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In this paper after introducing a model of binary data matrix (BDM) for physical parameters of an evolving
system (of particles), we develop a Hilbert space as an ambient space to derive induced metric tensor on
embedded parametric manifold identified by associated joint probabilities of particles observables
(parameters). Parameter manifold assumed as space-like hypersurface evolving along time axis, an
approach that resembles 3+1 formalism of ADM and numerical relativity. We show the relation of
endowed metric with related density matrix. Identification of system density matrix by this metric tensor,
leads to the equivalence of quantum Liouville equation and metric compatibility condition V,g;; =0
while covariant derivative of metric tensor has been calculated respect to Wick rotated time or spatial
coordinates. After deriving a formula for expected energy per particles, we prove the equality of this
expected energy with local scalar curvature of related manifold. We show the compatibility of BDM model
with Hamilton-Jacobi formalism and canonical forms. On the basis of the model, | derive the Ricci flow like
dynamics as the governing dynamics and subsequently derive the action of BDM model and Einstein field
equations. Given examples clarify the compatibility of the results with well-known principles such as
equipartition energy principle and Landauer’s principle. This model provides a background for
geometrization of quantum mechanics compatible with curved manifolds and information geometry.
Finally, we conclude a “bit density principle” which predicts the Planck equation, De Broglie wave particle
relation, E = mc?, Beckenstein bound and Bremermann limit.

Keywords: Quantum Liouville equation; metric compatibility condition; Joint probability; Binary Data
Matrix; Ricci flow.

1. Introduction

Liouville theorem in statistical physics was first introduced by Joseph Liouville. Theorem states that the
density of particles in a system with Hamiltonian regime through time evolution, remains constant in
phase space, i.e. % = 0 [1] .The quantum version of this theorem, namely Liouville -Von Neumann
theorem presented in density matrix formalism [2]. Density matrix evolution in Liouville -Von Neumann
theorem could be derived directly from Schrodinger equation and acts on the same Hilbert space where
the wave function and related operators are defined. This equation is in analogy with the evolution of
classical phase space distribution by replacing the density matrix with phase space distribution and
commutator with Poisson bracket. One of the major differences between classical and quantum
measurement is the limitations induced by Heisenberg uncertainty law and its consequences that
constrains the accuracy of joint (simultaneous) measurements of incompatible observables and divides
the observables to compatible and incompatible category. Compatible observable refers to those that
their operators are commutative and hence could be measured simultaneously while incompatibles are
non-commutative and their precise simultaneous measurements are impossible. In spite of this
restriction, recent advents reveal some solution for this constraints by imposing some approximations on
joint measurements of incompatible observables at the price of introducing some errors with respect to
the ideal measurement [3-5]. Then one may consider experiments with acceptable simultaneous
measurements of incompatibles with definite concept of joint probability. However joint probability in
guantum mechanics remains as an old and challenging area of research. One of the main approaches for
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guantum correction to classical statistical mechanics and consequently joint probability in quantum
mechanics are brought by Wigner distribution (function) to formulate the quantum physics in a phase
space through introduction of Quasi probabilities. The Quasi prefix is considered because of emerging
some negative probabilities in the context of Wigner distribution. It has been proved that these negative
probabilities often refer to small parts of phase space and could be ignored in most problems [6]. Actually
whenever the Wigner function takes just the non-negative values it represents a true joint probability
distribution of position and momentum [6]. At the time being joint measurements of incompatible
observable with some error becomes feasible [5]. Therefore, implementing joint measurements to record
the magnitude of observables with a possible range of errors is achievable. This means that one may
define joint probabilities in quantum approach especially in density matrix formalism[5]. We will present
in sec (3) a density matrix which fitted for the present model with entries proportional to joint
probabilities of observables. In sec (2,3,4) we set a model of a binary data matrix D which contains
evolving data of parameters of all particles in a system with 0 and 1 entries. The rows of this matrix are
base vectors in the Hilbert space H',» and their inner products constitute a metric tensor for dual space
of the parametric space. We will show in these sections the equivalence of density matrix with a
symmetric matrix dd” which derived from D.

Metric compatibility condition exhibited as a pure mathematical inference in differential geometry and
tensor analysis [7].This theorem states that for any chosen local coordinates the covariant derivative of
metric tensor g;; vanishes i.e. Vpg;; = V,gY = 0[8]. When we apply the covariant time derivative of
metric tensor (after wick rotation), the metric compatibility condition and quantum Liouville equation as
two apparently far concepts appear as two sides of a common reality when the deep connection of metric
tensor and joint probability has been shown to be based on an abstract background of evolution process
of a system of large number of particles. The consequences of this equivalence result in a definition for
energy per particle with ensuing equations of action integral and Einstein field equations. The transition
from discrete particles continuous derivative and connections are the same method in Maxwell-
Boltzmann kinetic theory of gases. The binary matrix model geometrizes the statistical concepts in physical
parameter space based on binary data of system. In some approach to general relativity like numerical
relativity and ADM formalism [9], the concept of foliation of space-time manifolds into space like hyper-
surfaces has been introduced and used to solve some related problems. These hyper-surfaces embedded
in space-time manifold with time-like unit normal vectors. We generalize this method to n+1
dimensional parametric manifolds with hyper-surfaces of n space-like dimensions of physical parameters.
Accordingly, in this approaches the hyper-surfaces and their induced metrics could be evolved through
time under quantum Liouville equation. In sec (3) we would have shown the equivalence of density matrix
and metric tensor of parametric space and its dual space with joint probabilities of particle parameters
which appears as a symmetric matrix dd” derived from binary data matrix D. In section (6) we prove the
Ricci flow dynamic as a direct consequence of the context of binary matrix model and then apply it in
action integral to derive Einstein field equations. Ricci flow is a well-known geometric flow was first
introduced by Hamilton and used for solution of the Poincare conjecture. As an evolution equation of
metric tensor, Hamilton (1982) showed the existence of unique solution of Ricci flow equation on a closed
manifold over a sufficiently short time. Mainstay of general relativity has been based on the relation of
space-time manifold structure and stress energy tensor in the presence of gravitational field by
presumption of equivalence principle [10]. Einstein field equation represents this equivalence by equating
a pure geometrical term (left side) well known as Einstein tensor with a pure physical term (i.e. stress
energy tensor) [10]. This great assumption leads to geometrization of all gravitational and non-
gravitational field theories through introduction of Einstein-Hilbert action integral in such a way that
metric tensor of space-time appears in all actions of field theories. In recent years some attempts devoted
to introduce the gravity as an emerging force i.e. entropic force [11]. By these scenarios the distribution
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of mass-energy dictates the gravitational potential [11, 12]. These theories support the relation of
geometry and probability. Intuitively an immediate result is a probable deep connection between the
geometry (of space-time) and physical probability concept. As an interesting example we have shown in
sec (8) the more basic interconnection between joint probability density (as an induced metric tensor)
and the Einstein tensor under Ricci flow dynamic. Geometrization of probability distribution and
information has been achieved by some authors. Historically, some attempts toward the geometrization
of statistical inferences and probability distributions, have been made Amari and Fisher to develop the
metric tensor concept of manifolds constructed by points correspond to probability distributions in order
to geometrize the information theory. Fisher information and covariance based metric in phase space and
information geometry are among the original works in this field and their applications in thermodynamics
[13, 14]. However, these approaches limited to phase space with definitions of metric tensor as the
expectation values of probability distribution moments and likelihoods. Moreover, there has not revealed
a clear connection to physical applications. Therefor local approaches have not been yet developed
properly in order to be used in Riemannian curved spaces and general relativity. Some authors also
indicated the relations of thermodynamic rules with Einstein field equations [15, 16]. These theories
describe the gravitational forces with entropic force assuming entropy as a function of matter distribution
[12]. Although the pure geometrical part of Einstein field equations could be served in arbitrary
dimensional space, however its physical side should be realized in four-dimensional space-time
continuum, accordingly it seems to be a special case of a more general form of basic laws. In this article
we generalize the physical concept of geometrical part of Einstein field equation in n 4+ 1 dimensional
manifolds defined through exploring a deep connection between the concepts of metric and joint
probability density. In subsequent sections | describe the wide range consequences of the model which
incorporate the quantum mechanics and general relativity by deriving the universe inflation, Schrodinger
equation, equipartition energy principle, Landauer’s principle and classical thermodynamic laws. As an
important result, | conclude the bit density principle which unites the De Broglie wave- particle equation,
Planck photon energy, and mass- energy relation E = mc?. Beckenstein bound and Bremermann limit are
straightforward results of this principle. Equivalence of Euclidean action and entropy of black holes are
among other consequences of binary matrix model. Binary matrix model initiates with a quantum
approach (quantum Liouville equation) and after translating the physical parameter to bit information
results in the basic equations of general relativity (Einstein field equation) Universe inflation to reconcile
guantum mechanics and general relativity. The approach can be depicted as:

quantum liouville equation + BDM + information bit — General relativity
2. Binary Data Matrices and Hilbert space

Definition: Parametric space M specified by xV coordinates with v which varies from 1 to the dimension
of parametric space u:

1<v<swu (1)

Let construct a binary data matrix on the basis of sequential measurements take place in a time interval
AT on N particles in a system with conserved total number. One may label each particle by a number so
that the first measurement implemented on first particle and second measurement on second particle
and so on. AT represents the least time required to achieve measurements of all particles and is assumed
to be a small time interval. We label these set of measurements by {al 1<a< N} with time ordering. If
our measurements include u independent parameters ( u = degrees of freedom) are being denoted by xV
(v denotes the v-th degree of freedom) then we can divide the possible range of these parameters to a
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large number of intervals Ax" in order to obtain such small intervals that satisfy the order of predicted
error of measurement setting and the accuracy of measurements. If the number of these intervals for
each parameter xV denoted by m,,, the total number of intervals reads as:

m=Yy,m, (2)

Accordingly any measurement outcome of a particle to determine the value of specific parameter xV falls
just in one interval labeled by ‘i’ denoting the i th interval meanwhile stands for a specific value of xV.
Let show this interval byAxY (i) and attribute the binary value 1 for this interval while the other intervals
take the value 0. Consequently, the result of xV measurement for a particle will be represented by some
column binary matrix with non-zero (1) element only at row specified by xV (). lteration of measurement
on other parameters turn out other column binary matrices. The outcome of all parameters could be
represented by g column binary matrix with g non-zero entries. Conjunction of these column binary
matrices as a single column binary matrix result in a matrix 1. Each of these &5, gives the parameter
values of the a th particle. Union of &g,,qconstructs a data matrix D, y. Rows of these binary data
matrices i.e. at each interval Ax" (i) can be denoted by a vector e*V (i):

e™ (i) = (0,1,0,0,1,1,0,0,1,...) (3)

Let call these base vectors as data basis vectors. Each vector e™ (i) could be regarded as a base vector
spanned in an abstract N dimensional space with binary components. We will define this N dimensional
space as particle-oriented coordinates. Obviously, Dp,«y could be partitioned to Dy, xy matrices for
each parameter xV. Thus, matrix product DDT contains block matrices for each parameter as diagonal
entries and block matrices produced by different parameters as non-diagonal entries.

Dm1 Xmq Dm1 Xmy
DDT = | Dy xm |
2 1

D
myxmy,

As we will prove in Lemma 2, the entries of this matrix carry the set of joint probabilities of parameters.
For space coordinate of particles, the involved block matrices yield the spatial distribution of particles.

Postulate At the limit AxV (i) — dxV (i), the vectors eV (i) approaches the basis of cotangent bundle
(space) as 1-form i.e. eV =dxV(i) = wv(i) (4)

Definition: Here any particle specifies an independent coordinate with two possible values 0 and 1. These
coordinates are orthogonal, because at the initial setting the parameter values of each particle (such as
position and momentum etc.) considered to be independent of all other particles. We call these set of
coordinate as particle-oriented coordinate that as a coordinate chart is homeomorphic to a subset of
Euclidean flat space RY which span a manifold M. Moreover we define a parametric space M of
considered system including all coordinates xV and their dual basis ¢*¥ where the latter span a dual
tangential (cotangent) vector space Tp M at a point p in parametric space M i.e.

Span{ eV} =TpM c M (5)

Lemma 1. It is straight forward to deduce the orthogonality of e¢*V (i) in each parametric range of x" by
scalar products:

(e (D, e™V(N)=0 i+ (6)
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Proof: components of e* (i) defined in an orthogonal particle-oriented coordinates. Let n-th component
be denoted by: [e™ (D],

Then the scaler product in an orthogonal coordinate for a fixed v reads as:
(e (@),e™ () =Tal e DInle™ I, (7)

If a specific component [ e*(i)], takes the value 1, this means that the value of parameter xV for p-th
particle falls in i-th interval and other intervals as [ e*V (j)]p could not take the same value, and vice versa,
therefore we have: [e™ (D], =0 e (8)

Consequently in equation (7) [ e (i)], and [ e (j)], could not take the value 1 simultaneously and this
sum as the inner (scaler) product vanishes.

In order to derive a matrix containing the relative and simultaneous abundance of positive interval
population (i.e. total number of particles of different parameters) we need to extract all scalar products
e (@D).[ e (N]T = (e (i), e*V(j)) obtained by means of the matrix product DDT.

Lemma 2. Diagonal entries of the matrix DDT are equivalent to the separate probability of each interval
and non-diagonal entries return the joint probabilities of different parameter intervals after necessary
normalization.

Proof: Elements of DDT could be represented as (the index u should not be confused with degree of
freedom )

(e (D), e () = Lnl eV Dlnle™* (DI, (9)

Obviously, this sum enumerates the total number of particles that have common parameter value of i-th
interval of x¥ and j th interval of x*. Hence the joint probability of e (i) and e**(j) events reads as:

1

frY = 5™ (@D, e™ () (10)

N

Moreover, for each point on M the we can retrieve f#V via matrix multiplication dd” where d is the
matrix obtained by collection of row vectors e* of various parameters all defined on a point on M. Thus
lf#|| = ddT is a symmetric square matrix of order pu (the number of parameters), defined on a point
on M:

. P = ad”

Lemma 3. Paired joint probabilities f#V indicate the local metric tensor of M. For each point on M the
f* represents a matrix of order g X p and is equivalent to metric tensor of parametric space M.
The general definition of metric tensor for a manifold with local base vectors e*V (i) is compatible with

equation (10): g’ =(e™ (@), e ()))
Therefore %g’“’ = fH (11)
lg* | yxp = dd”™
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The total information bits collected during measurement on such a system with y as the degree of
freedom will be read as: N = uN (22)

In this model we define a Hilbert space H with all basis of the form (jy, j, ... jn| With j,,, € {0,1}. In
guantum computation however, these basis well known as (quantum) computational basis vectors
(states) of the Hilbert space H,n [17, 18]. 2™ refers to the total number of elements of this Hilbert
space. H,n contains all e (i) and related JV,, spaces. The JV,, spaces are sub-spaces of H,» and could
be described as Hilbert spaces H,, for each parameter x".This approach, is in close relation to qubit basis
definition in quantum computation theory[17]. Indeed, for construction of tangent spaces compatible
with our model we need to choose a sub-space of base vectors of #, in such a way that inner product of
any pair of them vanishes:

(e™(D),e™ (D) =0 L#] (13)

Obviously, these sub-spaces may be regarded as H,, . Sub-spaces H,, are spanned by m, base vectors
e™ (i) . Then the whole space could be represented as the sum (not direct sum) of sub-spaces H,,:

TEM = Hy + Hy oot Hy CH (14)

The collected information of system of particles over time interval AT, leads to a binary data
matrix D, «n-

Each sub-space H, considered as a tangent sub-manifold JV,, at a point p. The union of these tangent
spaces results in the total space of a tangent bundle T, M. The state of the system could be represented
by such matrix and the evolution of this quantum system obeys the equation of quantum Liouville
theorem as well as Hamiltonian operator. The inner product property of this Hilbert space leads to
definition of metric tensor and related curvatures induced on manifold M.

Definition: We have shown Hilbert space H spanned by e*V (i) as base vectors of related vector space.
The “bra” notation determines these bases in the sense of quantum mechanics. If one shows the “bra”
with (e*V (i)| then the related dual base vector will be denoted by “ket” i.e.|e£(j)) and lives in dual vector
space H *. In matrix form, {e*V (i)| presented by a row matrix as depicted in equation (3) and |e*V (i)) by
a column matrix that is transpose of (e*V(i)|. For compatibility with tensor representation we use
reasonably the lower index for “ket” vector and therefore we have |eli;(]')) instead of.|e*‘7(]')) and the
scaler of the “bra” and “ket” in this notation reads as:

(e™ (1), ea (D) (15)

We sued fi instead of u to emphasize that this index refers to the double dual of parametric space while
we know the isomorphism of double dual with original vector space [29]. The joint probability as proved
in lemma 3 is a tensor because is proportional to metric tensor. In the notation of (15) this joint probability
should be shown by a mixed tensor defined in dual and double dual vector space:

f = (e @, e (D) (16)

The value of scaler product (e*V (i), el;(]')) equals (e (i), e™(j)). The upper index of fﬁ’ related to dual
space while the lower index to double dual space. Because of isomorphism between original and double
dual space [29] this tensor could be considered as a mixed rank 2 tensor in parametric (original) vector
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space. Thus, for compatibility with bra and ket notation we apply this tensor as metric tensor evolving by
time.

1 1, qure _%rs
2y =fY=2(e™(D,es() (17)
3. Equivalence of metric compatibility condition and quantum Liouville equation

Density matrix formalism is the quantum version of phase space probability measure of classical statistical
mechanics. Accordingly, it deals with ensembles of mixed and pure states. The general definition of
density matrix could be read as:

p = Xij [0pij (I (18)
|i) denotes the basis vector labelled by “i” and |i){j| denotes the projection matrix with non-zero element
at row “i” and column “j”. The corresponding element presented by p;; . Diagonal entries p;; of density
matrix represents the population (probability) of a specific basis (state) therefore the trace of density
matrix is unit. Off diagonal entries would provide information about the degree of coherence (or
polarization) between two states, in other words it represents the correlation of basis states. Although
off-diagonal elements have no simple physical interpretation it always gives information on quantum
correlation between particles and fields [19, 20]. we consider these off-diagonal elements as the usual
correlations between parameters (random variables) x; and x; which could be encoded by their joint
probabilities [20], whereby we assume in our definition the equivalent notion of off-diagonal entries of
density matrix ( p,,) and joint probability density function:

“u:n
J

1
Puv = fﬁv =ﬁgl;i

1. .
Because the factorﬁ is a scaler constant of system, it could be absorbed by gll: and from now on we use

the term g% instead of%g}i without any change in dynamics and topology of M.

Puw = fﬁv = g% (19)

In the sense of quantum computation (j| vectors are computational basis vector in the form ( ji, jo, ... ju|
with j,, € {0,1}. In present model these vectors substituted by data basis vector e (i) which
corresponds the i th row of Dy, .y matrix. With the identification of bra (v| by ™ (i) and ket |u) by
elij(]') the density matrix entries p,,,, respect to (19) could be represented by:

puv(B.)) = 5 (e (@), e (D) =f7 (i, ) (20)

i, j determine the corresponding intervals (values) of xV and x* respectively. The off-diagonal entries
give the classical joint probabilities fﬁ’.

Recalling the equation (16) also reveals the equivalence of p,, and g,,,, and their symmetric and positive
definite properties. One may compare these correspondence with similarities of covariance matrix and
metric of thermodynamic state manifold [19]. One may use fﬁv as a mixed tensor defined by inner product
of a base e™ (i) with a dual base e;(j), by the same components of g% as a metric tensor and
consequently with vanishing covariant derivative due to metric compatibility. Respect to binary data
matrix mentioned in previous section we can imply a new relation between metric compatibility in
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differential geometry and Liouville equation in quantum density matrix notion. It should be reminded that
the trace of defined p;; equals the constant u (the degree of freedom). