is missing or not depends on the value itself. In the best 
case scenario, this pattern of missingness can be modeled using prior knowledge in order to bring 
the data closer to MAR and improving the quality of imputations obtained through methods that 
assume MAR. 

We briefly summarize several popular groups of machine learning methods for imputation. Of 
the four methods discussed below, nearest neighbors and self-organizing maps are clustering 
algorithms while decision trees and graphical models are classification algorithms. For more details 
on the design and implementation of these methods for imputation, we refer the reader to a review 
by Garcia-Laencina et al (2009) [9]. 

2.2. Nearest Neighbors 

In order to impute a value of a variable for a given sample, k-nearest neighbors (k-NN) takes a 
weighted average of the variable from the k closest samples. In comparison to many traditional 
techniques, k-NN has the advantage of being usable with mixed continuous and categorical data. k-
NN is similar to hot deck imputation, a traditional imputation method, in the sense that similar 
examples are used to fill in missing values. Indeed, hot deck with a distance-based donor pool of size 
one is equivalent to 1-nearest neighbor. Hot deck typically picks randomly amongst similar examples 
to determine which value to fill in, whereas k-nearest neighbor typically uses a weighted mean 
(continuous) or a mode (categorical) to determine values. 

2.3. Self-Organizing Maps 

Self-organizing maps (SOMs), or Kohonen maps, are a class of neural network where 
neighboring nodes compete with each other to learn specific patterns in an unsupervised fashion [10]. 
SOMs have the ability to ignore variables with missing values during training. SOM imputation takes 
advantage of this fact by first training a map, then passing a sample with missing data to the map, 
observing the group that gets activated, and using the weights of the nodes in the activation group 
to determine the values to impute for the missing variables [11]. Because self-organizing maps handle 
missing data during training, it, like k-NN, possesses the advantage of only needing to train one 
model regardless of how many variables have missing data. 

2.4. Decision Trees 

Decision trees make supervised classifications from categorical or discretized data. A popular 
implementation is Quinlan’s C4.5 [12] algorithm, which inherently handles missing values by 
ignoring them when calculating information gain. Thus, as an imputation method, C4.5 can be 
trained when missing data is present in the predictor variables, increasing the potential training set 
available in the multivariate missing value setting. 

2.5. Bayesian Networks 

Bayesian networks capture probabilistic relationships between variables in a concise manner by 
enforcing conditional independence constraints. They can be constructed through a heuristic search 
using a Bayesian scoring function such as K2 [13]. Using Bayesian networks for imputation has 
several advantages: One, it is more efficient than MCMC or EM-based multiple imputation methods 
for a dataset with a large number of variables; two, it preserves the joint probability distribution of 
the variables, something that methods like k-NN do not promise. Unfortunately, a large amount of 
data is usually required to accurately learn a network, and discretization of all data is usually 
required unless conditional probability densities are explicitly modeled and parameterized, often at 
great computational expense [14-15]. 
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2.6. Past Performance of Machine Learning Imputation Methods 

We reviewed 12 papers that compared the performance of different imputation methods; they 
are summarized in Supplementary Table 1, with information on methods and their evaluation, along 
with types of datasets used and performance results reported. From our review, we observe that no 
imputation method consistently outperforms every other. Indeed, in several studies, the choice of 
imputation method seemed to have little impact on performance. We conclude that the nature of the 
dataset may have a larger impact on the performance of imputation methods than the imputation 
method itself. 

2.7. Dealing with Missing Not at Random 

Finally, we would like to briefly touch upon the case of data missing not at random. Without 
outside knowledge, it is impossible to determine if the mechanism is MNAR from data alone. In 
practice, however, researchers can make an educated guess based on expert knowledge of their 
domain as to whether a MNAR mechanism exists or not. In real world data, MNAR can occasionally 
be determined when data is “missing but known,” such as questionnaire data that was obtained after 
multiple reminders [16]. In this case, data obtained after a reminder was treated as missing for the 
purposes of analysis, though they were available at a later point. In a clinical trial setting, Kang et al. 
(2015) have proposed a Masked Missing Not at Random (MMNAR) assumption, where whether a 
clinical outcome is missing or not might depend on the outcome itself, but not on the assigned 
treatment due to clinical trial masking (also known as blinding) [17]. The authors showed that 
maximum likelihood imputation assuming MMNAR had smaller biases than the same imputation 
assuming MAR in a simulated MMNAR dataset. Although this method does not address the MNAR 
problem generally, it demonstrates that we can reduce the impact of MNAR models through limited 
assumptions. Similarly, Little, Rubin, and Zangeneh have recently introduced the idea of partial MAR 
and conditions for ignoring the missing data mechanism [18]. 

3. Materials and Methods 

This study was approved by the University of Pittsburgh Institutional Review Board (IRB). 
Echocardiography and cardiac MRI text reports from pediatric patients (ages from 3 days to 22 years) 
undergoing evaluation for cardiomyopathy or myocarditis were obtained from the University of 
Pittsburgh Medical Archival System (MARS). A text report was obtained for each patient from their 
initial cardiac MRI work up for cardiomyopathy or myocarditis. Only the most recent 
echocardiography report prior to that cardiac MRI was taken. Quantitative cardiac measurements 
were extracted from the echocardiography reports and used as feature variables (Table 1). Cardiac 
MRIs reports were read to determine if they were positive or non-positive for cardiomyopathy, which 
was used as our target variable for classification. For more details on these methods, please refer to 
our previous paper [3]. 

In our previous work, we used listwise deletion on the full dataset (n = 88) to obtain a complete 
dataset (n = 50). In this paper, we use imputation methods to obtain estimates for the remaining data 
(n = 38), which we will call the imputed dataset. Each sample in the imputed dataset would have had 
at least one variable for which its value was missing. The percentage of missing data for each variable 
in the positive and non-positive MRI groups is shown in Table 1. Significant differences in the 
proportion of missing values for a given variable may make it easier to impute one group versus the 
other. 

We sought to determine whether incorporating imputed data when training a Bayesian Rule 
Learning (BRL) classifier can increase its performance for this cardiomyopathy prediction problem. 
Because we have no ground truth available for our dataset, it is impossible to determine the bias of 
the imputed data themselves. Instead, we will measure the success of imputation methods solely by 
the sensitivity and specificity of models learned using the imputed data. 

For clarity, we will refer to the different sets of data as full data or imputation-augmented data 
(n = 88), complete data (n = 50), and imputed data (n = 38). We refer to models learned on the full data 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 December 2016                   doi:10.20944/preprints201612.0078.v1

Peer-reviewed version available at Data 2017, 2, 8; doi:10.3390/data2010008

http://dx.doi.org/10.20944/preprints201612.0078.v1
http://dx.doi.org/10.3390/data2010008


 5 of 15 

 

as imputation-augmented models and models learned on the complete data as unaugmented models. 
In the context of BRL, the term model refers to a ruleset.We imputed missing values using four 
methods: Mean imputation, k-nearest neighbors, C4.5 decision trees, and self-organizing maps. Out 
of the four methods, decision tree is a classification-based method, k-nearest neighbors and self-
organizing maps are clustering-based, and mean imputation was chosen as a simple baseline to 
compare against. We did not use Bayesian networks for imputation as our dataset is too small to learn 
an accurate network. Of the four methods used, all are deterministic except for self-organizing maps, 
which starts with a set of randomly initialized weights but converges to an optimum weight vector. 
As such, multiple imputation is not feasible with the imputation methods we are exploring. In 
addition, because no ground truth was available, we compared imputed values across imputation 
methods to identify any differences between the methods. 

In our previous work, variable pruning was necessary to remove variables that had too many 
missing values. This resulted in a hand-picked set of 14 variables that still captured both cardiac 
function and morphology. Before variable pruning, we had a set of 36 which included both variables 
and their calculated indices or z-scores. The full set of 36 variables were used for initial imputation. 

Before imputation, all variables were continuous. In the case of decision tree imputation, all 
variables had to be discretized before a decision tree could be trained. In this case, values were 
discretized in one of two ways: Variables that were calculated z-scores were discretized into Low, 
Normal, or High based on a z-score of less than -3, between -3 and 3, and greater than 3, respectively. 
All other variables were discretized into 3 weighted frequency bins, with weights of 25%/50%/25%. 
Decision tree imputation was implemented in Java using Weka 3.9 [19]. 

K-nearest neighbors were implemented in Matlab. All variables were normalized to mean 0 and 
standard deviation 1. A Euclidean metric was used to calculate distance between samples, and any 
variables that contained a missing value in either sample was ignored for the calculation. The 
contributions of the top k neighbors to the imputed value were weighted based on distance. 

SOM imputation was performed using the Imputation SOM algorithm described in Vatanen et 
al. (2015) and implemented in the SOM Toolbox for Matlab [20]. Mean imputation was implemented 
in Matlab. 

We first explored the stability of our only classifier-based imputation method, decision tree 
imputation. Because we have no ground truth to evaluate the quality of the imputation against, we 
instead sought to see how much the imputed values changed if we learned the trees on a subset of 
the available data. Decision tree imputation requires learning a model for each variable to be 
imputed. For each variable, we split the samples that had values for that variable into 10 sets, and 
learned a decision tree model for every combination of 9 sets (in effect, 10-fold cross-validation). 
These models were then used to impute values for the remaining set as well as the samples that were 
missing values. We compared the imputed values for each set to the actual values, and we compared 
imputed values for the samples with missing values across the models learned in each fold. Because 
decision tree imputation works on discrete bins, we calculated accuracy and agreement instead of 
error and variance. For the samples that had values, we compared the accuracy of the imputed values 
compared to the actual values. We disregarded bin order in this calculation, so a prediction was 
considered incorrect if it was in a different bin, regardless of how far the bin was from the actual bin. 
For the samples that were missing values, we compared the agreement of imputed values across the 
10 folds. The agreement was calculated as follows: For each sample, the percent agreement is the 
percent of the majority bin imputed across the 10 folds. The overall agreement is the mean of the 
percent agreement across all samples with missing values. We did not use Fleiss’ kappa because it 
misrepresents agreement when most or all samples were imputed in the same bin. This workflow is 
shown in Figure 2. 
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Figure 2. Workflow diagram of evaluation of decision tree imputation. 

We then used BRL to learn models for each imputation-augmented dataset and compared their 
performance to models learned on just the complete data. The best performing configuration for BRL 
in our previous work was used for all experiments. This included using efficient Bayesian 
discretization [21] with a lambda of 10. For the unaugmented model, performance was evaluated on 
sensitivity and specificity in 10-fold cross validation. 5 separate randomized runs of cross validation 
were done to obtain an average performance. 

In order to compare the performance of imputation-augmented models to the performance of 
our previous unaugmented model, we needed to evaluate using the same dataset. Since the 
unaugmented model was evaluated on just the complete data, we needed to split the evaluation of 
our imputation-augmented models between performance on complete data versus performance on 
imputed data as well. An overview of the workflow is shown in Figure 3. We thus aggregated 
predictions for each sample from 10-fold cross validation and then split them into complete data 
versus imputed data predictions. Sensitivities and specificities were then calculated separately for 
each group. This process was repeated 5 times for 5 different randomized 10-fold cross-validations, 
and the sensitivities and specificities were averaged over the 5 runs. The same 5 randomized cross-
validation splits were used for each imputation method.  Because the BRL ruleset classifier does not 
normally produce a score that can be thresholded to produce an AUC, we calculated AUCs using the 
posterior probabilities prpost for each rule fired by a test sample.  For samples that triggered negative 
rules, 1 - prpost was used instead, so that the probabilities could be interpreted as the probability of 
predicting positive.  This probability was then thresholded to produce an AUC using trapezoidal 
approximation.  Like sensitivity and specificity, the AUC was averaged over 5 cross-validation runs. 
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Figure 3. Workflow diagram of evaluation of imputation-augmented models. 

In order to estimate the performance of an unaugmented model on imputed data, we took the 
parsimonious ruleset learned from the whole training set of complete data and applied it to the 
imputed data. This could only be done to the k-NN, SOM, and mean imputation augmented datasets, 
as decision tree imputation required discretization before imputation and thus had different 
discretization ranges compared to the unaugmented model. 

Table 1. Variable definitions for the 14-variable and 27-variables and what percentage of each variable 
was missing in the positive (+) versus the non-positive (-) MRI group. 

Variables in 14 
Variable Set 

Definition Percentage 
Missing (+) 

Percentage 
Missing (-) 

BSA Body Surface Area 3.2% 8.8% 
EDV index End diastolic volume index 38.7% 38.6% 
ESV index End systolic volume index 38.7% 38.6% 
SV index Stroke volume index 38.7% 38.6% 

FS Fractional shortening 3.2% 5.3% 
EF Ejection fraction 32.3% 35.1% 

Ao V2 max Aortic V2 max 3.2% 1.8% 
Ao max PG Aortic max pressure gradient 3.2% 1.8% 

MV E/A Mitral valve E/A ratio 16.1% 1.7% 

IVSd z-score 
Interventricular septum thickness measured 

in diastole, z-score 
3.2% 10.5% 
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LVIDd z-score 
Left ventricular internal dimension measured 

in diastole, z-score 
3.2% 10.5% 

LVIDs z-score 
Left ventricular internal dimension measured 

in systole, z-score 
3.2% 12.3% 

LVPWd z-score 
Left ventricular posterior wall thickness 

measured in diastole, z-score 
3.2% 10.5% 

LV mass z-
score 

Left ventricular mass measured in diastole, z-
score 

3.2% 10.5% 

Additional 
Variables in 27 

Variable Set 
Definition Percentage 

Missing (+) 
Percentage 
Missing (-) 

Age Age at scan 0% 0% 
Height Height at scan 3.2% 8.8% 
Weight Weight at scan 0% 1.8% 

Ao root diam Aortic root diameter 35.5% 22.8% 

MV A max 
Mitral valve A wave max (max atrial filling 

velocity) 
35.5% 24.6% 

MV E max 
Mitral valve E wave max (max early filling 

velocity) 
38.7% 22.8% 

PA V2 max Pulmonary artery V2 max 12.9% 3.5% 
PA max PG Pulmonary artery max pressure gradient 12.9% 3.5% 
TR max PG Tricuspid regurgitation max pressure gradient 35.5% 50.9% 
TR max vel Tricuspid regurgitation max velocity 38.7% 52.6% 

TV A max 
Tricuspid valve A wave max (max atrial 

filling velocity) 
25.8% 14.0% 

TV E max 
Tricuspid valve E wave max (max early filling 

velocity) 
19.4% 7.0% 

TV E/A Tricuspid valve E/A ratio 64.5% 64.9% 
 
To test the hypothesis of whether increasing sample size improves performance, we learned 

imputation-augmented models using only the 14 variables used previously in learning our 
unaugmented models. To test the hypothesis of whether increasing sample size and variable count 
improves performance, we learned imputation-augmented models using data that contained extra 
variables that were previously thrown away. This dataset consisted of the full 36 variables, minus 
variables that were also present in the dataset in the form of an index or z-score (e.g. End Diastolic 
Volume removed in favor of End Diastolic Volume Index, Interventricular Septum Thickness 
removed in favor of Interventricular Septum Thickness z-score), resulting in 27 variables total. These 
variables are defined in Table 1. 

4. Results 

The proportion of positive to non-positive samples was .36 in the complete data set (n = 50) and 
.35 in the full data set (n = 88). 

After discretization, we evaluated the stability of decision tree imputation using 10-fold cross-
validation. The accuracy of imputed values in cross-validation ranged between 0.4 and 1, depending 
on the variable. There was no relationship between the percentage of missing data for the variable 
and the accuracy of the imputation (Figure 4). Of particular note are the two additional variables in 
the 27-variable set (green circles in Figure 4) that have around 50% missing values yet high 
imputation accuracy in cross-validation. These are TR max PG and TR max velocity, which feature 
prominently in the decision-tree augmented rulesets that we will discuss later. With the exception of 
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two samples, TR max PG and TR max velocity were either both present or both missing for a given 
sample. 

For the values that were missing, we found the agreement of imputed values to the majority 
value was high, with the vast majority agreeing perfectly. The majority of these imputed values were 
in the discretized bin that covered the mean for the variable. 

Figure 4. Accuracy and agreement of decision tree imputed values in 10-fold cross validation. 
Accuracy was calculated from the imputed values for the samples that had values, while agreement 
was calculated from the imputed values for the samples that did not have values. 

Imputed data tended to cluster near the mean, regardless of imputation method (Figure 5, 
Supplementary Figure 1). Since we sought to limit the number of discretized bins, discretization 
washes out small variations in imputed values. This is particularly apparent in the case of decision 
tree (DT) imputation, which requires pre-discretization. Because BRL requires discretized input data, 
the small variations in imputed values from k-NN and SOM imputation from the mean will in most 
cases be washed out as well. 

Figure 5. Imputed values for four representative variables. Because decision tree (DT) imputation 
requires discretized values, imputed values are reported as a discretized range. 

Performance of imputation-augmented models with 14 variables evaluated on complete data 
was similar to that of an unaugmented model on complete data (Table 2, Figure 6). We found no 
significant difference, after Bonferroni correction for multiple comparisons, between the rulesets 
learned after imputation versus the rulesets learned from complete data. Taking the whole training 
set rules learned in our previous paper [3] and applying them to the imputed data, we achieve a 
specificity of 0.96 and a sensitivity of 0.08 on data imputed through the k-NN, mean, and SOM 
imputation methods. Each of the three imputation methods produced values that resulted in identical 
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classifications with the old ruleset, so they are displayed as one point in Figure 6. Performance of all 
models evaluated on imputed data were all poor. 

Table 2. Sensitivity, specificity, accuracy, and AUC of BRL rules learned on 14 variables using 
imputation-augmented data versus unaugmented data evaluated on complete data only, averaged 
over five 10-fold cross-validations. Performance metrics are tested against the performance of the 
unaugmented model. After Bonferroni correction for multiple comparisons, α=0.0125 is the 
significance threshold (significant values denoted by *). 

Method Sensitivity Specificity Accuracy AUC 

Unaugmented 
model 44.7 +/- 4.7 88.7 +/- 5.1 73.5 +/- 3.4 59.2 +/- 6.5 

Mean imputation 38.9 +/- 6.1 
(p=0.17) 

87.5 +/- 4.0 
(p=0.71) 

70.0 +/- 1.8 
(p=0.11) 

60.8 +/- 2.9 
(p=0.66) 

Decision tree 
imputation 

42.2 +/- 7.5 
(p=0.61) 

81.9 +/- 5.4 
(p=0.10) 

67.6 +/- 4.5 
(p=0.07) 

65.8 +/- 4.8 
(p=0.14) 

k-NN imputation 
35.6 +/- 5.7 

(p=0.04) 
86.9 +/- 5.0 

(p=0.61) 
68.4 +/- 3.25 

(p=0.07) 
57.6 +/- 1.2 

(p=0.66) 

SOM imputation 
38.9 +/- 3.5 

(p=0.08) 
85.6 +/- 4.7 

(p=0.39) 
68.8 +/- 3.3 

(p=0.08) 
57.8 +/- 1.9 

(p=0.70) 
 

a. b.

 
Figure 6. Performance of imputation-augmented rulesets compared to unaugmented rulesets: a.) 
Sensitivity vs. specificity of 14-variable models evaluated on complete vs. imputed data, and b.) 
Average ROC curves of 14-variable models evaluated on complete data. 

Imputation-augmented models learned using 27 variables performed similarly to models 
learned using 14 variables when evaluated on complete data (Figure 7). With the exception of 
decision tree imputation, all models performed similarly poorly on imputed data. Decision tree 
imputation-augmented models learned using 27 variables performed just as well on imputed data as 
on complete data. This was due to the inclusion of TR max velocity or TR max PG in the additional 
variables. An average of 97% of samples predicted using cross validation from the decision tree 27-
variable imputed data used TR max velocity or TR max PG in their rules, compared to an average of 
10% for the other imputation methods. Upon further examination, we found that this was not because 
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decision tree imputation did a better job with imputing these variables (the imputed values for TR 
max PG and TR max vel are shown in Figure 5). Rather, the increased performance was due to the 
different discretization thresholds calculated as a result of discretizing pre-imputation for decision 
trees versus post-imputation for everything else. When discretization thresholds were calculated pre-
imputation, the other 27-variable imputation-augmented models performed similar to decision tree 
on the imputed data. Doing the same for the 14-variable imputation-augmented models produced no 
significant difference in performance, however. (Supplementary Figure 2). 

 
a. b.

 
Figure 7. Performance of 27-variable rulesets compared to 14-variable rulesets: a.) Sensitivity vs. 
specificity of 27-variable models compared to 14-variable models evaluated on complete data vs. 
imputed data, and b.) Average ROC curves of 27-variable models evaluated on complete data. 

Finally, we compared the number of rules learned on the 14-variable and 27-variable whole 
training sets for each method (Table 3). There is a polynomial relationship between the number of 
discrete bins per variable and the number of rules, and thus the choice of discretization method 
directly affects the number of rules. The unaugmented ruleset contained 7 rules using 2 variables: 
ejection fraction (EF) and interventricular septum thickness (IVSd z-score). The rules learned on the 
mean, k-NN, and SOM imputed datasets with 14 variables were the same, and contained 15 rules 
using 4 variables, interventricular septum thickness, left ventricular internal dimension, left 
ventricular mass, and body surface area. Decision tree imputation, unlike the other methods, used 
unsupervised discretization pre-imputation, resulting in on average more bins per variable than the 
efficient Bayesian discretization method used for the other methods. The rules learned on the decision 
tree imputed dataset produced 183 rules using 9 variables. The presence of IVS thickness in all the 
rulesets suggest it is of particular importance. Only 8% of the values for this variable were missing. 
On the other hand, 34% of EF values were missing, which make its absence from mean, k-NN, and 
SOM imputed rulesets not surprising. 

Rulesets learned on the 27-variable whole training set, unsurprisingly, contained more rules 
compared to those learned on the 14-variable whole training set. The presence of IVSd z-score in all 
these rulesets confirms its importance.  What is notable, however, is the addition of tricuspid valve 
related measures (TV A max, TV E max, TV E/A, or TR max vel) from the additional variables. Their 
presence is surprising, as the majority of our positive cardiomyopathy cases did not primarily affect 
the right side of the heart. 
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Table 3. Rules learned on the whole training set using 14 variables. 

Method Number of 
Rules Learned Variables Used 

Unaugmented model (14 
variables) 

7 EF, IVSd z-score (2) 

Mean imputation (14 
variables) 15 IVSd z-score, LVIDd z-score, LV mass z-score, BSA (4) 

Decision tree imputation 
(14 variables) 

183 
IVSd z-score, LVIDd z-score, LVIDs z-score, LV mass 

z-score, EF, EDV index, SV index, MV E/A, Ao max PG 
(9) 

k-NN imputation (14 
variables) 

15 IVSd z-score, LVIDd z-score, LV mass z-score, BSA (4) 

SOM imputation (14 
variables) 

15 IVSd z-score, LVIDd z-score, LV mass z-score, BSA (4) 

Mean imputation (27 
variables) 

43 
IVSd z-score, LVPWd z-score, LVIDs z-score, MV A 
max, LV mass z-score, SV index, FS, TV A max, TV E 

max, height (10) 

Decision tree imputation 
(27 variables) 

255 
Ao V2 max, EF, EDV index, FS, MV A max, PA V2 
max, TR max vel, TV E/A, SV index, IVSd z-score, 

height, weight (12) 
k-NN imputation (27 

variables) 
35 

IVSd z-score, LV mass z-score, SV index, LVIDs z-
score, MV A max, TV A max, TV E max, height (8) 

   
SOM imputation (27 

variables) 
27 

IVSd z-score, LV mass z-score, SV index, Ao root diam, 
LVIDs z-score, TV A max, TV E max, height (8) 

5. Discussion 

We found similar performance of imputation-augmented models to unaugmented models when 
evaluated on both complete and imputed data. Predicting imputed data was much harder compared 
to predicting complete data in our dataset. In particular, sensitivity suffered the most when it came 
to classifying the imputed samples. We erroneously predict a non-positive MRI for cardiomyopathy 
more frequently in the imputed sample set compared to the complete sample set. There did not 
appear to be a strong enough relationship between variables to push clustering-based estimates (k-
NN, SOM) away from the mean. For the most part, decision tree imputation failed to predict values 
far from the mean as well. Because every imputation method resulted in values that fell close to the 
mean (or was the mean in the case of mean imputation), BRL rules that predict positive MRIs based 
on abnormal values would tend to classify samples with imputed data as normal, resulting in low 
sensitivity. 

The choice of imputation method does not seem to drastically affect our results. This finding is 
in line with our conclusion from a review of the literature that no imputation method consistently 
outperforms any other. Indeed, in several cases including ours, mean imputation can achieve results 
comparable to much more complicated algorithms. In our case, discretization eliminates much of the 
variance between imputation methods, washing out small differences in imputed values. As such, 
simple imputation methods performed just as well as more sophisticated ones. 

The choice of discretization method in our case seems to change which variables BRL learns. 
Using the expanded 27-variable data set, unsupervised, weighted frequency binning resulted in BRL 
picking up TR max velocity and TR max PG as important variables, which significantly increased the 
performance of the learned rulesets on the new 38 samples. The inclusion of these variables is made 
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possible with imputation. Unfortunately, the inclusion of these variables did not significantly 
improve performance on the original 50 samples. The increase in performance due to these two 
measurements is particularly puzzling, as the vast majority of our positive cardiomyopathy cases are 
limited to the left ventricle with little or no right-sided involvement. On their own, TR max velocity 
and TR max PG can achieve AUCs close to those achieved by our multi-variate models. This is 
evidence that the importance of these variables is characteristic of our dataset, rather than an issue 
with over-fitting of our models. Unfortunately, because our dataset is so small, this could very well 
be a bias in our dataset with no generalizability. We will need more data to investigate whether the 
presence of right-sided heart measurements in left-sided cardiomyopathies is clinical or merely an 
artifact of the dataset. 

Although the lack of increase in performance may make imputation seem like a waste of time, 
the consistency in performance of imputation-augmented models provides evidence for the 
robustness of our model learning mechanism. By analyzing the variability of rules and variables used, 
we can obtain a measure of which variables possess a strong association with our target variable and 
which do not. In our classification problem, we found that interventricular septum thickness was 
consistently associated with whether a subsequent cardiac MRI was positive or not for 
cardiomyopathy. 

In the overall context of the clinical guideline learning problem, the small size of the data set is 
the major limitation. The small sample size both limits our statistical power and calls into question 
the applicability of our findings to the general population. Cardiac magnetic resonance imaging is a 
relatively new modality in the evaluation of pediatric cardiomyopathy and not part of the standard 
work-up, which limits the amount of data available for study. This lack of data motivated the 
exploration of imputation as a potential work-around. 

Future work on imputation with this cardiac dataset must focus on expert knowledge-driven 
modeling of missing values. While recollecting data is impossible due to the retrospective nature of 
the dataset, imputation methods could be made more accurate by gathering additional variables 
likely to be related to the missing variables in question. This could take the form of the same variable 
measured at different time points, or clinically correlated variables with previously known 
relationships to the missing variable. An imputation method that relies on this becomes more akin to 
extrapolation or interpolation.  

When answering the question of whether to impute or not, we offer several points of 
consideration. First, the percentage of missing values and their distribution across variables must be 
considered. Our echocardiography dataset had 15% missing values overall, but each variable ranged 
from 2% to 39% missing values. If an imputation method draws values from the sample variable in 
other samples (such as mean, k-NN, or SOM), the large number of missing values for a given variable 
is important. If an imputation method generates values from other variables altogether (e.g. decision 
tree imputation or other classification-based methods), then the number of missing values per 
variable might be less important. Second, even if imputed data do not improve model learning, it 
may still be useful for demonstrating the robustness of the model learning method to lower quality 
data. The inclusion of extra variables that previously would have been discarded might be a potential 
benefit as well. In light of these advantages, we believe that imputation provides useful information 
regardless of its impact on model performance. Taking into account the observation that simple 
imputation methods often perform just as well as more complex methods, we would recommend 
that imputation be performed for data with missing values in any situation where it might be feasible. 
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6. Conclusions 

We review machine learning methods for missing value imputation and compare the 
performance of several imputation methods on a rule learning task. We found that simple imputation 
methods (mean imputation) and listwise deletion performed just as well as more complex imputation 
methods (decision trees, k-NN, SOM). From our review and experiment, we conclude that the 
imputation provides useful information about the robustness of a model learning method regardless 
of its impact on model performance. Combined with the observation that simple imputation methods 
often perform as well as more complex ones, we would recommend imputing missing values 
whenever feasible. 

Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1: Review of 
papers comparing performance of imputation methods, Figure S1: Imputed values for 14 variables, Dataset: 
CMEcho_dataset. 
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