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Abstract: We consider the financial planning problem of a retiree wishing to enter a retirement
village at a future uncertain date. The date of entry is determined by the retiree’s utility and bequest
maximisation problem within the context of uncertain future health states. In addition, the retiree
must choose optimal consumption, investment, bequest and purchase of insurance products prior
to her full annuitisation on entry to the retirement village. A hyperbolic absolute risk-aversion
(HARA) utility function is used to allow necessary consumption for basic living and medical costs.
The retirement village will typically require an initial deposit upon entry. This threshold wealth
requirement leads to exercising the replication of an American put option at the uncertain stopping
time. From our numerical results, active insurance and annuity markets are shown to be a critical
aspect in retirement planning.
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1. Introduction

With the reduced mortality rate, life expectancy is continuing to increase globally [1]. In next
40-50 years, the percentage of people aged over 60 years will nearly double all over the world. People
are predicted to have longer lives and extended retirement living.

Australia has one of the longest life expectancies in the world, that is, 79.7 years for males and
84.2 years for females [2]. With the growing ageing population, Australia is now facing a more
profound ageing problem. The potential impact includes economy stagnation, high demand for
pensions and increased aged care spending, which has caught Australian Government’s attention
[3].

As reported by the Australia Institute of Health and Welfare [4], 28.31% of the population aged
65 or over receive aged care services. This requires recurrent annual expenditure of more than A$13
billion for the Australian federal, state and territory governments. Almost 70% of the total spending
on aged care is allocated to residential aged care services, that is, aged care homes [5]. The increasing
demand for aged care has become a burden for the Australian government. Hence, improving
wellness during retirement living has become a more profound topic.

For the growing senior population, retirement villages which are linked with “active ageing” and
“community support” present an alternative high-quality retirement living option. From Glass and
Skinner [6], a retirement village or retirement community can be defined as an organised residential
place with a certain level of service for a voluntary age-specified retired or partially retired person.
The retirement village should provide its residents with shared activities and facilities in a community
that offers secured living [7].
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In the United States, a retirement village is usually called as retirement community. According
to the size, scale, location, and facilities and activities provided, the retirement community
can be classified into different categories, such as senior apartments, continuing-care retirement
communities, leisure-oriented retirement communities, congregate housing, etc. [6]. In the United
Kingdom (UK), the retirement village is now growing as a new growing long-term residential option
for retirees [7].

It is well documented in the literature that residing in a retirement village can improve
well-being. Factors that contribute to well-being include community facilities, accessibility features
and 24-hour emergency assistance [8], social contact [9,10], living independence [11] and organised
group activity and exercise [12].

The Property Council of Australia [13] states that currently over 177,000 seniors aged 65 and over
(i.e., only 5% of the total number) reside in an Australian retirement village. However, as stated by
the Australian Bureau of Statistics [14], males have recently been stated to close the life expectance
gap. This prevailing tendency implies that retirees are expected to live a longer time as a part of a
couple. As an alternative retirement living option for a spouse, retirement villages would attract more
demand [6].

Optimal strategies have been widely studied in the literature, while modelling the optimal
strategies for retirees can help us to achieve a clear vision of the financial problems of the ageing.
Merton [15,16] developed a well-known optimal asset allocation and consumption model for an
investor with a fixed lifetime. In the model, utility is measured by a constant relative risk-aversion
(CRRA) function and is maximised by the investor to determine her optimal strategy. Ding et al.
[17] used put option replication to create a wealth threshold in Merton’s model to allow for a luxury
bequest. Noting the conclusion from Yaari [18] that investors benefit from a life annuity, Merton’s
model was extended in [19] by Richard in which investors were assumed to have a stochastic lifetime
and access to the purchase of insurance products, that is, life insurance and life annuities.

Within the framework of Merton’s model, Milevsky and Young [20] studied an optimal stopping
problem for investors seeking a once-and-for-all annuitisation. Kingston and Thorp [21] extended the
work of [20] to the more general case of hyperbolic absolute risk-aversion (HARA) utility.

Health status is another aspect which impacts on financial decision. Rosen and Wu [22] showed
that self-rated health status is a profound indicator for portfolio choice. Bernheim et al [23] studied
the circumstances under which health status can initiate bequest motives. Edwards [24] explored
the link between health status and portfolio selection. Specifically, in [24], the decline of financial
risk observed after investors’ retirement is partially explained by investors’ health risk which usually
increases along with age. Furthermore, the existence of medical costs associated with their health risk
can vary retirees’ financial strategy. Retirees who pay out-of-pocket medical costs consequently have
less wealth [25] and tend to save more [26].

This arising ageing problem provided us with the motivation to develop a life-cycle model
involving retirement living choices while considering asset allocation, consumption, bequests and
insurance purchase, thus contributes to our understanding of the optimal financial behaviour of
the ageing. In our model, retirees are found to have an increasing proportion of wealth invested
in risky assets in line with their increasing age, when there is a wealth requirement threshold to enter
a retirement village. This increasing proportion trend during retirement is also stated in Kingston and
Fisher [27], Ding et al [17] and Pfau and Kitces [28]. By allowing for dynamic health states, our model
can be more fitted to the ageing problem.

