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In this paper after introducing a model of binary data matrix (BDM) for physical parameters of an evolving 
system (of particles), we develop a Hilbert space as an ambient space to derive induced metric tensor on 
embedded parametric manifold identified by associated joint probabilities of particles observables 
(parameters). Parameter manifold assumed as space-like hypersurface evolving along time axis, an 
approach that resembles 3+1 formalism of ADM and numerical relativity. We show the relation of 
endowed metric with related density matrix. Identification of system density matrix by this metric tensor, 
leads to the equivalence of quantum Liouville equation and metric compatibility condition  ∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = 0 
while covariant derivative of metric tensor has been calculated respect to Wick rotated time or spatial 
coordinates. After deriving a formula for expected energy per particles, we prove the equality of this 
expected energy with local scalar curvature of related manifold. We show the compatibility of BDM model 
with Hamilton-Jacobi formalism and canonical forms. On the basis of the model, I derive the Ricci flow like 
dynamics as the governing dynamics and subsequently derive the action of BDM model and Einstein field 
equations. Given examples clarify the compatibility of the results with well-known principles such as 
equipartition energy principle and Landauer’s principle. This model provides a background for 
geometrization of quantum mechanics compatible with curved manifolds and information geometry. 
Finally, we conclude a “bit density principle” which predicts the Planck equation, De Broglie wave particle 
relation, 𝐸𝐸 = 𝑚𝑚𝑐𝑐2, Beckenstein bound and Bremermann limit.  
Keywords: Quantum Liouville equation; metric compatibility condition; Joint probability; Binary Data 
Matrix; Ricci flow.  

1. Introduction  

Liouville theorem in statistical physics was first introduced by Joseph Liouville. Theorem states that the 
density of particles in a system with Hamiltonian regime through time evolution, remains constant in 
phase space, i.e.  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 [1] .The quantum version of this theorem, namely Liouville -Von Neumann 

theorem presented in density matrix formalism [2]. Density matrix evolution in Liouville -Von Neumann 
theorem could be derived directly from Schrödinger equation and acts on the same Hilbert space where 
the wave function and related operators are defined. This equation is in analogy with the evolution of 
classical phase space distribution by replacing the density matrix with phase space distribution and 
commutator with Poisson bracket. One of the major differences between classical and quantum 
measurement is the limitations induced by Heisenberg uncertainty law and its consequences that 
constrains the accuracy of joint (simultaneous) measurements of incompatible observables and divides 
the observables to compatible and incompatible category. Compatible observable refers to those that 
their operators are commutative and hence could be measured simultaneously while incompatibles are 
non-commutative and their precise simultaneous measurements are impossible. In spite of this 
restriction, recent advents reveal some solution for this constraints by imposing some approximations on 
joint measurements of incompatible observables at the price of introducing some errors with respect to 
the ideal measurement [3-5]. Then one may consider experiments with acceptable simultaneous 
measurements of incompatibles with definite concept of joint probability. However joint probability in 
quantum mechanics remains as an old and challenging area of research. One of the main approaches for 
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quantum correction to classical statistical mechanics and consequently joint probability in quantum 
mechanics are brought by Wigner distribution (function) to formulate the quantum physics in a phase 
space through introduction of Quasi probabilities. The Quasi prefix is considered because of emerging 
some negative probabilities in the context of Wigner distribution. It has been proved that these negative 
probabilities often refer to small parts of phase space and could be ignored in most problems [6]. Actually 
whenever the Wigner function takes just the non-negative values it represents a true joint probability 
distribution of position and momentum [6]. At the time being joint measurements of incompatible 
observable with some error becomes feasible [5]. Therefore, implementing joint measurements to record 
the magnitude of observables with a possible range of errors is achievable. This means that one may 
define joint probabilities in quantum approach especially in density matrix formalism[5]. We will present 
in sec (3) a density matrix which fitted for the present model with entries proportional to joint 
probabilities of observables. In sec (2,3,4) we set a model of a binary data matrix 𝑫𝑫 which contains 
evolving data of parameters of all particles in a system with 0 and 1 entries. The rows of this matrix are 
base vectors in the Hilbert space ℋ2𝑛𝑛 and their inner products constitute a metric tensor for dual space 
of the parametric space. We will show in these sections the equivalence of density matrix with a 
symmetric matrix 𝒅𝒅𝒅𝒅𝑇𝑇which derived from 𝑫𝑫. 

Metric compatibility condition exhibited as a pure mathematical inference in differential geometry and 
tensor analysis [7].This theorem states that for any chosen local coordinates the covariant derivative of 
metric tensor 𝑔𝑔𝑖𝑖𝑖𝑖  vanishes i.e. ∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = ∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = 0 [8]. When we apply the covariant time derivative of 
metric tensor (after wick rotation), the metric compatibility condition and quantum Liouville equation as 
two apparently far concepts appear as two sides of a common reality when the deep connection of metric 
tensor and joint probability has been shown to be based on an abstract background of evolution process 
of a system of large number of particles. The consequences of this equivalence result in a definition for 
energy per particle with ensuing equations of action integral and Einstein field equations. The transition 
from discrete particles continuous derivative and connections are the same method in Maxwell-
Boltzmann kinetic theory of gases. The binary matrix model geometrizes the statistical concepts in physical 
parameter space based on binary data of system. In some approach to general relativity like numerical 
relativity and ADM formalism [9], the concept of foliation of space-time manifolds into space like hyper-
surfaces has been introduced and used to solve some related problems. These hyper-surfaces embedded 
in space-time manifold with time-like unit normal vectors. We generalize this method to 𝑛𝑛 + 1 
dimensional parametric manifolds with hyper-surfaces of 𝑛𝑛 space-like dimensions of physical parameters. 
Accordingly, in this approaches the hyper-surfaces and their induced metrics could be evolved through 
time under quantum Liouville equation. In sec (3) we would have shown the equivalence of density matrix 
and metric tensor of parametric space and its dual space with joint probabilities of particle parameters 
which appears as a symmetric matrix 𝒅𝒅𝒅𝒅𝑇𝑇derived from binary data matrix 𝑫𝑫.  In section (6) we prove the 
Ricci flow dynamic as a direct consequence of the context of binary matrix model and then apply it in 
action integral to derive Einstein field equations. Ricci flow is a well-known geometric flow was first 
introduced by Hamilton and used for solution of the Poincare conjecture. As an evolution equation of 
metric tensor, Hamilton (1982) showed the existence of unique solution of Ricci flow equation on a closed 
manifold over a sufficiently short time. Mainstay of general relativity has been based on the relation of 
space-time manifold structure and stress energy tensor in the presence of gravitational field by 
presumption of equivalence principle [10]. Einstein field equation represents this equivalence by equating 
a pure geometrical term (left side) well known as Einstein tensor with a pure physical term (i.e. stress 
energy tensor) [10]. This great assumption leads to geometrization of all gravitational and non-
gravitational field theories through introduction of Einstein-Hilbert action integral in such a way that 
metric tensor of space-time appears in all actions of field theories. In recent years some attempts devoted 
to introduce the gravity as an emerging force i.e. entropic force [11]. By these scenarios the distribution 
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of mass-energy dictates the gravitational potential [11, 12]. These theories support the relation of 
geometry and probability. Intuitively an immediate result is a probable deep connection between the 
geometry (of space-time) and physical probability concept. As an interesting example we have shown in 
sec (8) the more basic interconnection between joint probability density (as an induced metric tensor) 
and the Einstein tensor under Ricci flow dynamic. Geometrization of probability distribution and 
information has been achieved by some authors. Historically, some attempts toward the geometrization 
of statistical inferences and probability distributions, have been made Amari and Fisher to develop the 
metric tensor concept of manifolds constructed by points correspond to probability distributions in order 
to geometrize the information theory. Fisher information and covariance based metric in phase space and 
information geometry are among the original works in this field and their applications in thermodynamics  
[13, 14]. However, these approaches limited to phase space with definitions of metric tensor as the 
expectation values of probability distribution moments and likelihoods. Moreover, there has not revealed 
a clear connection to physical applications. Therefor local approaches have not been yet developed 
properly in order to be used in Riemannian curved spaces and general relativity. Some authors also 
indicated the relations of thermodynamic rules with Einstein field equations [15, 16]. These theories 
describe the gravitational forces with entropic force assuming entropy as a function of matter distribution 
[12]. Although the pure geometrical part of Einstein field equations could be served in arbitrary 
dimensional space, however its physical side should be realized in four-dimensional space-time 
continuum, accordingly it seems to be a special case of a more general form of basic laws. In this article 
we generalize the physical concept of geometrical part of Einstein field equation in 𝑛𝑛 + 1 dimensional 
manifolds defined through exploring a deep connection between the concepts of metric and joint 
probability density. In subsequent sections I describe the wide range consequences of the model which 
incorporate the quantum mechanics and general relativity by deriving the universe inflation, Schrodinger 
equation, equipartition energy principle, Landauer’s principle and classical thermodynamic laws. As an 
important result, I conclude the bit density principle which unites the De Broglie wave- particle equation, 
Planck photon energy, and mass- energy relation 𝐸𝐸 = 𝑚𝑚𝑐𝑐2. Beckenstein bound and Bremermann limit are 
straightforward results of this principle. Equivalence of Euclidean action and entropy of black holes are 
among other consequences of binary matrix model. Binary matrix model initiates with a quantum 
approach (quantum Liouville equation) and after translating the physical parameter to bit information 
results in the basic equations of general relativity (Einstein field equation) Universe inflation to reconcile 
quantum mechanics and general relativity. The approach can be depicted as: 

                       𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐵𝐵𝐵𝐵𝐵𝐵 +  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏 → 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

2. Binary Data Matrices and Hilbert space  

Definition: Parametric space ℳ specified by 𝑥𝑥𝜈𝜈 coordinates with 𝝂𝝂 which varies from 1 to the dimension 
of parametric space  𝜇𝜇:  

                                                                                          1 ≤ 𝜈𝜈 ≤ 𝝁𝝁                                                                          (1) 

Let construct a binary data matrix on the basis of sequential measurements take place in a time interval 
Δ𝕋𝕋 on 𝑁𝑁 particles in a system with conserved total number. One may label each particle by a number so 
that the first measurement implemented on first particle and second measurement on second particle 
and so on. Δ𝕋𝕋 represents the least time required to achieve measurements of all particles and is assumed 
to be a small time interval. We label these set of measurements by �𝛼𝛼| 1 ≤ 𝛼𝛼 ≤ 𝑁𝑁� with time ordering. If 
our measurements include 𝜇𝜇 independent parameters ( 𝝁𝝁 = degrees of freedom) are being denoted by 𝑥𝑥𝜈𝜈 
(𝜈𝜈 denotes the 𝜈𝜈-th degree of freedom) then we can divide the possible range of these parameters to a 
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large number of intervals ∆𝑥𝑥𝜈𝜈 in order to obtain such small intervals that satisfy the order of predicted 
error of measurement setting and the accuracy of measurements. If the number of these intervals for 
each parameter 𝑥𝑥𝜈𝜈 denoted by 𝑚𝑚𝜈𝜈, the total number of intervals reads as: 

                                                                          𝑚𝑚 = ∑ 𝑚𝑚𝜈𝜈𝜈𝜈                                                                                          (2) 

Accordingly any measurement outcome of a particle to determine the value of specific parameter 𝑥𝑥𝜈𝜈 falls 
just in one interval labeled by ‘𝑖𝑖’ denoting the i th interval meanwhile stands for a specific value of  𝑥𝑥𝜈𝜈. 
Let show this interval by∆𝑥𝑥𝜈𝜈(𝑖𝑖) and attribute the binary value 𝟏𝟏 for this interval while the other intervals 
take the value 𝟎𝟎. Consequently, the result of  𝑥𝑥𝜈𝜈  measurement for a particle will be represented by some 
column binary matrix with non-zero (𝟏𝟏) element only at row specified by 𝑥𝑥𝜈𝜈(𝑖𝑖). Iteration of measurement 
on other parameters turn out other column binary matrices. The outcome of all parameters could be 
represented by 𝜇𝜇 column binary matrix with 𝜇𝜇  non-zero entries. Conjunction of these column binary 
matrices as a single column binary matrix result in a matrix 𝝃𝝃𝒎𝒎×𝟏𝟏

𝜶𝜶 . Each of these 𝝃𝝃𝒎𝒎×𝟏𝟏
𝜶𝜶  gives the parameter 

values of the 𝛼𝛼 th particle. Union of  𝝃𝝃𝒎𝒎×𝟏𝟏
𝜶𝜶 constructs a data matrix 𝑫𝑫𝒎𝒎×𝑵𝑵. Rows of these binary data 

matrices i.e. at each interval ∆𝑥𝑥𝜈𝜈(𝑖𝑖) can be denoted by a vector 𝑒𝑒∗𝜈𝜈(𝑖𝑖): 

                                                              𝑒𝑒∗𝜈𝜈(𝑖𝑖) = (0,1,0,0,1,1,0,0,1, … )                                                                  (3)                                           

Let call these base vectors as data basis vectors. Each vector 𝑒𝑒∗𝜈𝜈(𝑖𝑖) could be regarded as a base vector 
spanned in an abstract 𝑁𝑁 dimensional space with binary components. We will define this 𝑁𝑁 dimensional 
space as particle-oriented coordinates. Obviously,  𝑫𝑫𝒎𝒎×𝑵𝑵 could be partitioned to  𝐷𝐷𝑚𝑚𝜈𝜈×𝑁𝑁  matrices for 
each parameter 𝑥𝑥𝜈𝜈. Thus, matrix product 𝑫𝑫𝑫𝑫𝑻𝑻 contains block matrices for each parameter as diagonal 
entries and block matrices produced by different parameters as non-diagonal entries. 

                                             𝑫𝑫𝑫𝑫𝑻𝑻 = �
 𝐷𝐷𝑚𝑚1×𝑚𝑚1  𝐷𝐷𝑚𝑚1×𝑚𝑚2    …
 𝐷𝐷𝑚𝑚2×𝑚𝑚1 ⋱ ⋮

⋮ ⋯  𝐷𝐷𝑚𝑚𝝁𝝁×𝑚𝑚𝝁𝝁

�            

As we will prove in Lemma 2, the entries of this matrix carry the set of joint probabilities of parameters. 
For space coordinate of particles, the involved block matrices yield the spatial distribution of particles. 

Postulate At the limit ∆𝑥𝑥𝜈𝜈(𝑖𝑖) → 𝑑𝑑𝑥𝑥𝜈𝜈(𝑖𝑖), the vectors 𝑒𝑒∗𝜈𝜈(𝑖𝑖) approaches the basis of cotangent bundle 
(space) as 1-form i.e.                       𝑒𝑒∗𝜈𝜈(𝑖𝑖) ≡ 𝑑𝑑𝑥𝑥𝜈𝜈(𝑖𝑖) ≡ 𝜔𝜔𝜈𝜈(𝑖𝑖)                                                                              (4)  

Definition: Here any particle specifies an independent coordinate with two possible values 0 and 1. These 
coordinates are orthogonal, because at the initial setting the parameter values of each particle (such as 
position and momentum etc.) considered to be independent of all other particles. We call these set of 
coordinate as particle-oriented coordinate that as a coordinate chart is homeomorphic to a subset of 
Euclidean flat space  ℝ𝑁𝑁  which span a manifold  𝑴𝑴 . Moreover we define a parametric space  ℳ  of 
considered system including all coordinates 𝑥𝑥𝜈𝜈  and their dual basis  𝑒𝑒∗𝜈𝜈  where the latter span a dual 
tangential (cotangent) vector space 𝑇𝑇𝑃𝑃∗ℳ at a point 𝒑𝒑 in parametric space ℳ i.e.                

                                                         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{ 𝑒𝑒∗𝜈𝜈} = 𝑇𝑇𝑃𝑃∗ℳ ⊂ 𝑴𝑴                                                                                   (5) 

Lemma 1. It is straight forward to deduce the orthogonality of  𝑒𝑒∗𝜈𝜈(𝑖𝑖) in each parametric range of  𝑥𝑥𝜈𝜈 by 
scalar products:   

                                                                   〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜈𝜈(𝑗𝑗)〉 = 0    𝑖𝑖 ≠ 𝑗𝑗                                                                      (6)                         
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Proof: components of  𝑒𝑒∗𝜈𝜈(𝑖𝑖) defined in an orthogonal particle-oriented coordinates. Let n-th component 
be denoted by:                                                      [ 𝑒𝑒∗𝜈𝜈(𝑖𝑖)]𝑛𝑛                                                          

Then the scaler product in an orthogonal coordinate for a fixed 𝜈𝜈 reads as: 

                                                   〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜈𝜈(𝑗𝑗)〉 = ∑ [ 𝑒𝑒∗𝜈𝜈(𝑖𝑖)]𝑛𝑛[ 𝑒𝑒∗𝜈𝜈(𝑗𝑗)]𝑇𝑇𝑛𝑛𝑛𝑛                                                           (7) 

If a specific component [ 𝑒𝑒∗𝜈𝜈(𝑖𝑖)]𝑝𝑝 takes the value 1, this means that the value of parameter 𝑥𝑥𝜈𝜈 for p-th 
particle falls in 𝑖𝑖-th interval and other intervals as [ 𝑒𝑒∗𝜈𝜈(𝑗𝑗)]𝑝𝑝 could not take the same value, and vice versa, 
therefore we have:                                      [ 𝑒𝑒∗𝜈𝜈(𝑗𝑗)]𝑝𝑝 = 0                                 𝑖𝑖 ≠ 𝑗𝑗                                              (8) 

Consequently in equation (7) [ 𝑒𝑒∗𝜈𝜈(𝑖𝑖)]𝑝𝑝 and [ 𝑒𝑒∗𝜈𝜈(𝑗𝑗)]𝑝𝑝 could not take the value 1 simultaneously and this 
sum as the inner (scaler) product vanishes. 

In order to derive a matrix containing the relative and simultaneous abundance of positive interval 
population (i.e. total number of particles of different parameters) we need to extract all scalar products 
 𝑒𝑒∗𝜇𝜇(𝑖𝑖). [ 𝑒𝑒∗𝜈𝜈(𝑗𝑗)]𝑻𝑻 = 〈 𝑒𝑒∗𝜇𝜇(𝑖𝑖),  𝑒𝑒∗𝜈𝜈(𝑗𝑗)〉 obtained by means of the matrix product 𝑫𝑫𝑫𝑫𝑻𝑻. 

Lemma 2. Diagonal entries of the matrix 𝑫𝑫𝑫𝑫𝑻𝑻 are equivalent to the separate probability of each interval 
and non-diagonal entries return the joint probabilities of different parameter intervals after necessary 
normalization. 

Proof: Elements of 𝑫𝑫𝑫𝑫𝑻𝑻 could be represented as (the index 𝜇𝜇 should not be confused with degree of 
freedom 𝝁𝝁)  

                                                      〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜇𝜇(𝑗𝑗)〉 = ∑ [ 𝑒𝑒∗𝜈𝜈(𝑖𝑖)]𝑛𝑛[ 𝑒𝑒∗𝜇𝜇(𝑗𝑗)]𝑇𝑇𝑛𝑛𝑛𝑛                                                         (9) 

Obviously, this sum enumerates the total number of particles that have common parameter value of 𝑖𝑖-th 
interval of  𝑥𝑥𝜈𝜈 and j th interval of 𝑥𝑥𝜇𝜇. Hence the joint probability of  𝑒𝑒∗𝜈𝜈(𝑖𝑖) and  𝑒𝑒∗𝜇𝜇(𝑗𝑗) events reads as: 

                                                               𝑓𝑓𝜇𝜇𝜇𝜇 = 1
𝑁𝑁
〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜇𝜇(𝑗𝑗)〉                                                                           (10) 

Moreover, for each point on ℳ the we can retrieve 𝑓𝑓𝜇𝜇𝜇𝜇 via matrix multiplication 𝒅𝒅𝒅𝒅𝑇𝑇  where 𝒅𝒅 is the 
matrix obtained by collection of row vectors 𝑒𝑒∗𝜈𝜈 of various parameters all defined on a point on ℳ. Thus 
‖𝑓𝑓𝜇𝜇𝜇𝜇‖ = 𝒅𝒅𝒅𝒅𝑇𝑇 is a symmetric square matrix of order 𝝁𝝁 (the number of parameters), defined on a point 
on ℳ:   

                                                                 𝒅𝒅 =

⎣
⎢
⎢
⎢
⎡ [𝑒𝑒∗1]
 [𝑒𝑒∗2] 

. . .

[𝑒𝑒∗𝝁𝝁] ⎦
⎥
⎥
⎥
⎤

         ,     ‖𝑓𝑓𝜇𝜇𝜇𝜇‖ = 𝒅𝒅𝒅𝒅𝑇𝑇               

 
Lemma 3.  Paired joint probabilities 𝑓𝑓𝜇𝜇𝜇𝜇 indicate the local metric tensor of ℳ. For each point on ℳ the 
 𝑓𝑓𝜇𝜇𝜇𝜇 represents a matrix of order 𝝁𝝁 × 𝝁𝝁 and is equivalent to metric tensor of parametric space ℳ.  
The general definition of metric tensor for a manifold with local base vectors 𝑒𝑒∗𝜈𝜈(𝑖𝑖) is compatible with 
equation (10):                                                𝑔𝑔𝜇𝜇𝜇𝜇 = 〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜇𝜇(𝑗𝑗)〉     
Therefore                                                       1

𝑁𝑁
𝑔𝑔𝜇𝜇𝜇𝜇 = 𝑓𝑓𝜇𝜇𝜇𝜇                                                                                      (11) 

                                                                         ‖𝑔𝑔𝜇𝜇𝜇𝜇‖𝝁𝝁×𝝁𝝁 = 𝒅𝒅𝒅𝒅𝑇𝑇      
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The total information bits collected during measurement on such a system with 𝜇𝜇 as the degree of 
freedom will be read as:                                                   ℕ = 𝝁𝝁𝑁𝑁                                                                                           (12)                           

In this model we define a Hilbert space ℋ  with all basis of the form ⟨𝑗𝑗1, 𝑗𝑗2, … 𝑗𝑗𝑛𝑛| with 𝑗𝑗𝑚𝑚 ∈ {𝟎𝟎,𝟏𝟏}. In 
quantum computation however, these basis well known as (quantum) computational basis vectors 
(states) of the Hilbert space ℋ2𝑛𝑛   [17, 18]. 2𝑛𝑛  refers to the total number of elements of this Hilbert 
space.  ℋ2𝑛𝑛 contains all  𝑒𝑒∗𝜈𝜈(𝑖𝑖) and related  𝒩𝒩𝜈𝜈 spaces. The  𝒩𝒩𝜈𝜈 spaces are sub-spaces of  ℋ2𝑛𝑛 and could 
be described as Hilbert spaces ℋ𝜈𝜈 for each parameter 𝑥𝑥𝜈𝜈.This approach, is in close relation to qubit basis 
definition in quantum computation theory[17]. Indeed, for construction of tangent spaces compatible 
with our model we need to choose a sub-space of base vectors of  ℋ𝜈𝜈  in such a way that inner product of 
any pair of them vanishes: 

                                                                   〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜈𝜈(𝑗𝑗)〉 = 0              𝑖𝑖 ≠ 𝑗𝑗                                                         (13) 

Obviously, these sub-spaces may be regarded as ℋ𝜈𝜈 . Sub-spaces ℋ𝜈𝜈  are spanned by 𝑚𝑚𝜈𝜈  base vectors 
 𝑒𝑒∗𝜈𝜈(𝑖𝑖) . Then the whole space could be represented as the sum (not direct sum) of sub-spaces ℋ𝜈𝜈:  

                                                    𝑇𝑇𝑃𝑃∗ℳ = ℋ1 + ℋ2 … + ℋ𝜇𝜇 ⊂ ℋ                                                                           (14)     

The collected information of system of particles over time interval  Δ𝕋𝕋 , leads to a binary data 
matrix 𝑫𝑫𝒎𝒎×𝑵𝑵. 

Each sub-space ℋ𝜈𝜈 considered as a tangent sub-manifold 𝒩𝒩𝜈𝜈  at a point 𝑝𝑝. The union of these tangent 
spaces results in the total space of a tangent bundle 𝑇𝑇𝑃𝑃∗ℳ. The state of the system could be represented 
by such matrix and the evolution of this quantum system obeys the equation of quantum Liouville 
theorem as well as Hamiltonian operator. The inner product property of this Hilbert space leads to 
definition of metric tensor and related curvatures induced on manifold ℳ.    

Definition:  We have shown Hilbert space ℋ spanned by 𝑒𝑒∗𝜈𝜈(𝑖𝑖) as base vectors of related vector space. 
The “bra” notation determines these bases in the sense of quantum mechanics. If one shows the “bra” 
with ⟨𝑒𝑒∗𝜈𝜈(𝑖𝑖)| then the related dual base vector will be denoted by “ket” i.e.|𝑒𝑒𝜇𝜇�∗(𝑗𝑗)� and lives in dual vector 
space ℋ∗. In matrix form, ⟨𝑒𝑒∗𝜈𝜈(𝑖𝑖)| presented by a row matrix as depicted in equation (3) and |𝑒𝑒∗𝜈𝜈(𝑖𝑖)⟩ by 
a column matrix that is transpose of  ⟨𝑒𝑒∗𝜈𝜈(𝑖𝑖)| . For compatibility with tensor representation we use 
reasonably the lower index for “ket” vector and therefore we have |𝑒𝑒𝜇𝜇�∗(𝑗𝑗)� instead of.|𝑒𝑒∗𝜇𝜇�(𝑗𝑗)� and the 
scaler of the “bra” and “ket” in this notation reads as:   

                                                                                〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒𝜇𝜇�∗(𝑗𝑗)〉                                                                            (15) 

We sued 𝜇̂𝜇 instead of 𝜇𝜇 to emphasize that this index refers to the double dual of parametric space while 
we know the isomorphism of double dual with original vector space [29]. The joint probability as proved 
in lemma 3 is a tensor because is proportional to metric tensor. In the notation of (15) this joint probability 
should be shown by a mixed tensor defined in dual and double dual vector space: 

                                                                           𝑓𝑓𝜇𝜇�
𝜈𝜈 = 1

𝑁𝑁
〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒𝜇𝜇�∗(𝑗𝑗)〉                                                                   (16) 

The value of scaler product 〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒𝜇𝜇�∗(𝑗𝑗)〉 equals 〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜇𝜇(𝑗𝑗)〉. The upper index of 𝑓𝑓𝜇𝜇�
𝜈𝜈 related to dual 

space while the lower index to double dual space. Because of isomorphism between original and double 
dual space [29] this tensor could be considered as a mixed rank 2 tensor in parametric (original) vector 
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space. Thus, for compatibility with bra and ket notation we apply this tensor as metric tensor evolving by 
time. 

                                                                        1
𝑁𝑁
𝑔𝑔𝜇𝜇�
𝜈𝜈 = 𝑓𝑓𝜇𝜇�

𝜈𝜈 = 1
𝑁𝑁
〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒𝜇𝜇�∗(𝑗𝑗)〉                                                        (17) 

3. Equivalence of metric compatibility condition and quantum Liouville equation  

Density matrix formalism is the quantum version of phase space probability measure of classical statistical 
mechanics. Accordingly, it deals with ensembles of mixed and pure states. The general definition of 
density matrix could be read as:       

                                                                            𝜌𝜌 = ∑ |𝑖𝑖⟩𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⟨𝑗𝑗|                                                                          (18) 

|𝑖𝑖⟩ denotes the basis vector labelled by “𝑖𝑖” and |𝑖𝑖⟩⟨𝑗𝑗| denotes the projection matrix with non-zero element 
at row “i” and column “j”. The corresponding element presented by 𝜌𝜌𝑖𝑖𝑖𝑖  . Diagonal entries 𝜌𝜌𝑖𝑖𝑖𝑖  of density 
matrix represents the population (probability) of a specific basis (state) therefore the trace of density 
matrix is unit. Off diagonal entries would provide information about the degree of coherence (or 
polarization) between two states, in other words it represents the correlation of basis states. Although 
off-diagonal elements have no simple physical interpretation it always gives information on quantum 
correlation between particles and fields [19, 20]. we consider these off-diagonal elements as the usual 
correlations between parameters (random variables) 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗 which could be encoded by their joint 
probabilities [20], whereby we assume in our definition the equivalent notion of off-diagonal entries of 
density matrix ( 𝜌𝜌𝜇𝜇𝜇𝜇) and joint probability density function:              

                                                                              𝜌𝜌𝜇𝜇𝜇𝜇 = 𝑓𝑓𝜇𝜇�
𝜈𝜈 =1

𝑁𝑁
𝑔𝑔𝜇𝜇�
𝜈𝜈                                                                      

Because the factor 1
𝑁𝑁

 is a scaler constant of system, it could be absorbed by 𝑔𝑔𝜇𝜇�
𝜈𝜈 and from now on we use 

the term  𝑔𝑔𝜇𝜇�
𝜈𝜈 instead of 1

𝑁𝑁
𝑔𝑔𝜇𝜇�
𝜈𝜈 without any change in dynamics and topology of ℳ. 

                                                                             𝜌𝜌𝜇𝜇𝜇𝜇 = 𝑓𝑓𝜇𝜇�
𝜈𝜈 =  𝑔𝑔𝜇𝜇�

𝜈𝜈                                                                             (19) 

In the sense of quantum computation ⟨𝑗𝑗| vectors are computational basis vector in the form ⟨ 𝑗𝑗1, 𝑗𝑗2, … 𝑗𝑗𝑛𝑛| 
with  𝑗𝑗𝑚𝑚 ∈ {𝟎𝟎,𝟏𝟏} . In present model these vectors substituted by data basis vector 𝑒𝑒∗𝜈𝜈(𝑖𝑖)  which 
corresponds the i th row of 𝑫𝑫𝑚𝑚𝜈𝜈×𝑁𝑁 matrix. With the identification of bra ⟨𝜈𝜈| by 𝑒𝑒∗𝜈𝜈(𝑖𝑖)  and ket |𝜇𝜇⟩ by 
𝑒𝑒𝜇𝜇�∗(𝑗𝑗)  the density matrix entries 𝜌𝜌𝜇𝜇𝜇𝜇  respect to (19) could be represented by: 

                                                           𝜌𝜌𝜇𝜇𝜇𝜇(𝑖𝑖, 𝑗𝑗) = 1
Ν
〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒𝜇𝜇�∗(𝑗𝑗)〉 =𝑓𝑓𝜇𝜇�

𝜈𝜈(𝑖𝑖, 𝑗𝑗)                                                        (20)                                                                                            

𝑖𝑖, 𝑗𝑗 determine the corresponding intervals (values) of  𝑥𝑥𝜈𝜈 and  𝑥𝑥𝜇𝜇 respectively. The off-diagonal entries 
give the classical joint probabilities 𝑓𝑓𝜇𝜇�

𝜈𝜈.  

Recalling the equation (16) also reveals the equivalence of 𝜌𝜌𝜇𝜇𝜇𝜇 and  𝑔𝑔𝜇𝜇𝜇𝜇  and their symmetric and positive 
definite properties. One may compare these correspondence with similarities of covariance matrix and 
metric of thermodynamic state manifold [19]. One may use 𝑓𝑓𝜇𝜇�

𝜈𝜈 as a mixed tensor defined by inner product 
of a base  𝑒𝑒∗𝜈𝜈(𝑖𝑖)  with a dual base  𝑒𝑒𝜇𝜇�∗(𝑗𝑗) , by the same components of 𝑔𝑔𝜇𝜇�

𝜈𝜈   as a metric tensor and 
consequently with vanishing covariant derivative due to metric compatibility. Respect to binary data 
matrix mentioned in previous section we can imply a new relation between metric compatibility in 
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differential geometry and Liouville equation in quantum density matrix notion. It should be reminded that 
the trace of defined 𝜌𝜌𝑖𝑖𝑖𝑖  equals the constant 𝜇𝜇  (the degree of freedom). Evidently, this fact does not 
interfere the validity of what will be followed.  

Definition: Let (ℳ,𝑔𝑔) stands for a 𝝁𝝁 dimensional space-like Riemannian manifold described in sections 
(1),(2) with  𝑔𝑔𝜇𝜇𝜇𝜇  as metric and 𝑓𝑓𝜇𝜇𝜇𝜇  as joint probabilities described in section (2). Evolution of particles 
system evolves this manifold through time axis. The overall manifold 𝑀𝑀 comprises space-like manifolds 
ℳ and time coordinate generally constructs a Lorentzian manifold where a Wick rotation (i.e.𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑖𝑖𝑖𝑖) convert it to a Riemannian manifold of dimension 𝜈𝜈 + 1. Therefore 𝑀𝑀 foliated by hypersurfaces ℳ 
through time axis. This approach is close to ADM formalism and numerical relativity [9]. From now on we 
use alphabetic indices instead of Greek letters. Metric compatibility known as vanishing of covariant 
derivative of metric tensor i.e. ∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖;𝑘𝑘 = 0 . Here we use the covariant derivative respect to Wick 
rotated time axis: 𝑔𝑔𝑖𝑖𝑖𝑖;0 = 0 because the evolution of these systems occur along the time axis and this 
reveals the rational for exclusive role of time covariant derivative of metric tensor in comparison with the 
spatial derivatives. This condition is also valid for metric 𝑔𝑔𝜇𝜇�

𝜈𝜈. 

Theorem:  For a system of particles and associated manifold ℳ endowed by the metrics 𝑔𝑔𝑖𝑖𝑖𝑖 defined in 
section (2) vanishing covariant derivative of metric tensor (respect to Wick rotated time) is equivalent to 
quantum Liouville equation. 

Proof: Density matrix evolution in quantum setting and its Liouville-von Neumann equation for time 
evolution with 𝐻𝐻𝑚𝑚𝑚𝑚 as matrix form of Hamiltonian operator could be read as [2, 21]:  

                                                           𝜕𝜕𝜌𝜌𝑚𝑚𝑚𝑚
𝜕𝜕𝜕𝜕

= − 𝑖𝑖
ℏ
∑ (𝐻𝐻𝑚𝑚𝑚𝑚𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 − 𝐻𝐻𝑗𝑗𝑗𝑗𝜌𝜌𝑚𝑚𝑚𝑚)                                                              (21)                              

In the Planck units ℏ = 𝑐𝑐 = 1 by taking into account the Euclidean coordinate after a Wick rotation i.e. 
𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖  and substituting it in above equation we have: 

                                                            𝜕𝜕𝜌𝜌𝑚𝑚𝑚𝑚
𝜕𝜕𝜕𝜕

= ∑ (𝐻𝐻𝑚𝑚𝑚𝑚𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 − 𝐻𝐻𝑗𝑗𝑗𝑗𝜌𝜌𝑚𝑚𝑚𝑚)                                                                   (22) 

Regarding metric compatibility in differential geometry [4] i.e.∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = ∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = 0 and equation (19) i.e. 1
𝑁𝑁

 
𝑓𝑓𝑛𝑛𝑚𝑚 = 𝑔𝑔𝑛𝑛�

𝑚𝑚 = 𝜌𝜌𝑚𝑚𝑚𝑚. The joint probability 𝑓𝑓𝑛𝑛𝑚𝑚 is equivalent to metric tensor𝑔𝑔𝑛𝑛�
𝑚𝑚. Taking into consideration 

the temporal component (covariant derivative of metric tensor respect to Wick rotated time 𝜏𝜏) of tensor 
compatibility, by definition of covariant derivative we obtain: 

                                                   ∇0𝑔𝑔𝑚𝑚�
𝑛𝑛 = ∇0𝑓𝑓𝑚𝑚𝑛𝑛 = 0    ⇒  𝜕𝜕𝑓𝑓𝑚𝑚

𝑛𝑛

𝜕𝜕 𝜏𝜏
= Γ0𝑚𝑚

𝑗𝑗 𝑓𝑓𝑗𝑗𝑛𝑛 − Γ0𝑗𝑗𝑛𝑛 𝑓𝑓𝑚𝑚
𝑗𝑗                                               (23)                      

Then we get (by Einstein summation convention on j index and symmetry of matrix 𝑓𝑓𝑛𝑛𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑛𝑛 ):                                 

                                                                        𝜕𝜕𝑓𝑓𝑚𝑚
𝑛𝑛

𝜕𝜕 𝜏𝜏
= Γ0𝑚𝑚

𝑗𝑗 𝑓𝑓𝑗𝑗𝑛𝑛 − Γ0𝑗𝑗𝑛𝑛 𝑓𝑓𝑚𝑚
𝑗𝑗                                                 (24)                               

Where Γ0𝑚𝑚
𝑗𝑗  terms denote the Christoffel symbols. Comparing equations (22) and (24) reveals a new 

relation between Christoffel symbol and Hamiltonian matrix of the considered state: 

                                                        ∑ 𝐻𝐻𝑚𝑚𝑚𝑚𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝐻𝐻𝑚𝑚𝑚𝑚𝑓𝑓𝑙𝑙𝑛𝑛𝑙𝑙 ~Γ0𝑚𝑚𝑙𝑙 𝑓𝑓𝑙𝑙𝑛𝑛                                                                    (25) 

Accordingly we achieve a correspondence:         𝐻𝐻𝑚𝑚𝑚𝑚~ Γ0𝑚𝑚
𝑗𝑗                                                                            (26)  
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For general strict equation instead (26), one needs an additional constant term to Γ0𝑚𝑚
𝑗𝑗   which does not 

depend on metric tensor, namely:       

                                                                           𝐻𝐻𝑚𝑚𝑚𝑚 =  Γ0𝑚𝑚
𝑗𝑗 + 𝐶𝐶𝑚𝑚

𝑗𝑗                                             (27)                                       

Then the equation (22) and (24) remain compatible. In next sections taking 𝐶𝐶𝑚𝑚
𝑗𝑗 = 0, leads Hamiltonian 

operator to be reduced to 𝐻𝐻𝑚𝑚𝑚𝑚 =  Γ0𝑚𝑚
𝑗𝑗  . The term 𝐶𝐶𝑚𝑚

𝑗𝑗 stands for a constant trace mixed tensor which 
independent of indices remains with constant trace i.e.   

                                                                                𝑇𝑇𝑇𝑇�𝐶𝐶𝑚𝑚
𝑗𝑗 � = 𝐾𝐾                                                                     (28)           

4. Derivation of Mean energy  

 Considering the relation of energy expectation value 〈𝐸𝐸〉 of a system with Hamiltonian 𝐻𝐻� and density 
matrix 𝜌𝜌𝑚𝑚𝑚𝑚 : 

                                                                   〈𝐸𝐸〉 = 𝑇𝑇𝑇𝑇�𝜌𝜌𝐻𝐻�� =  ∑ 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜌𝜌𝑚𝑚𝑚𝑚                                                        (29) 

With substitution of 𝐻𝐻𝑚𝑚𝑚𝑚  and 𝜌𝜌𝑚𝑚𝑚𝑚  from (19) and (27) and identity Γ0𝑚𝑚
𝑗𝑗 = 𝑔𝑔𝑗𝑗𝑗𝑗𝑔𝑔𝑘𝑘𝑘𝑘,0  and using Einstein 

summation convention we have: 

                        𝑇𝑇𝑇𝑇�𝜌𝜌𝐻𝐻�� = 𝑔𝑔𝚥̂𝚥
𝑚𝑚�Γ0𝑚𝑚

𝑗𝑗 + 𝐶𝐶𝑚𝑚
𝑗𝑗 � = �𝑔𝑔𝚥̂𝚥

𝑚𝑚𝑔𝑔𝑗𝑗𝑗𝑗𝑔𝑔𝑘𝑘𝑘𝑘,0 + 𝑔𝑔𝚥̂𝚥
𝑚𝑚𝐶𝐶𝑚𝑚

𝑗𝑗 � = �𝑔𝑔𝑚𝑚𝑚𝑚𝑔𝑔𝑘𝑘𝑘𝑘,0 + 𝐶𝐶𝑚𝑚𝑚𝑚�                   (30)                                                                                                                                                                           

Using the formula for trace of Christoffel symbol ( Γ0𝑚𝑚𝑚𝑚 = 𝑔𝑔𝑚𝑚𝑚𝑚𝑔𝑔𝑘𝑘𝑘𝑘,0 = 1
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔) [10] we get a relation 

between energy expectation value as trace of 𝜌𝜌𝐻𝐻� and the trace of Γ0𝑚𝑚
𝑗𝑗  as follows:  

                                                      〈𝐸𝐸〉 = 𝑇𝑇𝑇𝑇�𝜌𝜌𝐻𝐻�� = (Γ0𝑚𝑚𝑚𝑚 + 𝐶𝐶𝑚𝑚𝑚𝑚) = 1
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔 + 𝐾𝐾                                              (31)  

Where 〈𝐸𝐸〉 denotes the energy per particle (constituent)[2] at a specific point 𝑃𝑃 where both 𝜌𝜌𝜇𝜇𝜇𝜇 and 𝑔𝑔𝜇𝜇�
𝜈𝜈 

in equation (19) are defined, 𝑔𝑔 stands for determinant of metric tensor 𝑔𝑔𝑖𝑖𝑖𝑖. The trace of  𝐶𝐶𝑚𝑚
𝑗𝑗  substituted 

by 𝐾𝐾 and appears as a constant. Without loss of generality, we could assume 𝐾𝐾 = 0 then: 

                                                                                  〈𝐸𝐸〉 = 1
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔                                                                                           (32)                                                                                          

𝐾𝐾 as the constant part of particle energy, could be considered the rest mass energy of particle i.e. 𝐾𝐾 =
𝑚𝑚0𝑐𝑐2, however it can be omitted in non-relativistic approximations. As described above, 〈𝐸𝐸〉 stands for 
mean energy per constituent (particle) at an exact interval of parameters (i.e. volume element 𝑑𝑑𝑛𝑛𝝎𝝎 of 
the related manifold). Since at equilibrium state, each particle contains 𝜇𝜇 bit of information, therefore in 
our model 〈𝐸𝐸〉 is equivalent to energy of 𝜇𝜇 bit. We will show the consequences of this result in sec (7). 
Accordingly, the whole expected energy of 𝑁𝑁  particle system at thermal equilibrium, 𝔼𝔼 can be read as: 

                                                                         𝔼𝔼 = 𝑁𝑁〈𝐸𝐸〉 = 𝑁𝑁
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔                                                                       (33)  

The main result of this equation, regarding the energy conservation of system, is a continuous evolution 
and matric change. Metric of considered system and its determinant 𝑔𝑔  should change by a rate 
determined by the total energy content of system. If we denote 𝓰𝓰𝑖𝑖𝑖𝑖   as the corresponding matrices of 
spatial coordinates in 𝒅𝒅𝒅𝒅𝑻𝑻 this metric is also involving in time evolution. In a system with equilibrium state 
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respect to parameters other than space parameters, we expect the change rate of determinant 𝑔𝑔  is 
determined by the time evolution of 𝓰𝓰𝑖𝑖𝑖𝑖  : 

                                                                             𝔼𝔼 ~ 𝜕𝜕
𝜕𝜕𝜕𝜕

log(𝑑𝑑𝑑𝑑𝑑𝑑𝓰𝓰𝑖𝑖𝑖𝑖)                                                                      (34) 

The default positive sign of 𝔼𝔼 yields:             𝜕𝜕
𝜕𝜕𝜕𝜕

log(𝑑𝑑𝑑𝑑𝑑𝑑𝓰𝓰𝑖𝑖𝑖𝑖) > 0                                                                     (35) 

This reveals that in any unbounded system there is a tendency toward the expansion of spatial coordinate. 
We realize this result in section 7.5. Of course, 𝑁𝑁〈𝐸𝐸〉 stands for the mean energy of total system consisting 
of particles or a hierarchy of information bits or the energy density. We will present ℳ in next sections 
as a non-compact manifold specified for a class of ensembles with certain energy and particle number.  

5.  Canonical formalism Of BDM model        
Taking into account that metric compatibility condition includes all coordinate variables we generalize the 
previous section discussion by extending the Liouville equation for other physical coordinates. First, we 
rewrite the general metric compatibility condition: 
                                                                             ∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = ∇𝑘𝑘𝑔𝑔𝑖𝑖𝑖𝑖 = 0 
 In this section we show that the term introduced as 𝜑𝜑 = −1

2
log𝑔𝑔 appeared in energy equation of BDM 

model:  

                                                                            𝐸𝐸 = 1
2 
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔   
Is equivalent to Hamilton principal function in classical mechanics. The equation for energy has been 
derived from quantum Liouville equation: 

                                                                         𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝑖𝑖
ℏ

[𝐻𝐻,𝜌𝜌]                                                                      (36) 
Replacing time and Hamiltonian by spatial coordinates and linear momentum respectively gives: 

                                                                         𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑖𝑖
ℏ

[𝑝𝑝𝑥𝑥,𝜌𝜌]                                                                        (37)                               
Evidently this relation also holds for any other degree of freedoms. Like equation (36) using Wick rotation 
𝑡𝑡 → 𝑖𝑖𝑖𝑖 and assuming the new parameter (e.g. 𝑥𝑥 ) instead of “time”, and 𝑝𝑝𝑥𝑥  instead of 𝐸𝐸 , it is straight 
forward to conclude the relations for momentums: 
                                                                              𝑝𝑝𝑥𝑥 = 1

2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔                                                                              (38)     

Comparing these equations with Hamilton-Jacobi formalism reveals the role of  −1
2

log𝑔𝑔 as the Hamilton 
principal function 𝐹𝐹 . This function acts as Euclidean action 𝐴𝐴𝐸𝐸  with similar equations for Hamiltonian 
𝐻𝐻 and momentum 𝑝𝑝𝑖𝑖  : 
                                                    𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝐴𝐴𝐸𝐸

𝜕𝜕𝜕𝜕
= −𝐻𝐻               ,          𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞𝑖𝑖
= 𝜕𝜕𝐴𝐴𝐸𝐸

𝜕𝜕𝑞𝑞𝑖𝑖
= 𝑝𝑝𝑖𝑖                                                    (39) 

This shows that                                       𝐴𝐴𝐸𝐸 = 𝐹𝐹 = −𝜑𝜑 = −1
2

log𝑔𝑔                                                                     (40) 
This satisfies the basic relation in BDM model i.e.:  
                                                                   〈𝐸𝐸〉 = 𝜕𝜕

𝜕𝜕𝜕𝜕
�1
2

log𝑔𝑔� = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                             (41) 

And consequently:                                   𝑝𝑝𝑥𝑥 = −1
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                            (42) 
Regarding (38), (39),(41) and (42) a simple solution to 𝑔𝑔 will be read as:  
                                                                           �𝑔𝑔 = 𝑒𝑒(𝐸𝐸𝐸𝐸−𝒑𝒑.𝒓𝒓)                                                                                  (43) 
Where 𝒑𝒑  and  𝒓𝒓  denoted as the momentum and position vectors. Therefor with the definition  𝐴𝐴𝐸𝐸 =
−(𝐸𝐸𝐸𝐸 − 𝒑𝒑. 𝒓𝒓) , �𝑔𝑔 takes the form:  
                                                                               �𝑔𝑔 = 𝑒𝑒− 𝐴𝐴𝐸𝐸                                                                                        (44) 
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Therefor the Euclidean action in BDM theory could be derived from its metric determinant.  
 
 6. Ricci flow as a consequence of BDM model 
If 𝐷𝐷𝜈𝜈 denotes the binary data matrix for physical parameter 𝑥𝑥 𝜈𝜈, then a DFT (Discrete Fourier transform) 
transformation of basis vectors  𝑒𝑒𝑖𝑖∗𝜈𝜈  maps them to a set of new complex bases  𝑒̃𝑒𝑖𝑖∗𝜈𝜈 with complex 
components. Discrete Fourier Transform of a binary sequence;  𝑒𝑒𝑖𝑖∗𝜈𝜈 = �𝑗𝑗1𝜈𝜈, 𝑗𝑗2𝜈𝜈 , … 𝑗𝑗𝑚𝑚𝜈𝜈

𝜈𝜈 |  with 𝑗𝑗𝑛𝑛𝜈𝜈 ∈ {𝟎𝟎,𝟏𝟏} is 
defined as:  
                                                                          𝑍𝑍𝑘𝑘𝜈𝜈(𝑖𝑖) = ∑ 𝑗𝑗𝑛𝑛𝜈𝜈(𝑖𝑖)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑛𝑛  
So, the binary basis transform to the complex basis:  
                                                                                       𝑗𝑗𝑛𝑛𝜈𝜈 → 𝑍𝑍𝑘𝑘𝜈𝜈 
According to Parseval theorem DFT is an isometric map from the real manifold to a complex manifold with 
Riemannian metrics and consequently a Kahler complex manifold. This reveals that the manifold (ℳ,𝑔𝑔) 
is the real version of a general complex manifold and obeys the general properties of a Kahler manifold. 
As we saw in previous sections, the Hamilton’s principal function takes the form:  
                                                                                        𝐹𝐹 = −1

2
log𝑔𝑔                                                                     (45) 

Consequently, we could derive the exact equations for momentum: 
                                                                                𝑝𝑝𝑖𝑖 = −1

2
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

log𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

                                                            (46) 
In the non-relativistic approach, we can choose 𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑣𝑣𝑖𝑖, then (54) reads becomes: 
                                                                             𝑚𝑚𝑣𝑣𝑖𝑖 = −1

2
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

log𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

                                                           (47) 
Ricci tensor on a Kahler manifold reads as [ ]: 

                                                                                       𝑅𝑅𝑖𝑖𝚥̅𝚥 = 𝜕𝜕2 log𝑔𝑔
𝜕𝜕𝑧𝑧𝑖𝑖𝜕𝜕𝑧̅𝑧𝑗𝑗

    

This equation describes Ricci tensor on a Kahler manifold where we define the main manifold of BDM 
theory. Substitution of 𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
 and its conjugate by � 𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
− 𝑖𝑖 𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
� and � 𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
+ 𝑖𝑖 𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
�  and taking into account the 

independency of 𝑔𝑔𝜇𝜇𝜇𝜇 and 𝑔𝑔 of imaginary coordinate 𝑦𝑦𝑖𝑖  summarizes equation of 𝑅𝑅𝑖𝑖𝚥̅𝚥 to:   

                                                                                          𝑅𝑅𝑖𝑖𝑖𝑖 = 𝜕𝜕2 log𝑔𝑔
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

                                                                     (48)                                           

By equation (46) we obtain an interpretation for 𝑅𝑅𝑖𝑖𝑖𝑖  in BDM model: 

                                                                                          𝑅𝑅𝑖𝑖𝑖𝑖 ≅
𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜕𝜕𝑝𝑝𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

    
Recalling the symmetry property of 𝑅𝑅𝑖𝑖𝑖𝑖as a symmetric bilinear from and 𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑣𝑣𝑖𝑖  results in: 

                                                                                          𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

 
This equation means that the flow is irrotational and curl vanishes. Moreover the rate of change of particle 

density is proportional to 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 (or 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

 ): 

                                                                                          
𝜕𝜕𝑛𝑛𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

~ 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

 
This rate in BDM can be represented by 𝑔̇𝑔𝑖𝑖𝑖𝑖, therefor we have: 

                                                                                    
𝜕𝜕𝑔𝑔𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑛𝑛𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

~ 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

       

Finally, we get the equality:                                                
𝜕𝜕𝑔𝑔𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

≅ 𝑅𝑅𝑖𝑖𝑖𝑖       
This means that Ricci flow family is compatible and a resultant flow of BDM theory. 
                                   

7. Evolution of manifold ℳ under Ricci flow Dynamic 
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The very first notion of Ricci flow[22, 23] which Introduced by Hamilton (1984) as an evolution equation 
of metric tensor: 

                                                                              𝑔𝑔𝑖𝑖𝑖𝑖,0 = − 2𝑅𝑅𝑖𝑖𝑖𝑖                                                                              (49) 

Hamilton showed the unique solution of Ricci flow equation on a closed manifold for sufficiently short 
time. It is noteworthy that Ricci flow is an evolution equation comparable to Heat diffusion and is not a 
tensor equation because the derivative of metric tensor is not generally a tensor. The equation (49) shows 
similarities with evolution model in ADM and Numerical relativity [9]. In section (6) we have proved the 
Ricci flow as a direct consequence of binary matrix model. We show that this flow and its solution is in 
agreement with our notion of Ricci tensor and mean energy based on binary data matrix. These equations 
reveal straight- forward similarity between Einstein gravity emerging from curvature of space-time and 
curvature in data space, perhaps includes leading reasons for emerging gravity as an entropic force. Taking 
into account expression for Γ0𝑚𝑚

𝑗𝑗 :   

                                                                  Γ0𝑚𝑚
𝑗𝑗 = 1

2
𝑔𝑔𝑗𝑗𝑗𝑗�𝑔𝑔𝑘𝑘0,𝑚𝑚 + 𝑔𝑔𝑘𝑘𝑘𝑘,0 − 𝑔𝑔0𝑚𝑚,𝑘𝑘�                             (50)                                    

And orthogonality of time base vector (Killing vector) relative to the other bases, by 𝑔𝑔𝑚𝑚0 = 𝑔𝑔𝑘𝑘0 = 0  for  

𝑘𝑘,𝑚𝑚 ≠ 0 results in:                              𝐻𝐻𝑚𝑚𝑚𝑚 = Γ0𝑚𝑚
𝑗𝑗 + 𝐶𝐶𝑚𝑚

𝑗𝑗 = 1
2
𝑔𝑔𝑗𝑗𝑗𝑗𝑔𝑔𝑘𝑘𝑘𝑘,0 + 𝐶𝐶𝑚𝑚

𝑗𝑗                                                   (51)                                                                                                                   
Assuming a Ricci flow like dynamic proved in section 15: 

                                                                              𝑅𝑅𝑘𝑘𝑘𝑘 = 𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘,0    

With 𝛼𝛼 as an arbitrary constant, for the sake of simplicity, we take it as 𝛼𝛼 = 1. By 𝑔𝑔𝑘𝑘0 = 0  and equation 
(46) we obtain: 

                                                                                Γ0𝑚𝑚
𝑗𝑗 = 𝑔𝑔𝑗𝑗𝑗𝑗𝑅𝑅𝑘𝑘𝑘𝑘                                                                         (52) 

 Then  equations (31), (32) are converted to:                                                                                                             
                                                                       〈𝐸𝐸〉 = Γ0𝑗𝑗

𝑗𝑗 = 𝑔𝑔𝑗𝑗𝑗𝑗𝑅𝑅𝑘𝑘𝑘𝑘 = 𝑅𝑅 = 1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                      (53)                                                                     

Thus gives rise to:                                                    〈𝐸𝐸〉 = 𝑅𝑅                                                                            (54)                         
Here we use the expression for trace of  Γ0𝑚𝑚

𝑗𝑗  , and definition for Ricci scalar curvature. As before 𝜑𝜑 stands 
for the logarithm of determinant of metric tensor; 𝜑𝜑 = log𝑔𝑔 .  

Corollary If metric tensor 𝑔𝑔𝑖𝑖𝑖𝑖  for a system is defined by equation (11) then the related partition function 

could be derived by equation:                             𝑍𝑍 = 𝑔𝑔−
1
2                                                                                      (55) 

Proof: The relation for mean energy of a mixed system with density partition function ℤ  in thermal 
equilibrium at temperature 𝑇𝑇, given by [24]: 

                                                                    〈𝐸𝐸〉 = 𝑈𝑈 = 𝑘𝑘𝐵𝐵𝑇𝑇2
𝜕𝜕
𝜕𝜕𝜕𝜕

lo gℤ                                                                    (56)                                                  
Where 𝑘𝑘𝐵𝐵 stands for Boltzmann constant. By replacing 𝑇𝑇 by (𝑘𝑘𝐵𝐵𝜏𝜏)−1 as in thermal field theory [25] this 
equation transforms to: 
                                                                     〈𝐸𝐸〉 = 𝑘𝑘𝐵𝐵𝑇𝑇2( −1

𝑘𝑘𝐵𝐵𝑇𝑇2
𝜕𝜕
𝜕𝜕𝜕𝜕

)logℤ = − 𝜕𝜕
𝜕𝜕𝜕𝜕

logℤ        

Comparing this equation with (64) results in: 
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                                                                          − 𝜕𝜕
𝜕𝜕𝜕𝜕

logℤ = 1
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔 

Then we have:                                                            𝑍𝑍 = 𝐶𝐶𝐶𝐶−
1
2                                                                               (57) 

Where 𝐶𝐶 is a constant respect to time. 

8. Least action principle and Einstein Field Equation 

In section (5) we showed the manifold ℳ with a local curvature 𝑅𝑅 representing the mean energy per 
particle at any point on this manifold. The particle density 𝜌𝜌𝑛𝑛 (the number of particles per unit parameter 
volume at each point) evidently is not a strict function of metric 𝑔𝑔𝜇𝜇𝜇𝜇  and consequently its variation respect 
to 𝑔𝑔𝜇𝜇𝜇𝜇 vanishes. Then energy density on manifold will be denoted by 𝜌𝜌𝑛𝑛〈𝐸𝐸〉. By this energy density the 
variation of Euclidean action integral in our model could be read as:                                                               

                                       𝛿𝛿𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵 = δ∫ 𝜌𝜌𝑛𝑛〈𝐸𝐸〉M �𝑔𝑔𝑑𝑑𝑛𝑛𝝎𝝎 𝑑𝑑𝑑𝑑 = δ∫ 𝜌𝜌𝑛𝑛
1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕M �𝑔𝑔𝑑𝑑𝑛𝑛𝝎𝝎𝑑𝑑𝑑𝑑 = 0                                   (58)                                                         

It is straight forward to impose the relation 𝛿𝛿𝛿𝛿 = 0 which guarantees the role of 𝜌𝜌𝑛𝑛〈𝐸𝐸〉 as a Hamiltonian. 
Subsequently the action 𝑆𝑆 will remain invariant under coordinate transformation. This means that the 
covariant divergence of 𝐻𝐻𝜇𝜇𝜇𝜇 = � 𝛿𝛿𝛿𝛿

𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇
� should be vanished: 

                                                                   𝐻𝐻𝜇𝜇𝜇𝜇;𝜐𝜐 = ∇𝜐𝜐 �
𝛿𝛿𝛿𝛿

𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇
� = 0                                                                            (59)                                                                             

 This can be easily verified by taking the covariant derivative of 𝛿𝛿𝛿𝛿
𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇

 as follows. Replacing  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 by the term 

( 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔) and some variation calculus, equation (58) gives rise to:                                                                                                                                                                         

                𝛿𝛿𝑆𝑆𝐵𝐵𝐷𝐷𝑀𝑀 = δ∫ 𝜌𝜌𝑛𝑛
1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕M �𝑔𝑔𝑑𝑑𝑛𝑛𝝎𝝎𝑑𝑑𝑑𝑑 = 1

2
𝜌𝜌𝑛𝑛 ∫ (𝑔𝑔𝜇𝜇𝜇𝜇,0M − 1

2
𝑔𝑔𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗𝑗𝑗,0𝑔𝑔𝜇𝜇𝜇𝜇)𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇�𝑔𝑔𝑑𝑑𝑛𝑛𝝎𝝎𝑑𝑑𝑑𝑑 = 0     (60)            

Let  𝐻𝐻𝜇𝜇𝜇𝜇 = (𝑔𝑔𝜇𝜇𝜇𝜇,0 −
1
2
𝑔𝑔𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗𝑗𝑗,0𝑔𝑔𝜇𝜇𝜇𝜇). Note that the density in the parameter space; 𝜌𝜌𝑛𝑛  due to Liouville 

theorem is independent of 𝑔𝑔𝜇𝜇𝜇𝜇 and time and acts as a constant under variation. Recall the variation of 
Einstein-Hilbert action in 𝑛𝑛 + 1 dimension namely:             

                          𝛿𝛿𝑆𝑆𝐸𝐸−𝐻𝐻 = δ∫ 𝑅𝑅M �𝑔𝑔𝑑𝑑𝑛𝑛𝒙𝒙 𝑑𝑑𝑑𝑑 = ∫ (𝑅𝑅𝜇𝜇𝜇𝜇M − 1
2
𝑅𝑅𝑔𝑔𝜇𝜇𝜇𝜇)𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇�𝑔𝑔𝑑𝑑𝑛𝑛𝒙𝒙𝑑𝑑𝑑𝑑 = 0                              (61)                                    

Where  𝐺𝐺𝜇𝜇𝜇𝜇 = 𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑅𝑅𝑔𝑔𝜇𝜇𝜇𝜇   is Einstein tensor. We have proved in the Ricci flow like dynamics as a 

straightforward consequence of BDM model section (6):  

                                                                              𝑔𝑔𝜇𝜇𝜇𝜇,0 = 𝛼𝛼𝑅𝑅𝜇𝜇𝜇𝜇                                                                              

Substitution of 𝑔𝑔𝜇𝜇𝜇𝜇,0 by 𝛼𝛼𝑅𝑅𝜇𝜇𝜇𝜇 (with 𝛼𝛼 as a constant) in BDM action (68), results in the equation: 

                                                     1
2
𝜌𝜌𝑛𝑛𝛼𝛼 ∫ (M 𝑅𝑅𝜇𝜇𝜇𝜇 −

1
2
𝑅𝑅𝑅𝑅𝜇𝜇𝜇𝜇)𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇�𝑔𝑔𝑑𝑑𝑛𝑛𝝎𝝎𝑑𝑑𝑑𝑑 = 0                                                         (62) 

Deleting the constants 𝜌𝜌𝑛𝑛 and 𝛼𝛼 gives:                 

                                                              ∫ (M 𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑅𝑅𝑅𝑅𝜇𝜇𝜇𝜇)𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇�𝑔𝑔𝑑𝑑𝑛𝑛𝝎𝝎𝑑𝑑𝑑𝑑 = 0                                                 (63)  
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Comparing 𝐻𝐻𝜇𝜇𝜇𝜇  and 𝐺𝐺𝜇𝜇𝜇𝜇  reveals that 𝐺𝐺𝜇𝜇𝜇𝜇 =   𝐻𝐻𝜇𝜇𝜇𝜇  with the same solutions of equation 𝛿𝛿𝑆𝑆𝐸𝐸−𝐻𝐻 = 0 
for 𝛿𝛿𝛿𝛿 = 0 Thus, under the condition of Ricci flow like dynamics, two integrand remain proportional i.e. 
𝐻𝐻𝜇𝜇𝜇𝜇 = 𝐺𝐺𝜇𝜇𝜇𝜇  and solution of two action integral will be identical. This reveals that imposing Ricci flow as a 
natural consequence of BDM on evolution of manifold gives the structure of space-time in General 
relativity and Einstein field equations.  

9. Other Results: 

In this section we bring some examples for compatibility of the results of previous sections with some 
well-known results of astronomy, information theory, thermodynamics etc.  

9.1 Relation to average energy in canonical ensemble statistics 

In this section we prove an interesting relation between energy averages 〈𝐸𝐸〉 and partition function in the 
path integral notion of quantum field statistics. First we note the relation of imaginary time periods 𝜏𝜏 =
−𝑖𝑖𝑖𝑖 in thermal field theories which coincides the Wick rotation we used in section.3 and 𝛽𝛽 = 1

𝑘𝑘𝐵𝐵𝑇𝑇
  (with 

𝑘𝑘𝐵𝐵 as Boltzmann constant) in statistical mechanics:  

                                                                                  𝜏𝜏 = 𝛽𝛽 = 1
𝑘𝑘𝐵𝐵𝑇𝑇

                                                           (64)                             

Now recall the well-known derivation of average energy from canonical partition function [24]. 

                                                                          〈𝐸𝐸〉 = 𝑈𝑈 = −𝜕𝜕 logℤ
𝜕𝜕𝜕𝜕

                                                                        (65)         

According to equations (31) and (32) and assuming 𝕌𝕌0 = 0:       

                                                                          〈𝐸𝐸〉 =  1
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔 = 1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                   (66)                 
Considering the relation between partition function ℤ and determinant of a non-negative self-adjoint 
(symmetric) operator  𝐴𝐴 in the context of field theory [25] gives: 

                                                           ℤ = ∫ 𝑒𝑒−<𝜑𝜑,𝐴𝐴𝐴𝐴>𝐷𝐷𝐷𝐷 = (det 𝐴𝐴)−
1
2

M                                                               (67) 

Or in a brief notation [26]:                             ℤ = ∫ 𝑒𝑒−𝛽𝛽<𝐸𝐸>𝐷𝐷𝐷𝐷M            

Here 〈𝐸𝐸〉 should be introduced as Dirichlet energy [26]. We see if one assumes 𝑔𝑔𝑖𝑖𝑖𝑖  as an operator 𝐴𝐴 in 

above equations, then equations (66), (67) and corollary (i.e. 𝑍𝑍 = 𝑔𝑔−
1
2 ) yields the identity: 

                                     〈𝐸𝐸〉 = 𝜕𝜕
𝜕𝜕𝜕𝜕

log�𝑔𝑔 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

log ℤ = − 𝜕𝜕
𝜕𝜕𝜕𝜕

log∫ 𝑒𝑒−𝜏𝜏<𝐸𝐸>𝐷𝐷𝐷𝐷M = 〈𝐸𝐸〉                                (68) 

This reveals the compatibility of expected energy formula (66) of the model with field theory formalism.  

9.2 Stress-Energy tensor 

Energy momentum tensor of model can be derived by variation of action 𝑆𝑆 respect to 𝑔𝑔𝜇𝜇𝜇𝜇 :                                                                                               

                                                            𝑇𝑇�𝜇𝜇𝜇𝜇 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇

= 𝐻𝐻𝜇𝜇𝜇𝜇  ~ 1
2

(𝑔𝑔𝜇𝜇𝜇𝜇,0 −
1
2
𝑔𝑔𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗𝑗𝑗,0𝑔𝑔𝜇𝜇𝜇𝜇)                                       (69)                          

Recall the Einstein field equation:            𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅 = 𝜅𝜅𝑇𝑇𝜇𝜇𝜇𝜇                                                                      (70)      
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With assumption of Ricci flow as the governing dynamics and replacing 𝑔𝑔𝑘𝑘𝑘𝑘,0 = −2𝑅𝑅𝑘𝑘𝑘𝑘in (69), we obtain 
the energy momentum tensor of model:     𝑇𝑇�𝜇𝜇𝜇𝜇 = 𝐻𝐻𝜇𝜇𝜇𝜇~𝑅𝑅𝜇𝜇𝜇𝜇 −

1
2
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅 = 𝜅𝜅𝑇𝑇𝜇𝜇𝜇𝜇                                            (71)  

This is also consistent with the result of previous section and implies a linear relation between 〈𝐸𝐸〉 and 
temperature.  

9.3 Energy equipartition and Landauer’s principle 

As we showed in previous sections, the state of system could be characterized by a data matrix containing 
a set of information bits. Any column of this matrix (i.e. 𝝃𝝃𝒎𝒎×𝟏𝟏

𝜶𝜶 ) contains the set of information of one 
particle in which the values of parameters given by 𝜇𝜇 bit of information, each bit for a positive interval in 
each degree of freedom (𝜇𝜇 denotes the degree of freedom). If 𝜖𝜖  ̅stands for the mean energy of a bit of 
information, then the mean energy per particle 〈𝐸𝐸〉 is given by: 

                                                                                       〈 𝐸𝐸〉 = 𝜇𝜇𝜖𝜖  ̅                                                                           (72) 

Regarding the Landauer's principle which states that for erasing a bit of information the minimum 
required energy is:                                                 𝜖𝜖̅ = 𝑘𝑘𝐵𝐵𝑇𝑇 log 2                                                                          (73) 

 Substitution of 𝜖𝜖  ̅in equation (72) gives: 

                                                                          〈 𝐸𝐸〉 = 𝜇𝜇𝜖𝜖̅ = 𝜇𝜇 𝑘𝑘𝐵𝐵𝑇𝑇 log 2                                                               (74)                                                      

This is in analogy with the equipartition theorem of energy which states that the mean energy of each 
particle is proportional to the degree of freedom, Boltzmann constant and temperature, and shows the 
compatibility of the model with these two basic principles.  

9.4 Universe Inflation and extrinsic curvature 
If except for spatial dimensions all other parameters confine in a relatively equilibrium range, the large 
part of 𝑔𝑔𝑖𝑖𝑖𝑖  will be constant with a fairly good approximation while the 3D-space metric 𝓰𝓰𝑖𝑖𝑖𝑖  increases as 
was proved in (35). In this situation which could be realized by our universe, the change rate of the whole 
metric 𝑔𝑔𝑖𝑖𝑖𝑖  equals the change rate of spatial part of the metric. Therefor we can substitute the 3-
dimensional spatial metric 𝓰𝓰𝑖𝑖𝑖𝑖  with 𝑗𝑗 = 1,2,3  into FRW equation which  reveals a relation between spatial 
metric tensor and scale factor  𝑎𝑎(𝑡𝑡)[27]: 
                                                                                 𝓰𝓰𝑖𝑖𝑖𝑖 =  𝑎𝑎2(𝑡𝑡)𝛿𝛿𝑖𝑖𝑖𝑖                                                                         (75) 
In 𝑛𝑛 dimensional manifold the determinant of above metric reads as: 
                                                                       𝓰𝓰 = 𝑎𝑎2𝑛𝑛(𝑡𝑡)          
Accordingly we have:                             𝔼𝔼 ~ 1

2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝓰𝓰 = 𝑛𝑛 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑎𝑎(𝑡𝑡) = 𝑛𝑛 𝑎̇𝑎
𝑎𝑎

                                                  (76) 
With 𝑎̇𝑎 as time derivative of scale factor 𝑎𝑎 and 𝔼𝔼 as total energy content of universe. Hubble parameter 
has been defined as: 
                                                                                         𝐻𝐻 = 𝑎̇𝑎

𝑎𝑎
 

Substitution in (76) gives:                          
                                                                                   𝔼𝔼 ~𝑅𝑅 = 𝑛𝑛𝑛𝑛                                                                            (77) 
Usually Hubble parameter 𝐻𝐻 considered to be equal to ℛ−1 with ℛ as the observable Universe radius. 
Respect to the equations (87) we achieve the equation: 
                                                                                     𝔼𝔼 = 𝑛𝑛 ℛ−1                                                                             (78) 
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On the other hand, in ADM notion of general relativity, 3+1 dimensional splitting of space-time reveals a 
relation between 𝐾𝐾  (the trace of extrinsic curvature 𝐾𝐾𝑖𝑖𝑖𝑖 ) and determinant of metric tensor i.e. 𝑔𝑔 [9]:                                                                        

                                                                                1
 2

𝜕𝜕
𝜕𝜕𝜕𝜕

log𝓰𝓰 = −𝛼𝛼𝛼𝛼 + 𝐷𝐷𝑖𝑖𝛽𝛽𝑖𝑖                                                         (79) 
Where 𝛽𝛽𝑖𝑖 stands for shift vector and assumed to be vanished. Therefore, by equation (86) we have: 
                                                                                      𝔼𝔼 = 𝑅𝑅 = −𝛼𝛼𝛼𝛼 
This relation supports the curvature concept of 〈𝐸𝐸〉 as predicted in our model. In 3+1 decomposition of 
general relativity, one of the important concepts related to 3 spatial submanifold is external curvature 𝐾𝐾𝑖𝑖𝑖𝑖  
with a well-known equation as follows[9]: 
                                                                                     𝜕𝜕0𝓰𝓰𝑖𝑖𝑖𝑖 = −2𝑁𝑁𝐾𝐾𝑖𝑖𝑖𝑖                                                                 (80) 
Where 𝑁𝑁  is considered as a constant respect to time. On the other hand, as mentioned in previous 
sections by applying the Ricci flow, dynamic for metric tensor reads as:                                                               
                                                                                       𝓰𝓰𝑖𝑖𝑖𝑖,0 = − 2𝑅𝑅𝑖𝑖𝑖𝑖                                                                    (81) 
This reveals that the Ricci flow can be traced out as the main dynamic in time evolution of spatial 
hypersurfaces in ADM formalism and Numerical relativity and supports the main idea of our model in 
applying this flow as a universal dynamics. 
The interesting result of equation:                            〈𝐸𝐸〉 =  1

2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔 
Indicates that not only the spatial coordinates, but also all other physical parameters undergo expansion 
of their base vectors. Linear and angular momentum subsequently obey the conventional patterns of 
Universe inflation. We call this fact as the generalized inflation principle and in section 9.19 show that the 
velocity curve problem of far stars in galaxies and dark matter could be resolved by the results of this 
principle. As the Hubble law holds true just for large astronomical distance at 2 − 4 Mpc, the generalized 
inflation principle applies the distances beyond these intervals.     
       
9.5 Equivalence of action and entropy of Black holes 
Black holes reveal an exact entropy and actions. The entropy of black holes has been widely investigated 
by Hawking and Beckenstein [30,31]. This entropy has been proved to be proportional to the black holes’ 
surfaces without a statistical inference. Recent approach to Euclidean action of black holes [32] while 
smearing the delta function distribution to a Gaussian distribution in the limit  𝜎𝜎 → 0  has shown an 
equivalence between Euclidean action and entropy of black holes.  
In this section we try to show in the context of BDM model the relation between Fisher information metric 
and entropy and action of black holes and equivalence of gravitational action and entropy of black holes. 
In this approach we apply the basic results of BDM theory and to prove the equivalence of entropy and 
action of black holes. Fisher information metric matrix definition results in the equivalence of inverse of 
covariance matrix (𝐶𝐶𝑖𝑖𝑖𝑖) and fisher metric tensor [34]:  
                                                                                ℊ𝑖𝑖𝑖𝑖 = (𝐶𝐶𝑖𝑖𝑖𝑖)−1 = 𝐶𝐶𝑖𝑖𝑖𝑖                                                                  (82)   
Where  ℊ𝑖𝑖𝑖𝑖  stands for Fisher information metric. For jointly normal random variables 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, . . 𝒙𝒙𝒏𝒏  the 
entropy calculated as [34]: 
                                                                                  ℋ = 1

2
log∆ + 𝑘𝑘                                                                      (83) 

With constant  𝑘𝑘 = log 2𝜋𝜋𝜋𝜋  and  ∆= det𝐶𝐶𝑖𝑖𝑖𝑖 . By (82) we have  ℋ = 1
2

logℊ−1 + 𝑘𝑘 . Where ℊ  stands for 
determinant of Fisher information metric. We show in the case of black holes at the limit  𝜎𝜎 → 0  we can 
exchange the fisher metric with metric of BDM model (appendix A). Therefor substitution ∆= det𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑔𝑔  
into equation (83) gives the entropy ℋ in terms of BDM matric tensor and its determinant 𝑔𝑔. The Fisher 
metric ℊ𝑖𝑖𝑖𝑖  replaces the metric 𝑔𝑔𝑖𝑖𝑖𝑖  in Equations (82) and (83) to result in: 

                                                                        𝜕𝜕
𝜕𝜕𝜕𝜕
ℋ = −1

2
𝜕𝜕
𝜕𝜕𝜕𝜕

logℊ = −〈𝐸𝐸〉                                                           (84) 
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The relation of statistical entropy ℋ = 1
2

logℊ−1  and the equation (40) reveals that  ℋ  could be 
interpreted as Euclidean action 𝐴𝐴𝐸𝐸 or Hamilton principal function 𝐹𝐹. This connects two different concepts 
of statistics and Hamiltonian mechanics. 
                                                                                          ℋ = 𝐴𝐴𝐸𝐸                                                                              (85) 
This coincides the result of recent works that state the entropy of black hole is equal to Euclidean action 
i.e. 𝑆𝑆𝑏𝑏ℎ = 𝐴𝐴𝐸𝐸  [31,32]. Thus, we have:                                                 
                                                                              𝜕𝜕𝑆𝑆𝑏𝑏ℎ

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐴𝐴𝐸𝐸 = −〈𝐸𝐸〉                                                                  (86)                                               

9.6 Maxent and Least Action Principle 
The equivalence between action integral and entropy conveys the relation between least action principle 
and maximum entropy (Maxent) principle. If we accept the opposite signs of entropy and action integral: 
                                                                                           𝑆𝑆 = −𝐼𝐼                                                                            (87) 
 Where 𝑆𝑆 stands for entropy and 𝐼𝐼 for action integral. Then the maximum of action results in the minimum 
(extremum) of action integral:                                    𝛿𝛿𝛿𝛿 = −𝛿𝛿𝛿𝛿 = 0                                                                        (88) 
9.7 Lagrangian  
Following the results of identity (40); 𝐹𝐹 = −1

2
log𝑔𝑔 we can derive the Lagrangian as: 

                                                                                𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐿𝐿 = 𝑇𝑇 − 𝑈𝑈                                                                       (92) 
For a free particle i.e. 𝑈𝑈 = 0 the expansion of (16) reads as: 
                                                                  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐸𝐸 + 𝑝𝑝𝑥𝑥𝑣𝑣𝑥𝑥 = 𝑇𝑇                                                    (93)              
For free particle 𝐸𝐸 = 𝑇𝑇, then we have: 
                                                                                𝐸𝐸 = 𝑇𝑇 = 1

2
𝑚𝑚𝑣𝑣𝑥𝑥2                                                                          (94) 

Matrix version for Lagrangian could be derived by replacing 𝐹𝐹 by −1
2

log𝑔𝑔: 

                                                                𝐿𝐿 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −1
2
𝑑𝑑
𝑑𝑑𝑑𝑑

log𝑔𝑔 = − 1
2𝑔𝑔

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                              (95) 

Using Jacobi formula for derivative of determinant we get: 
                                                          𝐿𝐿 = − 1

2𝑔𝑔
𝑇𝑇𝑇𝑇 �𝐶𝐶𝑖𝑖𝑖𝑖

𝑑𝑑𝑔𝑔𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑
� = −1

2
𝑇𝑇𝑇𝑇 �1

𝑔𝑔
𝐶𝐶𝑖𝑖𝑖𝑖

𝑑𝑑𝑔𝑔𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑
� 

Taking into account (𝑔𝑔𝑖𝑖𝑖𝑖)−1 = 1
𝑔𝑔
𝐶𝐶𝑖𝑖𝑖𝑖  we have: 

                                                          𝐿𝐿 = −1
2
𝑇𝑇𝑇𝑇 �(𝑔𝑔𝑖𝑖𝑖𝑖)−1 𝑑𝑑𝑔𝑔𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑
� = −1

2
𝑇𝑇𝑇𝑇�𝐺𝐺−1𝐺̇𝐺�                                               (96) 

Where 𝐺𝐺 = 𝐷𝐷𝐷𝐷𝑇𝑇. This is the matrix form for Lagrangian in BDM. 
9.8 Derivation of Schrodinger wave function 
If 𝐷𝐷𝜈𝜈 denotes the binary data matrix for physical parameter 𝑥𝑥 𝜈𝜈, then a DFT (Discrete Fourier transform) 
transformation of basis vectors  𝑒𝑒𝑖𝑖∗𝜈𝜈  maps them to a set of new complex bases  𝑒̃𝑒𝑖𝑖∗𝜈𝜈 with complex 
components. Discrete Fourier Transform of a binary sequence;  𝑒𝑒𝑖𝑖∗𝜈𝜈 = �𝑗𝑗1𝜈𝜈, 𝑗𝑗2𝜈𝜈 , … 𝑗𝑗𝑚𝑚𝜈𝜈

𝜈𝜈 |  with 𝑗𝑗𝑛𝑛𝜈𝜈 ∈ {𝟎𝟎,𝟏𝟏} is 
defined as:  
                                                                          𝑍𝑍𝑘𝑘𝜈𝜈(𝑖𝑖) = ∑ 𝑗𝑗𝑛𝑛𝜈𝜈(𝑖𝑖)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑛𝑛                                                                   (97) 
So, the binary basis transform to the complex basis:  
                                                                                       𝑗𝑗𝑛𝑛𝜈𝜈 → 𝑍𝑍𝑘𝑘𝜈𝜈 
According to Parseval theorem DFT is an isometric map from the real manifold to a complex manifold with 
Riemannian metrics and consequently a Kahler complex manifold. It could also be  proved that these 
complex bases  𝑒̃𝑒𝑖𝑖∗𝜈𝜈 are orthogonal for a specific parameter  𝑥𝑥 𝜈𝜈 and their inner products with complex 
bases  𝑒̃𝑒𝑖𝑖

∗𝜇𝜇 of another parameter 𝑥𝑥 𝜇𝜇 returns the metric tensor 𝑔𝑔𝜇𝜇𝜇𝜇. So, with DFT of real bases the metric 
tensor will be preserved. If 𝒄𝒄 denotes a matrix with the set of row matrices[ 𝑒̃𝑒𝑖𝑖∗𝜈𝜈] while index "𝑖𝑖 stands for 
the number of interval for a specific value of parameter 𝑥𝑥𝜈𝜈 assumed to be constant and 𝜈𝜈 denotes the 
number of parameter as well as the row number of 𝒄𝒄 ,then we have: 
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                                                                               𝒄𝒄𝒄𝒄† = 𝑮𝑮 = �𝑔𝑔𝜇𝜇𝜇𝜇�                                                                       (98) 
If the determinant of 𝒄𝒄 be defined by Cauchy-Binet formula, then taking the determinant of both sides of 
(98) gives: 
                                                                       (det 𝒄𝒄)(det 𝒄𝒄)∗ = det𝑮𝑮 = 𝑔𝑔      
Obviously det 𝒄𝒄  is complex valued. We replace it by 𝜓𝜓. Therefor 𝜓𝜓 takes the form: 
                                                                                       𝜓𝜓 = �𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖                                                                          (99)  
 Imposing the reverse Wick rotation on real time axis, results in the transformation 𝐸𝐸𝐸𝐸 → 𝑖𝑖𝑖𝑖𝑖𝑖, therefor 
the equations (42) and (43) change to: 
                                                                                    �𝑔𝑔� = 𝑒𝑒𝑖𝑖(𝐸𝐸𝐸𝐸−𝒑𝒑.𝒓𝒓)     
Complexification of the manifold and reverse Wick rotation transforms real 𝑔𝑔 to complex 𝑔𝑔�. In 𝑔𝑔� the new 
time parameter was added with 𝜈𝜈 = 0 and this results in additional negative and imaginary entries to 𝑮𝑮 
to form complex 𝑮𝑮� with complex determinant 𝑔𝑔�.  
If action denoted by 𝑆𝑆, the new action will be 𝑆̃𝑆 = 𝑖𝑖𝑖𝑖 so we obtain:              
                                                                                    −𝑖𝑖𝑖𝑖 = log�𝑔𝑔�                                                                        (100) 
Substitution 𝑔𝑔� in Equation (99) gives:                   �𝑔𝑔� = 𝜓𝜓𝑒𝑒−𝑖𝑖𝑖𝑖                                                                          (101) 
Inserting (101) into (100):                                           −𝑖𝑖𝑖𝑖 = log�𝜓𝜓𝑒𝑒−𝑖𝑖𝑖𝑖�        
And finally:                                                         𝜓𝜓 = 𝑒𝑒−𝑖𝑖(𝑆𝑆−𝜃𝜃) = 𝛼𝛼𝑒𝑒−𝑖𝑖𝑖𝑖                                                                  (102) 
Where 𝛼𝛼 stands for a complex constant. The relation 𝜓𝜓 ~ 𝛼𝛼𝑒𝑒−𝑖𝑖𝑖𝑖 guarantees the Schrodinger equation: 
                                                                                        𝑖𝑖 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∆𝜓𝜓                                                                               (103)                                                                                                                     

𝜓𝜓 is the determinant of matrix 𝒄𝒄 and takes the multilinear form of 𝒄𝒄 entries. Using the general definition 
of determinant in the context of Cauchy-Binet formula, the determinant is a multilinear form of 𝒄𝒄. It is 
straight forward to impose the time partial derivatives on this summation and deduce that Schrodinger 
equation (103) holds for all entries of 𝒄𝒄. Then for each particle we have a similar equation:                             
                                                                                       𝑖𝑖 𝜕𝜕𝜓𝜓𝑛𝑛

𝜕𝜕𝜕𝜕
= ∆𝜓𝜓𝑛𝑛                                                                        (104) 

Where 𝜓𝜓𝑛𝑛 stands for a function of parameters for 𝑛𝑛th particle. At any point in the parameter space it 
turns out the corresponding entries of 𝑛𝑛th particle for specified parameter. 
9.9 Derivation of Slater Determinant 
Consider sub-matrix 𝐷𝐷𝜈𝜈 of 𝐷𝐷 which contains the coordinate 𝜈𝜈 of related parameter. If all particles set to 
be fermions, Pauli Exclusion Principle limits the number of particles in each row by 1. This means that the 
related matrix 𝐷𝐷𝜈𝜈 is of order 𝑁𝑁 × 𝑁𝑁 and its determinant takes the values 1 or -1. DFT transformation of 
𝐷𝐷𝜈𝜈 changes the real basis to complex basis and produces a complex manifold with Riemannian metrics. 
Consequently, this manifold is compatible with a Kahler manifold. Let denote the transformed 𝐷𝐷𝜈𝜈 by 𝐷𝐷�𝜈𝜈. 
If we restrict the notation for 𝐷𝐷�𝜈𝜈  to a spatial parameter 𝑥𝑥 with other parameters independent of time, 
then 𝐷𝐷�𝑥𝑥 contains the entries defined by𝜓𝜓𝑛𝑛(𝑥𝑥) as proved in (30). Therefor if we would define Φ as the 
determinant of 𝐷𝐷�𝑥𝑥 = 𝜓𝜓𝑛𝑛(𝑥𝑥)  , the determinant of corresponding block matrix 𝐺𝐺𝑥𝑥 in 𝐺𝐺 appears as:  

   𝑔𝑔𝑥𝑥 =  [det𝜓𝜓𝑛𝑛(𝑥𝑥)] [det𝜓𝜓𝑛𝑛(𝑥𝑥)]∗  
 Thus we have:                                            Φ = [det𝜓𝜓𝑛𝑛(𝑥𝑥)] ~�𝑔𝑔𝑥𝑥 ~ 𝑒𝑒−𝑖𝑖𝑖𝑖                                                             (105) 
This means that Φ is the wave function of 𝑁𝑁 fermions as known as the Slater determinant. 
9.10 Ideal gas 
Ideal gas as a non-interacting system of particles brings a good example for our model. Let us consider a 
confined ideal gas with volume 𝑉𝑉1 while imposing a compression contracted to volume 𝑉𝑉2 with change of 
energy ∆𝐸𝐸 = 𝑊𝑊, where 𝑊𝑊 denotes the performed work. If the contraction coefficient defined as 𝛼𝛼 = 𝑉𝑉1

 𝑉𝑉2
 

, and contraction occur along  𝑥𝑥 axis, then the related BDM metric transforms by scale factor 𝛼𝛼 on the 
basis 𝑒𝑒𝑖𝑖∗𝜈𝜈  which corresponds to 𝑥𝑥 axis. Evidently the reason is the increase of particle number density 
along 𝑥𝑥  axis proportional to 𝛼𝛼. Since the entries of 𝑔𝑔𝑖𝑖𝑖𝑖are the inner product of basis vectors 𝑒𝑒𝑖𝑖∗𝜈𝜈 , the 
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resultant change in determinant of 𝑔𝑔𝑖𝑖𝑖𝑖  will be the product by scale factor  𝛼𝛼2 . Consequently the �𝑔𝑔 
changes to �𝑔𝑔′ = 𝛼𝛼�𝑔𝑔. Therefor taking the action 𝑆𝑆 = −log�𝑔𝑔 = 𝐸𝐸𝐸𝐸 , the energy change reads as: 

                                                                      ∆𝐸𝐸. 𝑡𝑡 = log�𝑔𝑔′

√𝑔𝑔
= log𝛼𝛼 = log 𝑉𝑉1

 𝑉𝑉2
                                                      (106) 

Taking into account the periodic time and replacing time with 1 𝑘𝑘𝑘𝑘 ⁄ , we have: 
                                                                                    ∆𝐸𝐸 = 𝑘𝑘𝑘𝑘 log 𝑉𝑉1

 𝑉𝑉2
                                                                       (107)    

Which is compatible with the formulas of ideal gases. 
9.11 Symmetries of BDM theory  
BDM model is compatible with a few symmetries. Here we list the most important symmetries a 

1) Unitary symmetries: we have shown that DFT transform of data matrix 𝐷𝐷  leaves the 
determinant  𝑔𝑔  invariant. Similarly, all unitary transformations are symmetric groups of BDM 
model. Let 𝑈𝑈 denotes an arbitrary unitary matrix which transforms the data matrix 𝐷𝐷:  
                                                                             𝐷𝐷′ = 𝑈𝑈𝑈𝑈                                                                           (108) 
Taking the determinant: 
                     det𝐺𝐺′ = det𝐷𝐷′ 𝐷𝐷′† = det𝑈𝑈𝑈𝑈 det(𝑈𝑈𝐷𝐷)† = det𝑈𝑈 det𝑈𝑈† det𝐷𝐷𝐷𝐷† = det𝐺𝐺            (109) 
This reveals the unitary symmetries of Lagrangian in BDM model. 

2) Conformal symmetries: a conformal symmetry refers to those transformation of metric tensors 
that rescales the metric either global or local while the theory remains invariant: 
                                                                          𝑔𝑔𝜇𝜇𝜇𝜇 → Ω2𝑔𝑔𝜇𝜇𝜇𝜇                                                                     (110) 
Where Ω2 stands for a function of space time coordinates.  
Determinants of metric transform as: 
                                                                           𝑔𝑔′ = Ω2𝑛𝑛𝑔𝑔                                                                          (111) 
If Ω2 is time independent then we obtain: 
                                               𝐿𝐿′ = − 𝑑𝑑

𝑑𝑑𝑑𝑑
log�𝑔𝑔′ = − 𝑑𝑑

𝑑𝑑𝑑𝑑
(log�𝑔𝑔 + 𝑛𝑛 logΩ) = 𝐿𝐿                                  (112) 

For time dependent Ω2 we get: 
                                                                   𝐿𝐿′ = 𝐿𝐿 − 𝑛𝑛 𝑑𝑑

𝑑𝑑𝑑𝑑
logΩ                                                                  (113) 

Equation (113) guarantees the invariance of Lagrangian under conformal transformation, because 
additional term is a total time derivative. Therefor the conformal symmetry is an inherent 
symmetry of BDM theory.   
 

9.12 Bremermann limit and maximum Curvature 
In this section we reveal an interesting relation between Bremermann limit and maximum space-time 
curvature and Plank time and length. Bremermann limit is the upper bound of bit information transfer 

rate per unit mass and is defines as 𝑐𝑐
2

ℏ
 . Due to the dynamic of Ricci flow we have: 

                                                                                          𝑅𝑅𝜇𝜇𝜇𝜇 = 1
2
𝑔̇𝑔𝜇𝜇𝜇𝜇                                                                     (114) 

For a space with spherical symmetry (like the black holes) Ricci tensor equals extrinsic curvature i.e. 
                                                                                          𝑅𝑅𝜇𝜇𝜇𝜇 ≅ 𝐾𝐾𝜇𝜇𝜇𝜇                                                                          (115)                                                                                                                                         
The scaler curvature for 3-hyper surface with spherical symmetry reads as: 
                                                                                          𝑅𝑅 ≅ 1

𝑟𝑟3
                                                                         

To be compatible with physical scaler curvature it requires a Planck constant ℏ to admit the correct 
dimension of 𝑅𝑅: 
                                                                                           𝑅𝑅 = ℏ

𝑟𝑟3
                                                                               (116) 

Now respect to the limit of maximum bit information rate (i.e. maximum average of transmitted bit per 
second) known as Bremermann limit (we denote it by 𝐿𝐿𝐵𝐵), we should consider the maximum limit of 
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𝑔̇𝑔𝜇𝜇𝜇𝜇  as Bremermann limit. The main reason is the structure of 𝑔𝑔𝜇𝜇𝜇𝜇 in BDM theory. In BDM the entries of 
𝑔𝑔𝜇𝜇𝜇𝜇 is the time average of number of bits restricted to some intervals of physical variables. Therefor the 
maximum changing rate of the bits involved in 𝑔𝑔𝜇𝜇𝜇𝜇 i.e. 𝑔̇𝑔𝜇𝜇𝜇𝜇 will be proportional to Bremermann limit: 
                                                                                     (𝑔̇𝑔𝜇𝜇𝜇𝜇)𝑚𝑚𝑚𝑚𝑚𝑚~ 𝐿𝐿𝐵𝐵                                                                       (117) 
To satisfy homogeneity of dimensional equation, respect to Einstein field equation dimensional 
homogeneity:                                                    𝑅𝑅𝜇𝜇𝜇𝜇 −

1
2
𝑅𝑅𝑔𝑔𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇                                                                (118) 

The term 𝑔𝑔𝜇𝜇𝜇𝜇/𝐺𝐺 is Dimensionless quantity required for dimensional homogeneity of equation (118). Then 
we should replace (117) with: 
                                                                   𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝐺𝐺
(𝑔̇𝑔𝜇𝜇𝜇𝜇)𝑚𝑚𝑚𝑚𝑚𝑚~ 1

𝐺𝐺
𝐿𝐿𝐵𝐵                                                                  (119) 

Where  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  denoted as the possible maximum rate of bit (particles) transfer in BDM theory. For 
calculating the scaler curvature, we contract the Ricci flow (49) with 𝑔𝑔𝜇𝜇𝜇𝜇:                                                         
                              𝑅𝑅 = 𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅𝜇𝜇𝜈𝜈 = 1

2
𝑔𝑔𝜇𝜇𝜇𝜇𝑔̇𝑔𝜇𝜇𝜇𝜇 = 1

2
𝑇𝑇𝑇𝑇�𝐺𝐺−1𝐺̇𝐺� = 1

2
𝜕𝜕
𝜕𝜕𝜕𝜕

log (det𝐺𝐺) = 1
2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔 = 〈𝐸𝐸〉            (120)         
Thus, the total scaler curvature equals the energy per particle multiplied by particle density. In each row 
of data matrix 𝐷𝐷  the number of positive bits ‘1’ is the same as the number of particles with the same 
value of specific physical variable. Therefor the maximum energy of all bits (particles) in this interval could 
be calculated by multiplying the maximum energy of each particle 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 by the maximum change of the 
number of bits (particles) in this interval i.e. (𝑔̇𝑔𝜇𝜇𝜇𝜇)𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿𝐵𝐵. Then we have: 
                                                                            𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚                                                                       (121) 
Respect to (120) the maximum total curvature of involved particles is 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. On the other hand 
the maximum energy per particle, due to uncertainty principle, could be derived by: 
                                                                                  𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = ℏ

𝜏𝜏𝑝𝑝
                                                                                (122)                                                                                                          

Where 𝜏𝜏𝑝𝑝 stands for the Planck time. The relation between maximum curvature, 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚and equation (116) 
shows that  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  for a 3-hypersurfac with spherical symmetry is proportional to ℏ

𝑟𝑟3
 when 𝑟𝑟3 takes the 

minimum length 𝑙𝑙𝑝𝑝(Planck length):        

                                                                          𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = ℏ
𝑙𝑙𝑝𝑝3

= 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚                                                                          (123) 

Equations (121), (122), and (123) results in:                                                                                                               
                                                                           ℏ

𝑙𝑙𝑝𝑝3
= ℏ 

𝜏𝜏𝑝𝑝
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = ℏ

𝜏𝜏𝑝𝑝

𝐿𝐿𝐵𝐵
𝐺𝐺

                                                                    (124) 

We can verify this equation by substituting the values of Planck time and length and Bremermann limit: 

                                                                                   𝑐𝑐
9
2

𝐺𝐺
3
2 ℏ

3
2

= 𝑐𝑐
9
2

𝐺𝐺
3
2 ℏ

3
2
                                                                                (125) 

This interesting result confirms the “information bit” nature of space metrics and brings an example to 
the authentication of Ricci flow and compatibility of BDM theory with Planck length and time and 
Bremermann limit.  
 9.13 Energy density of Light wave propagation 
As an example for applying the Ricci flow as the dominant dynamics of isolated free system of particles, 
we imagine a spherical wave front of light propagating from an origin point of space-time. Due to (120) 
we have:                                                                             〈𝐸𝐸〉 = 𝑅𝑅          
Therefor for energy density of propagating wave of which is an example of an isolated free system of 
photons we apply this equation and deduce that it equals the curvature of the system. In this example 
this curvature reduces to 2-dimensional sphere curvature (wave front is spherical) and amounts:              
                                                                                       〈𝐸𝐸〉 = 𝑅𝑅~ 1

𝑟𝑟2
                                                                        (126) 

                                                                                                                                       
This results explains the inverse square law for energy density of light propagation in vacuum. 
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9.14 Power spectrum 
It is valuable to calculate power spectrum of a system via the BDM model. First we note that strict 
definition of power spectrum reads as [34]: 
                                                              𝑆𝑆(𝜔𝜔) = ∬ 𝑥𝑥𝑖𝑖

+∞
−∞ 𝑥𝑥𝑗𝑗𝐺𝐺�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗,𝜔𝜔�𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑗𝑗  

Where 𝐺𝐺 stands for the Fourier transform of joint probability density 𝑓𝑓�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗, 𝑡𝑡�: 
                                                               𝐺𝐺�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗,𝜔𝜔� = ∫  𝑓𝑓�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗, 𝑡𝑡� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑              
In BDM model the joint density of pair variables  𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗  determined by  𝑔𝑔𝑖𝑖𝑖𝑖 as mentioned in previous 
sections. Therefor the power spectrum in BDM sense reads as: 
                                                    𝑆𝑆(𝜔𝜔) = ∬ 𝑥𝑥𝑖𝑖

+∞
−∞ 𝑥𝑥𝑗𝑗�∫𝑔𝑔𝑖𝑖𝑖𝑖 �𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 , 𝑡𝑡�𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑�𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑗𝑗       

9.15 Bit density principle 
In this section we show the density of bits along spatial or time coordinate, represents hidden momentum 
and energy   of a system of particles. As we have shown in previous sections, the expression 1

2
logℊ could 

be interpreted as “entropy” in some limiting situations such as black holes. If we agree on the classic value 
of bit information as the entropy of a system, then we have the relation: 
                                                                                     𝐼𝐼 = −𝑆𝑆 = 1

2
logℊ            

With this identity, the expressions for energy and momentum in BDM theory will be read as: 
                                              〈𝐸𝐸〉 = 1

2
𝜕𝜕
𝜕𝜕𝜕𝜕

logℊ = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

             ,            𝑝𝑝𝑖𝑖 = −1
2

𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

logℊ = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

                              (127) 
These equations imply that there are relations between energy and momentum and bit density over time 
and spatial dimensions. These particle densities in BDM model indicate the bits density principle. As a 
generalization, the bits density over time should correspond to energy and the bits density along the 
angular variables correlates with angular momentum. 
                     𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒~ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚~ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
 ,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚~ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
                   (128)                  

 The best example for time density of bits is the density of a full wavelength (as a single bit) over the time. 
The bits density over time, normally can be explained by the frequency of the propagating wave. Hence 
the energy should be proportional to frequency: 
                                                                                       𝜀𝜀 ≅ 𝑓𝑓                                                                                      
For dimensional compatibility, we use ℎ as an appropriate coefficient and hence we have:  
                                                                                       𝜀𝜀 = ℎ𝑓𝑓                                                                                    (129)                                                       
 We know for electromagnetic waves (photons) this is the Planck formula for energy per photon. 
For bits density along spatial coordinates this full wavelength (bit) density could be represented as 1

𝜆𝜆
 and 

therefore the momentum is proportional to 1
𝜆𝜆

  and after multiplying with ℎ as proportional coefficient 
gives the De Broglie equation for matter wave: 
                                                                                       𝑝𝑝 = ℎ

𝜆𝜆
                                                                                        (130)   

9.16 Crystallography 
BDM theory could be applied in special mode to solid state theory of crystals with its Bravais and reciprocal 
lattice and coordinates. In other words, crystallography theory can be considered as a special case of BDM 
model. We show the dual basis 𝑒𝑒∗𝜈𝜈in BDM model corresponds the reciprocal basis in crystallography. 
Metric tensor in BDM model derived from dual basis 𝑒𝑒∗𝜈𝜈. Respect to equation (7) for 𝑖𝑖 = 𝑗𝑗 we have: 
                                 〈𝑒𝑒∗𝜈𝜈(𝑖𝑖), 𝑒𝑒∗𝜈𝜈(𝑖𝑖)〉 = ∑ [ 𝑒𝑒∗𝜈𝜈(𝑖𝑖)]𝑛𝑛[ 𝑒𝑒∗𝜈𝜈(𝑖𝑖)]𝑇𝑇𝑛𝑛𝑛𝑛 = | 𝑒𝑒∗𝜈𝜈(𝑖𝑖)|2 = 𝑔𝑔𝜈𝜈𝜈𝜈(𝑖𝑖) = 𝑓𝑓𝜈𝜈𝜈𝜈(𝑖𝑖)                        
This means that the bit density on a specific value of parameter 𝜈𝜈 , equals the square of  𝑒𝑒∗𝜈𝜈(𝑖𝑖) module.                                                                            
In crystallography theory the main basis is the lattice basis namely Bravais lattice. These vectors simply 
connect two adjacent atoms and make a 3-dimensional parallelepiped structure as the spatial base 
vectors. As has been mentioned before the reciprocal basis of a crystal determines the actual density of 
particles along axis perpendicular to the related crystal surface. Dual basis in BDM model looks like the 
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reciprocal basis in crystal lattices. Therefore, dual basis in BDM model seems to take the momentum 
values and could be assigned by momentum like variables just similar to pseudo-momentum components 
of the Reciprocal basis of crystal lattices. consequently, there is a connection between dual bases in BDM 
model which reflects the probability density of particles in our system and pseudo-momentum of crystal 
lattices. For spatial components these dual bases stand for the real pseudo-momentum or K-vectors of 
crystal lattices. For bit density along the spatial coordinates in crystal lattices, the total density of a plane 
of atoms along the axis perpendicular to that plane, is proportional to 1

𝑑𝑑
 where 𝑑𝑑 is the distance between 

atoms planes. The magnitude of corresponding reciprocal base lattice is also 1
𝑑𝑑

 : 

                                                                                         |𝐺𝐺| = 1
𝑑𝑑

                                                                                   (131) 
The vector with this magnitude perpendicular to the atoms plane is called crystal momentum or pseudo-
momentum. This momentum appears just in the interactions of atoms lattice with an incident photon or 
particle waves. Respect to the bit density principle from previous section, this pseudo-momentum is equal 
to density of bits (atoms) over the interval 𝑑𝑑 by the equation:              
                                                                                     𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
= 𝑛𝑛

𝑑𝑑
                                                                         (132) 

The related momentum is the product of density and ℏ i.e. 
                                                                                         𝑃𝑃 = ℏ 𝑛𝑛

𝑑𝑑
                                                                             

then the pseudo-momentum per atom reads as: 
                                                                                         𝑃𝑃 = ℏ 1

𝑑𝑑
= ℏ𝐺𝐺                                                                       (133) 

this is the main relation for crystal momentum which derived by the bit information principles. 
 For non-spatial coordinates, these bases show similar concept. 
 Curiously, the similar relation should govern the angular momentum. The suggested relation is as follows: 
                                                                                    𝐿𝐿𝜃𝜃 = ℏ

𝜃𝜃
                                                                                    (134)                                                   

Interpretation of  𝜃𝜃  as unit angle (angular period) needs more explanation. For crystals with 𝑁𝑁 -fold 
rotational symmetries it has been verified that the difference of pseudo-angular momentum of incident 
and diffracted photons on a crystal with 𝑁𝑁-fold rotational symmetries obey the relation [33]:                   
                                                                                   ∆𝑚𝑚ℏ = 𝜎𝜎ℏ + 𝑁𝑁𝑁𝑁ℏ                                                                    (135)  
And for Rayleigh scattering with 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑠𝑠 as incident and scattered helicity of photons we have [33]: 
                                                                                   𝜎𝜎𝑖𝑖 − 𝜎𝜎𝑠𝑠 = 𝑁𝑁𝑁𝑁                                                                             
Where 𝑃𝑃 denotes an integer and 𝑁𝑁 determines the particles or bits density per unit angle 2𝜋𝜋 (recall the 
definition of 𝑁𝑁-fold rotational symmetries). Thus the equation (134) in BDM context is compatible with 
pseudo-angular momentum relation in (135). 
Another crystallographic evidence backing BDM model pertains to metric attributed to crystal lattice. The 
relation between displacements 𝜀𝜀𝑗𝑗 = 𝑢𝑢𝑗𝑗𝑗𝑗 (𝑢𝑢𝑗𝑗𝑗𝑗 denotes the diagonal strain tensor) under propagation of a 
single pulse wave and the metric attributed to a crystal lattice is in the form: 
                                                                                   𝑑𝑑𝑑𝑑2 = ∑ (1 + 2𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 )𝑑𝑑𝑥𝑥𝑗𝑗

2                                                    (136) 
The determinant of this metric tensor will read as: 
                                                                                   𝑑𝑑𝑑𝑑𝑑𝑑 𝐺𝐺 = ∏ (1 +𝑗𝑗 2𝑢𝑢𝑗𝑗𝑗𝑗)                                                          (137)                                    
Its logarithm for small valued 𝑢𝑢𝑗𝑗𝑗𝑗 takes the form: 
                                                                         𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑 𝐺𝐺 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (1 + 2𝑢𝑢𝑗𝑗𝑗𝑗) = ∑ 2𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗                                   (138) 

then 〈𝐸𝐸〉 = 1
2
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔 approximated by: 

                                                                                          〈𝐸𝐸〉 = ∑ 𝜕𝜕
𝜕𝜕𝜕𝜕𝑗𝑗 𝑢𝑢𝑗𝑗𝑗𝑗                                                                (139) 

If assume the displacements 𝜀𝜀𝑗𝑗 = 𝑢𝑢𝑗𝑗𝑗𝑗 a periodic function of time to impose vibrations on crystal atoms, 
we get: 
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                                                                                           𝜀𝜀𝑗𝑗 ≅ 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖                                                                       (140) 

Then for energy with 𝜏𝜏 = 𝑖𝑖𝑖𝑖 we have:      〈𝐸𝐸〉 ≅ 𝜀𝜀 ∑ 𝜕𝜕
𝜕𝜕𝜕𝜕𝑗𝑗 𝑒𝑒𝑖𝑖𝜔𝜔𝑗𝑗𝑡𝑡 ≅ −𝑖𝑖 ∑ 𝑖𝑖𝑗𝑗 𝜔𝜔𝑗𝑗𝑒𝑒𝑖𝑖𝜔𝜔𝑗𝑗𝑡𝑡 = ∑ 𝜔𝜔𝑗𝑗𝑒𝑒𝑖𝑖𝜔𝜔𝑗𝑗𝑡𝑡𝑗𝑗                (141) 

Considering the real part of equation, expected energy for a pulse wave through crystal wave will read as: 

And for each degree of freedom:                 〈𝐸𝐸𝑗𝑗〉 ≅ 𝜔𝜔𝑗𝑗 ∫ �𝑐𝑐𝑐𝑐𝜔𝜔𝑗𝑗𝑡𝑡� = 𝜔𝜔𝑗𝑗
𝜋𝜋
2
0                                                              (142) 

 
This means the proportionality of energy per particle and frequency. After multiplying with ℏ, this is 
compatible with Planck equation:  
                                                                                    〈𝐸𝐸𝑗𝑗〉 = ℏ𝜔𝜔𝑗𝑗                                                                             (143)                                         
And shows the energy of a phonon in crystal lattice.           
9.17 Derivation of mass-energy equivalence 
What is the relation of energy for a body with mass 𝑚𝑚 in the notion of bit information density formalism? 
For a body with mass 𝑚𝑚 the number of bits is obscure, because the constituent particles are different in 
mass and type and could not be assumed as individual bits in the context of BDM theory. Nevertheless, a 
direct approach is to define a fundamental mass unit that scales the body mass in dimensionless numbers 
as the information bit content. The most fundamental mass unit is presented as Planck mass by definition: 

                                                                                        𝑚𝑚𝑝𝑝 = �ℏ𝑐𝑐
𝐺𝐺

                                                                              (144) 

This mass is also the minimum possible mass of a black hole. Hence the number of bits of a body with 
mass 𝑚𝑚 reads as: 

                                                                                 𝑛𝑛 = 𝑚𝑚
𝑚𝑚𝑝𝑝

= 𝑚𝑚�𝐺𝐺
ℏ𝑐𝑐

                                                                        (145) 

due to bit density principle the related energy could be derived by calculation of bit density over a definite 
time interval, which is defined by Planck time: 

                                                                                          𝑡𝑡𝑝𝑝 = �ℏ𝐺𝐺
𝑐𝑐5

                                                                             (146) 

Then for equivalent hidden energy for mass 𝑚𝑚 we should work out the density of bit information over 
time scale 𝑡𝑡𝑝𝑝 times ℏ :                                       𝐸𝐸 = ℏ 𝑛𝑛

𝑡𝑡𝑝𝑝
= 𝑚𝑚𝑐𝑐2                                                                           (147) 

This reveals the exact mass-energy formula in the context of especial relativity and asserts it as a potential 
form of energy that can be appeared just in the interactions with other bodies. This is equivalent with the 
pseudo-momentum in crystal lattices as the hidden momentum that appears when the lattice exposed to 
interactions with particle waves and photons.  
9.18 Beckenstein Bound 
 The maximum information confined in a region with radius 𝑅𝑅 and energy 𝐸𝐸 due to Beckenstein is: 
                                                                                            𝐼𝐼 ≤ 2𝜋𝜋𝜋𝜋𝜋𝜋

ℏ𝑐𝑐 ln2
                                                                           (148) 

Here the time span for bit information is the interval by which the light travels from center of black hole 
(singularity point) to horizon at the radius 𝑅𝑅: 
                                                                                                ∆𝑡𝑡 = 𝑅𝑅

𝑐𝑐
                                                                             (149) 

Therefor the bit density over this interval is proportional to energy 𝐸𝐸 up  
to a coefficient ℏ :                                                    𝐸𝐸 ≃ ℏ 𝐼𝐼

∆𝑡𝑡
= ℏ 𝐼𝐼𝐼𝐼

𝑅𝑅
⇒ 𝐼𝐼 ≃ 𝑅𝑅𝑅𝑅

ℏ𝑐𝑐
                                                  (150)        

 is compatible with Beckenstein bound. 
9.19 Rotation (velocity) curve problem as the results of generalized inflation   
Velocity (rotation) curves of distant stars relative to their galaxy’s center do not obey the Newtonian 
dynamics. Based on astronomical observations, the orbiting velocities of these stars are approximately 
equal or slowly increasing over the large distances whereas the Newtonian dynamic predicts a lowering 
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speed proportional to 1
√𝑟𝑟

 with 𝑟𝑟  as the distance of star from galaxy’s center. The problem has been 
justified by assuming an unobservable dark matter distributed in the galaxies with a certain pattern. The 
modified Newtonian dynamics (MOND) is also another approach to this discrepancy by suggesting a 
modification of Newtonian dynamics at very large distances and very low gravity accelerations. I suggest 
an interpretation of both Universe inflation and velocity (rotation) curve in the context of BDM theory. 
From the main equations of the model we conclude that all base vectors of all parameters inflate through 
time: 
                                                                                    〈𝐸𝐸〉 =  1

2
𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑔𝑔                                                                      (151) 
Because 𝑔𝑔 is the determinant of parametric space metric which include base vectors of all parameters i.e. 
spatial, linear momentum and angular momentum. Therefor in BDM the inflation involves all parameter 
and not only the spatial dimension and consequently it implies a generalized inflation. The rate of 
inflation is proportional to energy content of the system. For universe, the expansion rate is proportional 
to its energy or mass content. If 𝑎𝑎 stands for the scale factor of this inflation, then the ratio 𝑎̇𝑎

𝑎𝑎
  equals the 

Hubble constant 𝐻𝐻:                        
                                                                                           𝐻𝐻 = 𝑎̇𝑎

𝑎𝑎
                                                                             (152) 

As a generalization to inflation of spatial metric, equation (151) guarantees the inflation of all parameters 
with equal footing. Therefore, as the Hubble law describes the expansion rate through such an equation: 
                                                                                     𝐻𝐻 = 𝑎̇𝑎

𝑎𝑎
= 𝑟̇𝑟

𝑟𝑟
                                                                               (153) 

Due to generalized inflation principle, we could also apply the same equation for linear and angular 
momentum: 

                                                                                      𝐻𝐻 = 𝑝̇𝑝
𝑝𝑝

 = 𝐿̇𝐿
𝐿𝐿
                                                                              (154) 

For linear momentum we obtain:          𝑝̇𝑝 = 𝑝𝑝𝑝𝑝 → 𝑣̇𝑣 = 𝑣𝑣𝑣𝑣 → 𝑣𝑣 = 𝑟𝑟𝑟𝑟 → 𝑟𝑟 ≅ 𝑟𝑟0𝑒𝑒𝐻𝐻𝐻𝐻  
Which is compatible with Hubble law. For angular momentum we have: 
                                     𝐿̇𝐿 = 𝐿𝐿𝐿𝐿 → 𝑑𝑑(𝑣𝑣𝑣𝑣)

𝑑𝑑𝑑𝑑
= 𝑣𝑣𝑣𝑣𝑣𝑣 → log 𝑣𝑣𝑣𝑣 = 𝐻𝐻𝐻𝐻 → 𝑣𝑣𝑣𝑣 = 𝑣𝑣0𝑟𝑟0𝑒𝑒𝐻𝐻𝐻𝐻 = 𝑣𝑣0𝑟𝑟                               (155) 

Or:                                                              𝑣𝑣𝑣𝑣 = 𝑣𝑣0𝑟𝑟 → 𝑣𝑣 = 𝑣𝑣0                                                                             (156)    
Here 𝑣𝑣 stands for orbiting velocity of stars and𝑣𝑣0 is a constant velocity. These equations are valid at the 
limit of a far distance 𝐷𝐷0 from other galaxies where the gravitational acceleration amounts to negligible 
limit and the observable inflation begins. At this critical distance which is about 2-4 Mpc (Mega Parsec) 
the radial velocity respect to Hubble’s law start to be observable and yields: 
                                                                                       𝑣𝑣0 = 𝐷𝐷0𝐻𝐻                                                                             (157) 
The initial velocity 𝑣𝑣0 should be interpreted as the escape velocity which determines the lower limit of 
expansion velocity. Consequently, the orbit velocity 𝑣𝑣  also equals this escape velocity and obeys the 
expansion effects in the negligible gravity. Then we have: 
                                                                                     𝑣𝑣 = 𝑣𝑣0 = 𝐷𝐷0𝐻𝐻                                                                   (158) 
Evidently the observable expansion of galaxies is possible for galaxy’s stars at very large distances where 
the gravity loses required binding potential to hinder expansion of spatial and non-spatial parameters. 
Based on astronomical observations, the least distance 𝐷𝐷0 is about 2-4 Mpc (Mega Parsec) [38]. Then the 
estimated constant velocity 𝑣𝑣0 will be read as (with 𝐻𝐻 ≅ 70𝑘𝑘𝑘𝑘/𝑠𝑠.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 
                                                                  𝑣𝑣0 ≅ 𝐷𝐷0𝐻𝐻 = 140− 280 𝑘𝑘𝑘𝑘/𝑠𝑠                                                          (159) 
Surprisingly, this is the range of asymptotic constant velocities of the stars at the rim of galaxies. The 
acceleration emerged from generalized inflation at large distances will read as: 

                                                                           𝑎𝑎 = 𝑣𝑣02

𝑟𝑟
= (𝐷𝐷0𝐻𝐻)2

𝑟𝑟
                                                                            (160) 

This acceleration replaces the Newtonian acceleration around the distance 𝐷𝐷0 and dominates it at the 
astronomical distances comparable to it. Therefore, we get two separable acceleration, Newtonian which 
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is proportional to  1
𝑟𝑟2

 and BDM derived acceleration that is proportional to  1
𝑟𝑟

 .  At the astronomical 
distances the Newtonian acceleration decreases rapidly and 𝑣𝑣 approaches to 𝐷𝐷0𝐻𝐻 as the final constant 
velocity that corresponds to 𝑣𝑣∞ in MOND theory. Equation that fits almost all observed data of galaxies 
rotation curves could be extrapolated in a way followed by MOND approach to connect these limits of 
velocities at the far and near astronomical distances. At this level it is compatible with MOND results after 
clarifying the reason for Newtonian modification at very large distances based on BDM theory results.  
This reveals the reason for rotation curve discrepancies without invoking the existence of hidden Dark 
matter or phenomenological modification of Newtonian dynamics (MOND). For far orbiting stars in a 
galaxy, the angular momentum obeys the Newtonian dynamics up to a distance where the expansion of 
parameters overcomes the gravitational field acceleration. Of course, this velocity is equal to asymptotic 
velocity of stars in the galaxy disk as assumed in the context of MOND theory and be achieved by stars 
when the distances are about 𝐷𝐷0 = 2 − 4 Mpc from galaxy center. Stars speed behave asymptotically 
between the points where we arrive the fundamental acceleration 𝑎𝑎0 and the point of critical distance 
𝐷𝐷0 which have been observed through astronomical data. Here we proved the relation between the 
Hubble constant, orbit velocity limit and 𝐷𝐷0 as the minimum distance where the inflation begins.  
9.20 Physical constants and generalized inflation 
The spin of particles as an internal angular momentum with its involvement in electromagnetic interaction 
between electron and photon, is included in the parametric space. The any generalized inflation that 
evolves the angular momentum as described in previous section, would impact on electron spin. The 
electron spin 𝑆𝑆 with the value of ℏ

2
 will lose its quantity due to the equation (155): 

                                                                                        𝑆𝑆 = 𝑆𝑆0𝑒𝑒𝐻𝐻𝐻𝐻                                                                                (165) 
If we calculate the relative change of spin over 1 year, we get: 

                                                                                        𝑆̇𝑆
𝑆𝑆
≅  6 × 10−11                                                                      (166) 

Fine structure constant (𝛼𝛼) is among the most suspicious constant which should be evolved over universe 
evolution. The definition for this electromagnetic coupling constant is: 

                                                                                        𝛼𝛼 = 𝑒𝑒2

ℏ𝑐𝑐
                                                                                (167) 

e and c are constants that are not included in parameters of BDM and therefor are not involved by inflation 
evolution. However, ℏ as an angular momentum will alter over inflation and results in negative relative 
change to 𝛼𝛼. Consequently, the rate of relative change of 𝛼𝛼 reads as: 

                                                                                    𝛼̇𝛼
𝛼𝛼

= 𝑆̇𝑆
𝑆𝑆
≅  6 × 10−11 

This change rate is compatible with one of the related data was given by Shylakhter [ 35] and reviewed by 
Cardenas [36,37] which is reported as 4 × 10−11. This shows an amazing compatibility of BDM generalized 
inflation results and astronomical results of physical constants evolution.   
10. Conclusion   
Binary data matrix (BDM) and constructed Hilbert space fitted for physical measurements recording, 
represents a set of base vectors with associated metric tensor and entries that interpreted as observed 
joint density probabilities of related system parameters. Both metric tensor and joint probabilities are 
symmetric and positive semi-definite. Definition of density matrix in the sense of quantum statistics 
conveys the full analogy between these matrices and metric tensor. We define a manifold with the 
dimension of the whole parameters intervals number, and its submanifolds expanded by basis vector 
subsets identified on each independent parameter intervals. We prove that this geometry and induced 
metric not only reveals the properties of a Riemannian manifold, but also proves the equivalence of metric 
compatibility and Liouville-Von Neumann equation. We generalize the equivalence to spatial dimensions 
and prove the compatibility of BDM model with Hamilton-Jacobi formalism. This model also explores the 
relation of the manifold curvature and ensemble average energy of the under measurement system and 
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uncovers the rational for equating the pure geometrical side and stress energy tensor of Einstein field 
equation. We have shown that this mean energy is proportional to energy per bit of information that 
recovered from measurements. We assert the compatibility of normalized Ricci flow dynamics with our 
Hamiltonian action integral and equivalence of this integral with Einstein-Hilbert action integral. Other 
successful interpretations included in this model, consist of equipartition theorem of energy, average 
energy in canonical ensemble, and Landauer's principle. Compatibility with Universe inflation and FRW 
equation is mentioned in last section. Interestingly the concept of generalized inflation justifies the 
rotation curves of galaxies’ far stars and obviates the assumption of dark matter with a strong theoretical 
framework that could substitutes the MOND theory.  
Appendix A 
In the case of black holes where all the physical variables of its constituent confined to infinitesimal 
intervals 𝛿𝛿𝑥𝑥𝑖𝑖, around the singularity point, if we fix the center of mass of black hole on the origin of spatial 
coordinates, the expected values of position and momentum of constituents are near zero  corresponding 
BDM metric will be concentrated over these intervals with negligible values out of 𝛿𝛿𝑥𝑥𝑖𝑖 and mean values 
near to zero. Thus the correlation (covariance) matrix element ℜ𝑖𝑖𝑖𝑖 while the mean of all random variables 
vanishes i.e. 𝑥̅𝑥 = 0 reads as: 
                                                                     ℜ𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 = 〈𝑔𝑔𝑖𝑖𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖𝛿𝛿𝑥𝑥𝑗𝑗〉 = 𝑔𝑔𝑖𝑖𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖𝛿𝛿𝑥𝑥𝑗𝑗                                              (A1) 
Determinant of 𝜎𝜎𝑖𝑖𝑖𝑖 matrix (denoted by ∆ ) could be calculated as: 
                                                                               ∆= ∑ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖… 𝑖𝑖𝑖𝑖𝑖𝑖… 𝜎𝜎𝑖𝑖1𝜎𝜎𝑗𝑗2𝜎𝜎𝑘𝑘3 …                                                    (A2) 
Substitution of 𝜎𝜎𝑖𝑖𝑖𝑖 with 𝑔𝑔𝑖𝑖𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖𝛿𝛿𝑥𝑥𝑗𝑗 gives rise to: 
                                                                                         ∆ = 𝑔𝑔∏ (𝛿𝛿𝑥𝑥𝑖𝑖)2𝑖𝑖                                                                  (A3) 
Logarithm of both sides results in: 
                                                                 log∆ = log𝑔𝑔 + 2∑ log𝛿𝛿𝑥𝑥𝑖𝑖𝑖𝑖 = log𝑔𝑔 + 𝐶𝐶                                           (A4) 
On the other hand a multivariate normal distribution at the limits 𝜎𝜎𝑖𝑖 → 0 approaches to Dirac delta. At 
this limit 𝑑𝑑𝑑𝑑 is proportional to 𝜎𝜎  i.e. 𝜎𝜎𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑖𝑖 . This results in an equivalence between Fisher metric and 
space metric: 
                                                            ℊ𝑖𝑖𝑖𝑖 = 〈𝜕𝜕 log𝑃𝑃

𝜕𝜕𝜃𝜃𝑖𝑖

𝜕𝜕 log𝑃𝑃
𝜕𝜕𝜃𝜃𝑗𝑗

〉 ≅ 1
𝛼𝛼2
〈𝜕𝜕 log𝑃𝑃

𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕 log𝑃𝑃
𝜕𝜕𝑥𝑥𝑗𝑗

〉 ≅ 1
𝛼𝛼2
𝑔𝑔𝑖𝑖𝑖𝑖                                   (A5) 

Where 𝜃𝜃𝑖𝑖 = 𝜎𝜎𝑖𝑖  and  𝑃𝑃  multivariate normal distribution. The reason is the exchangeability of 𝜎𝜎𝑖𝑖  and 𝑥𝑥𝑖𝑖  
in log𝑃𝑃:                                                          

                                                                                        log𝑃𝑃 ≅ 𝑥𝑥2

𝜎𝜎2
                                                                          (A6) 

Metric tensor 𝑔𝑔𝑖𝑖𝑖𝑖  stands for Fisher metric for coordinates 𝑥𝑥𝑖𝑖  and could be regarded as metric of BDM 
theory that in empty space converts to usual metric of space and in the presence of matter requires stress 
- energy tensor. Therefor the limit identity (A1) reveals the equivalence of BDM entropy and Fisher 
entropy: 
                                                                          ℋ = 1

2
log∆= 1

2
log𝑔𝑔 + 𝐶𝐶                                                                (A7) 

The distributions of 𝜎𝜎𝑖𝑖 and 𝑥𝑥𝑖𝑖 from which we derive the expectations in (A1) are identical because the 
normal distributions at the limit 𝜎𝜎𝑖𝑖 → 0 tends to Dirac delta: 
                                                                     𝑃𝑃 → 𝛿𝛿(𝑥𝑥𝑖𝑖) = 𝛿𝛿(𝜎𝜎𝑖𝑖/𝛼𝛼) = 𝛼𝛼𝛿𝛿(𝜎𝜎𝑖𝑖)                                                      (A8) 
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