In this paper, we study the retirees’ optimal strategy models for different cases in section 2.
Numerical demonstrations are presented and discussed in sections 3 and 4 and followed by the
conclusion in section 5.
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2. Model and Method

We assume that risky assets available in the market follow the geometric Brownian motion:

dXt = αXtdt + σXtdBt, (1)

where α and σ are the expected return rate and volatility of the risky assets Xt and Bt is the standard
Brownian motion.

In this paper, we use a HARA utility function for consumption, that is,

U1(C) =
(C− h)γ

γ
,

where C is consumption, h is consumption of necessities for basic living (not including medical costs)
and γ is a constant that reflects the individual’s level of risk aversion.

With inspiration from Haberman and Pitacco [29], we assume the retiree’s health status is
stochastic and is modelled by a continuous Markov chain process with the transition matrix shown
as follows

Q =

(
q11 q12

q21 q22

)
, (2)

where q11 is the intensity of staying in a healthy state, q12 is the intensity of becoming sick from a
healthy state, q21 is the intensity of recovery from a sick state to a healthy state and q22 is the intensity
of staying in a sick state. Here state 1 represents a healthy condition and state 2 represents a sick
condition. For the homogeneity case, we have the transition probability of staying healthy, being sick
from a healthy state, recovery from being sick to a healthy state and staying in a sick state, that is, P̃11,
P̃12, P̃21 and P̃22

P̃11(t, T) =
1

q12 + q21
[q21 + q12e−(q12+q21)(T−t)] (3)

P̃12(t, T) = 1− P̃11(t, T) (4)

P̃21(t, T) = 1− P̃22(t, T) (5)

P̃22(t, T) =
1

q12 + q21
[q12 + q21e−(q12+q21)(T−t)], (6)

where P̃ij(t, T) is the transition probability from state i to state j with time interval (t, T).
In our model, a known distribution is assumed to describe the lifetime of retirees. The density

function of mortality fx(t) is defined as follows,

fx(t) = µ(t) · S(t),

where µ(t) is the force of mortality and S(t) is the survival probability.
Further, retirees are assumed to have short-sighted or myopic vision about their future health

state. That is, although their health state can continually change, reflected in the modelling above,
our myopic agents make their plans assuming their current health state will continue indefinitely
into the future. We make this assumption to reduce the complexity of our already complex model.
Allowing agents to plan their future aware of future health changes is recognised as a mathematically
difficult problem [30], and we leave this task for future research. Unlike Milevsky and Young [20], we
do not explore asymmetric information between insured/annuitant and insurer, and so we assume
insurers share the retirees’ myopia.
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With an assumed two-state health stochastic process, we can write

µ(s) =

{
µ1(s), Ht = 1

µ2(s), Ht = 2
(7)

S(s) =

{
S1(s), Ht = 1

S2(s), Ht = 2
(8)

for t ≤ s ≤ τ, for some deterministic maximum age τ, and where µi(s) and Si(s) are the future
force of mortality and survival probability at time s for health state i and Ht is the health indicator at
starting age t with i = 1 or 2.

2.1. Case 1: no bequest and incomplete insurance market

In Australia, several types of housing are offered by retirement villages. One common type
is the serviced apartment offered by a lease contract. These apartment-type residential options for
seniors can also be found in other countries, as the UK and the United States. For this case, the
retirees rent the apartment on a pay-as-you-go basis to move into a retirement village. According
to [31], the owner-occupied house asset can be treated as a bequest. As retirees do not own the
residential property in the retirement village, we assume that these retirees have no bequest motive.
Consequently, these retirees are further assumed to have no access to the insurance market prior to
their full annuitisation on their entry to the retirement village.

Meanwhile, retirees are assumed to maximise their utilities by consumption and investment
before the optimal time τ̃, that is, the chosen optimal time to enter retirement villages. At time τ̃,
retirees without a bequest motive would use all their remaining wealth to purchase a life annuity at
the time they enter retirement villages.

Therefore, the value function of this optimal problem is as follows:

V = max
π,C,τ̃

E
{ ∫ τ̃

t

S(s)
S(t)

e−ρ(s−t)U1(C(s))ds +
∫ τ

τ̃

S(s)
S(t)

e−ρ(s−t)U1(
W(τ̃)

āτ̃
)ds
∣∣∣Ht

}
(9)

= max
π,C,τ̃

E
{ ∫ τ̃

t

S(s)
S(t)

e−ρ(s−t)U1(C(s))ds + e−ρ(τ̃−t) S(τ̃)
S(t)

āτ̃U1(
W(τ̃)

āτ̃
)
∣∣∣Ht

}
, (10)

with the wealth dynamics as

dW(t) = (rW(t)− D(t)W(t)− C(t) + (α− r)π(t)W(t))dt + σπ(t)W(t)dBt,

where t is the starting age, π(t) is the proportion of total wealth invested in risky assets, āt =∫ τ
t

S(s)
S(t) e−ρ(s−t)ds is the annuity function and D(t) is the medical cost represented by a percentage

of wealth. As with the force of mortality and survival rate,

D(s) = Di(s)|Ht = i, t ≤ s ≤ τ. (11)

For the simplicity, we set the time preference rate equal to the risk free rate, ρ = r.
From Milevsky and Young [20], and Kingston and Thorp [21], the optimal stopping time τ̃ has

been proven to be deterministic for CRRA utility and HARA utility. Based on Milevsky and Young
[20], and Øksendal [32], the variational inequality is shown as follows,
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(ρ + µt)V ≥ Vt + (r− D(t))W(t)VW + max
c

[U1(Ct)− CtVW ]

+ max
π

[(α− r)πW(t)VW +
1
2

σ2π2W(t)2VWW ], t ∈ [0, τ̃] (12)

and

V ≥ ātU1(
W(t)

āt
), t ∈ (τ̃, τ). (13)

The form of solution for V is assumed to be

V =
1
γ
(W(t)− Ŵ(t))γa(t)1−γ, (14)

where

Ŵ(t) =
h

r− D(t)
(1− e−(r−D(t))(τ−t))

is the ’floor’ or ’protected’ wealth, and r− D(t) reflects the continuous compounding rate of interest
to give the retirees an income stream covering health costs up to the maximum possible age τ. Such
protection is needed as they are assumed to have no access to insurance markets prior to entry to the
retirement village.

We also write W̃(t) = W(t)− Ŵ(t) as the difference between wealth and protected wealth which
is known as ‘surplus’ wealth.

The derivatives of the value function are then

Vt =
1− γ

γ
W̃(t)γa(t)−γa′(t) + W̃(t)γ−1a(t)1−γh,

VW = W̃(t)γ−1a(t)1−γ,

and VWW = (γ− 1)W̃(t)γ−2a(t)1−γ. (15)

Inspired by Milevsky and Young [20], and Kingston and Thorp [21], the optimal consumption
C∗(t) and optimal proportion invested in risky assets are

C∗(t) = W̃(t)a(t)−1 + h,

π∗(t) =
α− r

σ2(1− γ)

W̃(t)
W(t)

. (16)

We substitute equations (14), (15) and (16) into (12) and (13): for t ≤ τ̃, we have

−1 ≥ a′(t) +
1

1− γ

[
γr− γD(t)− ρ− µt +

1
2
(α− r)2γ

σ2(1− γ)

]
a(t), t ∈ [0, τ̃], (17)

while for t > τ̃, we have
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a(t) ≥ āt, t ∈ (τ̃, τ). (18)

We adopt the hypothesis from Milevsky and Young [20] which assumes the time before full
annuitisation is of the form (0, τ̃). With this hypothesis, τ̃ is set to be deterministic and we write

φ as the solution of equations (17) and (18) and let η1(t) = 1
1−γ

[
γr− γD(t)− ρ− µx+t +

1
2
(α−r)2γ
σ2(1−γ)

]
.

Hence, for t ≤ τ̃, we have

−1 = φ′(t) + η1(t)φ(t). (19)

Multiplying equation (19) by e
∫ t

0 η1(u)du, the equation can be shown as

−e
∫ t

0 η1(u)du = φ′(t)e
∫ t

0 η1(u)du + η1(t)φ(t)e
∫ t

0 η1(u)du. (20)

Integrating (20) from t to τ̃, we can have

∫ τ̃

t
−e
∫ s

0 η1(u)duds =
[
φ(s)e

∫ s
0 η1(u)du

]τ̃

t

and

φ(t) = āτ̃e
∫ τ̃

t η1(u)du +
∫ τ̃

t
e
∫ s

t η1(u)duds. (21)

For t > τ̃, the solution φ is

φ(t) = āτ̃ .

To find the optimal stopping time, we can differentiate the value function with respect to τ̃:

∂V
∂τ̃

=
1

1− γ
W1−γ(t)γφγ−1(t, τ̃)φ′(t, τ̃)

∝ [µx+τ̃ + ρ + η1(τ̃)], (22)

where ∂āτ̃
∂τ̃ = (µx+τ̃ + ρ)āτ̃ − 1 and φ′(t, τ̃) = [(µx+τ̃ + ρ)āτ̃ ]e

∫ τ̃
t η1(u)du + āτe

∫ τ
t η1(u)duη1(τ̃).

2.2. Case 2: with bequest and complete insurance market

The most common housing type offered by retirement villages in Australia is the resident-funded
unit. Retirees need to purchase a licence to reside in the retirement village and can sell the licence
when they exit. This type of agreement is similar to a purchase in the real-estate market. Retirees
who have a licence to live in a resident-funded unit can be regarded as house owners. Similarly, in
the UK, retirees can purchase retirement housing on a leasehold basis1 or as a property owner. In the

1 Retirees need to pay a large amount in upfront fees to live in such community and have the right to re-sell the occupation
right of the property.
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United States, it is also common for retirees to purchase properties in leisure-oriented retirement
communities for retirement living. Following the assumption by [31]—that the owner-occupied
house can be treated as a bequest—we can assume that those retirees have bequest motives and access
to the insurance market prior to full annuitisation.

In this case, retirees are assumed to have bequest motives from time t to τ̃. We continue to use
the power utility function for the bequest motive U2

U2(L(t)) = m(t)1−γ L(t)γ

γ
,

where L(t) is the legacy amount and m(t) = 2
3

∫ τ
t e−r(u−t)du. In our calculation, we use τ to represent

the deterministic maximum age.
We also assume that insurance products, that is, life insurance and annuities, are available in the

market. Before the optimal time to enter a retirement village τ̃, retirees use consumption, bequests
and the purchase of insurance products to maximise their utility. From Richard [19], the insurance
premium is related to L(t) and wealth Wt

P(t) = µ(t)[L(t)−W(t)].

At time τ̃, retirees split their wealth into two parts: υWτ̃ and (1− υ)Wτ̃ . The first part, υWτ̃ is
used to purchase lifetime annuity products with this being similar to the behaviour of retirees without
a bequest motive. The second part, (1− υ)Wτ̃ is planned to be delivered to their heirs at time τ̃ as a
pre-inheritance. Hence, the value function is

V = max
π,C,L,τ̃

E
{ ∫ τ̃

t

S(s)
S(t)

e−ρ(s−t) [U1(C(s)) + µ(s)U2(L(s))] ds

+
∫ τ

τ̃

S(s)
S(t)

e−ρ(s−t)U1(
υW(τ̃)

āτ̃
)ds +

S(τ̃)
S(t)

e−ρ(τ̃−t)U2((1− υ)W(τ̃))
∣∣∣Ht

}
= max

π,C,L,τ̃
E
{ ∫ τ̃

t

S(s)
S(t)

e−ρ(s−t) [U1(C(s)) + µ(s)U2(L(s))] ds + e−ρ(τ̃−t) S(τ̃)
S(t)

āτ̃U1(
υW(τ̃)

āτ̃
)

+
S(τ̃)
S(t)

e−ρ(τ̃−t)U2((1− υ)W(τ̃))
∣∣∣Ht

}
with the wealth dynamics

dW(t) = (rW(t)− D(t)W(t)− C(t) + (α− r)π(t)W(t)− P(t))dt + σπ(t)W(t)dBt.

The variational inequality is then shown as

(ρ + µt)V ≥ Vt + rWVW − P(t)VW + max
C,L

[U1(Ct) + µtU2(Lt)− CtVW ]

+ max
π

[(α− r)πW(t)VW +
1
2

σ2π2W(t)2VWW ], t ∈ [0, τ̃] (23)

and

V ≥
(υ W(t)

āτ̃
)γ

γ
āτ̃ +

((1− υ)W(t))γm(t)
γ

, t ∈ (τ̃, τ). (24)

Similar to the case in section 2.1, we have
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V =
1
γ
(W(t)− ˆW(t))γa(t)1−γ,

where

Ŵ(t) = h
∫ τ

t

S(s)
S(t)

e−(r−D(t))(s−t)ds.

For the time t ≤ τ̃, the value function reduces to Richard’s model [19] in which the optimal
consumption C∗(t), optimal legacy amount L∗(t), optimal proportion invested in risky assets π∗(t)
and optimal insurance premium P∗(t) are shown as follows

C∗(t) = W̃(t)a(t)−1 + h,

L∗(t) = m(t)W̃(t)a(t)−1,

π∗(t) =
α− r

σ2(1− γ)

W̃(t)
W(t)

,

and P∗(t) = (L∗(t)−W(t))µ(t)

= µ(t)m(t)W̃(t)a(t)−1 − µ(t)W(t). (25)

The utility function with optimal consumption and optimal legacy is then shown as

U1(C∗) =
W̃(t)γa(t)−γ

γ
,

U2(L∗) =
m(t)W̃(t)γa(t)−γ

γ
. (26)

By substituting equations (14), (15), (25) and (26) into equations (23) and (24), for t ≤ τ̃, we have

−(1 + µ(t)m(t)) ≥ a′(t) +
[ γ

1− γ
(r− D(t))− 1

1− γ
ρ− µ(t) +

1
2
(α− r)2γ

(1− γ)2σ2

]
a(t) (27)

and for t > τ̃, we have

a(t) ≥
[
υγ ā1−γ

t + (1− υ)γm(t)
] 1

1−γ . (28)

We write φ as the solution of a and η2 = γ
1−γ (r− D(t))− 1

1−γ ρ− µ(t) + 1
2

(α−r)2γ
(1−γ)2σ2 . Hence, for t ≤ τ̃,

−(1 + µ(t)m(t)) = φ′(t) + η2(t)φ(t). (29)

Multiplying equation (29) by e
∫ t

0 η2(u)du, it can be shown as

−(1 + µ(t)m(t))e
∫ t

0 η2(u)du = φ′(t)e
∫ t

0 η2(u)du + η2(t)φ(t)e
∫ t

0 η2(u)du. (30)

Integrating equation (30) from time t to τ̃, the equation can be shown as
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−
∫ τ̃

t
(1 + µ(s)m(s))e

∫ s
0 η2(u)duds =

[
φ(s)e

∫ s
0 η2(u)du

]τ̃

t
.

and

φ(t) =
[
υγ ā1−γ

τ̃ + (1− υ)γm(τ̃)
] 1

1−γ e
∫ τ̃

t η2(u)du +
∫ τ̃

t
[1 + µ(s)m(s)]e

∫ s
t η2(u)duds. (31)

For t > τ̃, the solution φ is

φ(t) =
[
υγ ā1−γ

t + (1− υ)γm(t)
] 1

1−γ . (32)

To find the optimal stopping time, we can differentiate the value function with respect to τ̃:

∂V
∂τ̃

=
1− γ

γ
W̃γ(t)φ−γ(t, τ̃)φ′(t, τ̃),

where

φ′(τ̃) = η2(τ̃)[υ
γ ā1−γ

τ̃ + (1− υ)γm(τ̃)]
1

1−γ e
∫ τ̃

t η2(u)du + [1 + µ(τ̃)m(τ̃)]e
∫ τ̃

t η2(u)du

+
1

1− γ
[υγ ā1−γ

τ̃ + (1− υ)γm(τ̃)]
γ

1−γ

{
υγ(1− γ)ā−γ

τ̃ [(µx+τ̃ + ρ)āτ̃ − 1]

+ (1− υ)γ[rm(τ̃)− 2
3
]
}

e
∫ τ̃

t η2(u)du.

Then we can have

∂V
∂τ̃

∝ φ′(t, τ̃) (33)

to determine our stopping time.

2.3. Case 3: with bequest, complete insurance market and wealth floor

In addition to resident-funded unit and serviced apartment, some non-profit Australian
retirement villages offer a type of unit housing type with an entry contribution. To reside in such
place, retirees are required to make a contribution deposit. This deposit might contribute to the
maintenance or improvement of a retirement village. In the United States, an entry contribution with
monthly fees is a payment option for continuing-care retirement community living. We can treat this
contribution requirement as a threshold for the wealth level for retirees to enter a retirement village,
that is,

W(t) ≥ R,

where R is the certain level of wealth required for retirees to enter a retirement village. This R can be
explained as a combination of the management fee, upfront loading fee of the retirement village or
the transaction cost of asset relocation.
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We assume that retirees would still follow the optimal strategy of consumption, bequest and
entering retirement village but change the proportion of wealth invested in the risky asset.

In letting W(t) can fulfil such requirement, we are inspired by Ding et al [17] and assume that
retirees would separate their wealth into two parts: surplus wealth W̃(t) and protected wealth Ŵ(t):

W(t) = Ŵ(t) + W̃(t),

where Ŵ(t) = hāt. The protected wealth is used for necessity consumption h, which can be basic
living costs and medical costs.

In terms of their surplus wealth, retirees can use it for consumption and bequest purposes. To
ensure that W̃(t) is greater than the certain required level R, retirees can replicate a put option by
separating their surplus wealth into two parts:

W̃(t) = W̃κ(t) + P(W̃κ(t), R, t). (34)

The first part W̃κ(t) is the remaining wealth used for consumption, investment and insurance and the
second part is used to replicate an American put option: P(Wκ(t), R, t)), with the underlying asset
Wκ(t) and strike price R.

At the optimal time of entering a retirement village, retirees will then exercise the option to let
wealth W(t) have the minimum value R:

W̃(τ̃) = W̃κ(τ̃) + max(0, R− W̃κ(t)) = max(W̃κ(t), R).

We now define the value function as

V = max
π,C̃κ ,L̃κ ,τ̃

{ ∫ τ̃

t

S(s)
S(t)

e−ρ(s−t) [U1(C̃κ(s)) + µ(s)U2(L̃κ(s))
]

ds

+
∫ ∞

τ̃

S(s)
S(t)

e−ρ(s−t)U1(
υW̃κ(τ̃)

āτ̃
)ds +

S(τ̃)
S(t)

e−ρ(τ̃−t)U2((1− υ)W̃κ(τ̃))

}
= max

π,C̃κ ,L̃κ ,τ̃

{ ∫ τ̃

t

S(s)
S(t)

e−ρ(s−t) [U1(C̃κ(s)) + µ(s)U2(W̃κ(s))
]

ds + e−ρ(τ̃−t) S(τ̃)
S(t)

āτ̃U1(
υW̃κ(τ̃)

āτ̃
)

+
S(τ̃)
S(t)

e−ρ(τ̃−t)U2((1− υ)W̃κ(τ̃))

}
with the wealth dynamics

dW̃κ(t) = (rW̃κ(t)− D(t)W̃κ(t)− C̃κ(t) + (α− r)π(t)W̃κ(t)− P̃κ(t))dt + σπ(t)W̃κ(t)dBt,

where C̃κ(t) and P̃κ(t) are the consumption and insurance premium at time t by using the surplus
wealth W̃κ(t). The form of the value function is assumed be

V =
1
γ

W̃κ(t)γa(t)1−γ,

in which the solution of a is in equations (31) and (32).
To replicate an American put option, we use the delta hedging defined in Huang et al [33],
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Delta =
∂P
∂X

= −N(−d1(X, K, T − t))−
∫ T

t

r
σ
√

2πu
e−

d̃1
2 du, (35)

where d̃1 =
(

ln X
B + (r + σ2

2 )u
)

/σ
√

u and B(t) is defined as the optimal exercise price for underlying
asset X.

Based on the definition of B(t), the dynamics of the American put option price are the same as
those for the price of the European put option, when the S(t) is greater than B(t). Hence, from Black
and Scholes [34], we have

∂P
∂t

+
1
2

σ2X2
t

∂2P
∂X2

t
+ rSτ̃ − rP = 0, X ∈ (B(t), ∞). (36)

The American put options should be exercised at the strike price K when the S(t) is less than B(t)

P(X(t), K, t) = K− X(t), X ∈ (0,B(t)). (37)

The boundary condition of the American put option is

lim
X(t)→∞

P(X(t), K, t) = 0. (38)

The American put option priceP(Xt, K, t) also have the following conditions at the fixed exercise
boundary B(t),

P(B(t), K, t) = K−B(t), ∂P(B(t), K, t)
∂X

= −1. (39)

At the time of expiration, all unexercised American put options will be exercised or expired. As
B(τ̃) is the optimal exercise price, the terminal condition is provided by

P(B(τ̃), τ̃, K) = 0, X ∈ (B(τ̃), ∞) with τ̃ = 0 and B(0) = K. (40)

To obtain the optimal exercise price B(t), we use the front fixing finite difference method from
Wu and Kwok [35]. We transform the option price P(St, K, t) , asset price St and the fixed boundary
B(t) respectively, as follows

P̃ =
P
K

, B̃(τ̃) = B(t)
K

, X̃(t) =
X(t)

K
, K̃ =

K
K

= 1,

where P represents the American put option price P(X(t), t, K) and P̃ represents the transformed
American put option price at time τ̃ about the underlying asset X̃(t) and the strike price K̃.

Here the dynamics of P̃ are described by equations (36) and (37) with K = 1. Equations (38), (39)
and (40) still hold for P̃ , X̃ and B̃ with K = 1.
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In Wu and Kwok [35], a new variable ỹ at time τ̃ which was introduced to transform the the
unknown boundary to a known fixed one is defined as

ỹ(t) = ln
X̃(t)
B̃(t)

. (41)

The process of ỹ is shown as follows:

ỹ(t) = lnX̃(t)− lnB̃(t),
dỹ(t) = dlnX̃(t)− dlnB̃(t)

=

(
r− σ2

2
+
B̃′(t)
B̃(t)

)
dt + σdBt.

Following Wu and Kwok [35], the partial differential equation (PDE) of the new variable ỹ is
obtained by forming a direct substitution to equation (36):

∂P̃
∂t

+
σ2

2
∂2P̃

∂y2(t)
+ (r− σ2

2
)

∂P̃
∂y(t)

− rP̃ +
B̃′(t)
B̃(t)

∂P̃
∂y(t)

= 0. (42)

Equation (42) is the PDE of a transformed American put option price P̃ with fixed boundary
B̃(t). Using the finite difference scheme defined in Wu and Kwok [35], we can explicitly solve
equation (42) and obtain the numerical result for B(t).

Substituting the B(t) value into equation (35), we can obtain the delta value of an American put
option. With this delta value, an American put option can be replicated by risky assets in the market.

3. Numerical Results

In this paper, we calibrate our parameters to Australian data to obtain numerical results for a
starting age of t = 65 to a maximum age of τ = 109. Survival probabilities and the force of mortality
are from the [36]. In particular, we use the tabulated values from [36] for S1(s) and µ1(s). To determine
survival rates and force of mortality for the sick state, we adopt the frailty model from Su and Sherris
[37]. For S2(s) and µ2(s), we simply set S2(s) = Su

1 (s) and µ2(s) = u× µ1(s), where u is defined as a
frailty factor and is assumed to be a constant here.

The risky return rate, α = 8.112%, and volatility of risky assets, σ = 0.15685, are
based on the 5-year average rate (from 2009 to 2014) of the ASX 200 (http://www.asx.com.au/).
We use the 5-year cash rate (from 2009 to 2014) from the Reserve Bank of Australia
(http://www.rba.gov.au/statistics/cash-rate/) as our risk free rate, that is, r = 3.4%. As was done
by [20] and [21], we set the rate of time preference to be equal to the risk-free rate, ρ = r. The average
annual income, Y = AUD$47 736, is from [38]. Retirees in our model are assumed to have total
wealth of 10Y from previous savings and have no future income. Following [39], the risk-aversion
parameter γ is set to be −0.5. In this paper, retirees with bequest motives are assumed to use 80% of
their wealth, υ = 0.8, to annuitise and use the rest as a pre-inheritance disbursement at the time of
entering the retirement village. In this paper, we set the frailty factor u to be 1.2. Medical costs are
assumed to be 1% of total wealth for agents in the healthy state and be 2% of total wealth for agents
in the sick state, that is, D1 = 0.01 and D2 = 0.02, respectively. With expenditure as estimated by [40],
the necessary consumption amount h is set to be AUD$12 000 per annum. As mentioned above, we
set the maximum survival age to 109.
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3.1. Tables and Figures

Table 1. Parameters used in the numerical simulation

.

t=65
q12=0.04

α=0.08112
ρ=0.034
Y=AUD$47,736
υ=0.8

D1=0.01
h=AUD$12,000 p.a.

τ=109
q21=0.4

r=0.034
σ=0.15685
γ=−0.5
u=1.2

D2=0.02
τ=109
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Figure 1. Expected consumption path for case 1 retirees, starting in the healthy state at age 65 with
total wealth of 10Y, and truncated at the optimal case 1 stopping times. This captures the expected
consumption outcomes of agents with no bequest motive. Note that these agents have no access
to insurance markets, and are assumed to purchase a term certain annuity to protect their basic
consumption needs—which is much more expensive than a life annuity, particularly at older ages.
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Figure 2. Expected consumption, truncated at optimal stopping times, for case 2 and case 3 agents
commencing at age 65 in the healthy state with total wealth of 10Y. The figure captures the expected
consumption paths for agents with bequest motives. These agents, in contrast to case 1, have access
to perfect insurance markets.
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Figure 3. Expected wealth, truncated at optimal stopping times, for case 1, 2 and 3 agents commencing
at age 65 in the healthy state with total wealth of 10Y. Recall case 1 agents have no access to insurance
markets, while case 3 agents replicate an American put option to ensure their savings target is met.
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Figure 4. Expected insurance premiums paid by case 2 and case 3 agents, truncated at optimal
stopping times, for those commencing at age 65 in the healthy state with a total wealth of 10Y.
Negative insurance premiums mean the agents are receiving funds from the insurers, that is, they
are in receipt of an annuity.
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Figure 5. Expected proportion of surplus wealth, W̃, invested in the risky assets, or π∗W/W̃, by agents
starting at age 65 in the healthy state with a total wealth of 10Y. The expected paths are truncated at
the optimal stopping times for case 2 and case 3, respectively. The differing behaviour of the case 3
target savers is clear.
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Table 2. Expected stopping times by level of risk aversion for case 1 and case 2 agents aged 65, in the
healthy state, and with total wealth of 10Y—and other parameters as given in table 1. Increasing levels
of risk aversion lead to falling stopping times. Also, the bequest motives of case 2 agents produce
results much more sensitive to the level of risk aversion. Indeed, at γ = −0.5 case 2 agents abandon
their conservative behaviour and embrace the risky investment environment.

Expected stopping time (years)
Gamma Case 1 Case 2
−0.5 11.65 13.22
−0.6 11.04 10.53
−0.7 10.56 8.28
−0.8 10.04 6.23
−0.9 9.54 4.50
−1 9.13 2.99

Table 3. Expected stopping times by level of equity premium for case 1 and case 2 agents aged 65, in
the healthy state, and with total wealth of 10Y—and other parameters as given in table 1. Increasing
the equity premium results in longer stopping times, as agents exploit the more profitable investment
environment. The situation illustrated is for agents with risk aversion of γ = −0.5, where case 2
agents are less conservative than case 1 agents. With more risk averse agents, this boldness of agents
with bequest motives over those without is reversed.

Expected stopping time (years)
α− r Case 1 Case 2
0.02 5.49 6.38
0.03 7.76 9.02
0.04 10.07 11.60
0.05 12.27 13.87
0.06 14.31 16.06

Table 4. Expected stopping times by level of market volatility for case 1 and case 2 agents aged 65, in
the healthy state, and with total wealth of 10Y—and other parameters as given in table 1. Increasing
market volatility results in shorter stopping times, as agents shy away from the riskier environment.
The situation illustrated is for agents with risk aversion of γ = −0.5, where case 2 agents are less
conservative than case 1 agents. With more risk averse agents, this boldness of agents with bequest
motives over those without is reversed.

Expected stopping time (years)
σ Case 1 Case 2
0.12 14.62 16.45
0.13 13.67 15.46
0.14 13.44 14.51
0.15 12.10 13.70
0.16 11.42 12.99
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Table 5. Expected stopping times by frailty factor u for case 1 and case 2 agents aged 65, in the healthy
state, and with total wealth of 10Y—and other parameters as given in table 1. Increasing frailty results
in shorter stopping times, as less healthy agents choose the safer retirement village world sooner.
The situation illustrated is for agents with risk aversion of γ = −0.5, where case 2 agents are less
conservative than case 1 agents. With more risk averse agents, this boldness of agents with bequest
motives over those without is reversed.

Expected stopping time (years)
u Case 1 Case 2
1.1 13.40 14.15
1.2 11.65 13.22
1.3 10.15 12.38
1.4 8.85 11.58

4. Discussion

In our numerical demonstration, three cases are studied. For the serviced apartment case (case
1), there is no bequest motive and agents have no access to the insurance market prior to entering
the retirement village; retirees can purchase neither life insurance nor a variable annuity. Retirees are
assumed to be fully annuitisated (purchase of a fixed annuity) at the time of entering the retirement
village. For the resident-funded unit case (case 2) and the early contribution unit case (case 3), retirees
have bequest motives and can purchase life insurance or a variable annuity in the insurance market
prior to entering the retirement village. In addition, retirees are assumed to leave part of their wealth
as a pre-inheritance disbursement and use the rest for full annuitisation when entering the retirement
village. Furthermore, in the entry contribution case (case 3), a minimum wealth requirement is a
prerequisite for retirement village entry. These retirees are then assumed to replicate an American
put option to clear this financial hurdle.

We present the expected consumption path for case 1 in Figure 1. From the plot, we see
the expected consumption path is hump-shaped—similar to consumption observed in empirical
studies [41,42]. This phenomenon can be attributed to both market incompleteness (lack of access
to insurance markets) and low wealth levels in the later life stages.

In figure 2, the expected consumption for cases 2 and 3 rises in line with increasing age. Due
to uncertainty arising from the unknown future health state, the market is not entirely complete and
thus expected consumption is slightly convex. Compared to figure 1, figure 2 reflects the ability of
retirees in cases 2 and 3 who have bequest motives to spend more on consumption as they have access
to an active insurance market to carry out annuitisation or to purchase insurance. Figure 2 also shows
that retirees in case 3 have less consumption than those in case 2, due to the cost of replication of the
American put option to ensure they can clear the wealth hurdle required for entry.

Our calculations indicate health changes impact optimal consumption decisions. As one would
expect, agents in the poorer health state consume more than those in the healthy state.

We display the expected wealth path for cases 1, 2 and 3 in figure 3. For most of time, retirees
in case 1 are in possession of more expected wealth than those in case 2 and case 3. As there is no
active insurance market in case 1, self-insurance due to precautionary motives is found to be another
driver for holding wealth [43]. Hence, figure 3, suggests retirees tend to draw on their wealth more
cautiously when there is no active insurance market. Moreover, the wealth floor requirement in case
3 demands more outgoes and results in less wealth.

The expected insurance premiums for life insurance or receipt of variable annuity income for
cases 2 and 3 are displayed in figure 4. A positive or negative premium value is linked to the demand
for life insurance or a variable annuity, respectively. In figure 4, retirees in cases 2 and 3 are shown to
purchase a variable annuity in order to maximise utility. Compared to those in case 2, retirees in case
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3 have a lower annuitisation amount, reflecting the resources they have to put toward replicating the
American put option to secure their retirement village entry.

We calculate the proportions of total wealth in risky assets for cases 2 and 3, and display the
expected paths of the proportion of surplus wealth, W̃, invested in the risky assets in figure 5. Retirees
in case 2 appear to invest a constant proportion of surplus wealth in risky assets, very much in line
with the Merton ratio [15,16]. Indeed, the high values seen are characteristic of the Merton ratio for the
parameters chosen and also reflect the lack of short-selling/borrowing restrictions in the modelling.
The situation is very different for retirees in case 3 who are target savers and who are assumed to
replicate an American put option to meet their target. These retirees, who want to hedge risk, are
encouraged to have an increasing risk exposure while they are ageing 2. In figure 5, the proportion
of surplus wealth for case 3 rises along with age, producing a convex shape. This trend is similar to
that reported in the study by Ding et al. [17], in which retirees are assumed to replicate a European
put option for their wealth requirement.

Health changes are seen not to impact investment decisions for our health myopic agents as we
chose a level of risk aversion, γ, that was constant between health states. It should be clear from
our myopic health modelling above that if this value differed between states then this would lead to
investment behaviour that differed between states. That is, if investors were more risk averse in the
sick state, then they would also invest less in the risky assets (compare Merton ratios).

We also test the impacts of some variables on optimal stopping times. As shown in table
2, we try different risk-aversion parameter values for case 1, that is, no bequest motive and an
incomplete insurance market, and case 2, that is, with bequest motives and a complete insurance
market, respectively. With an increasing risk-aversion level for both cases, retirees are shown to be
more afraid of potential risks in the markets and prefer an earlier stopping time. The stopping times
for case 2 are more sensitive to change in the risk-aversion parameter value. This phenomenon can
be explained by the extra risk aversion generated by the bequest motive utility function.

Table 3 shows the results of our tests on the impact of excess returns, α − r, on the stopping
time for case 1, that is, no bequest motive and an incomplete insurance market, and case 2, that is,
with bequest motives and a complete insurance market, respectively. As we expected, higher excess
returns are more attractive to retirees and defer the stopping time for both cases. This trend can be
also found in [21].

The impact of volatility, σ, on the stopping time for case 1 and case 2 is demonstrated in table 4.
For both two cases, retirees are seen to enter the retirement village earlier when the market is more
volatile.

As shown in table 5, we also study the impact of the frailty factor on the stopping time. In
both case 1 and case 2, when retirees are more frail in the sick state, and consequently have more
mortality risk, they intend to stop earlier. These findings are in line with [46], who uses a very
different (actuarial) approach, to discover that retirees entering retirement villages when they are
younger and healthier are financially better off.

5. Conclusions

This paper provides an innovative contribution in its investigation of several cases of retirees
entering retirement villages by using Richard’s model with a HARA utility function and a dynamic
health state. In our research, in which the time of entering the retirement village is the stopping time,
we study the optimal strategy with the optimal stopping time for retirees.

We make several different assumptions for bequest motives and the insurance market to
resemble the options faced by retirees when entering retirement villages in the real world. To address

2 Retirees are also found to use increasing risk exposure to hedge against risk in other studies, such as Hulley et al. [44] and
Thorp et al. [45].
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those problems, we obtain numerical results of consumption, wealth, insurance premiums and
stopping times. In our generalised model, retirees are assumed to have the necessary consumption,
dynamic health status and medical costs.

Retirees are found to have divergent consumption and stopping time trends, when the
assumptions of bequest motives and the insurance market change. If retirees are assumed to have
a bequest motive and access to insurance and annuity products, they are found to annuitise their
excess wealth and to have a higher level of consumption. Otherwise, retirees are shown to have
less consumption and to hold more wealth for precautionary purposes. Our numerical results
indicate the importance of complete insurance markets for self-reliance in retirement—for increasing
the consumption level prior to full annuatisation. This finding implies that the existence of a life
insurance market for retirees is essential and critical for retirees’ financial strategy. Our finding
supports the argument of Blake [47] and others for deepening insurance and annuity markets. A
new research direction is then suggested in the insurance market in relation to the ageing problem.
Stopping times are also impacted by the risk-aversion parameter, excess returns and the frailty factor.

In this paper, we also study the investment proportion in risky assets. In the case where there
is a wealth requirement (wealth floor), retirees are assumed to replicate an American put option. In
our numerical results, retirees are shown to be more conservative and have an increasing proportion
of wealth invested in risky assets in line with their increasing age. This result once again verifies the
findings in the existing literature.

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: title, Table S1:
title, Video S1: title.
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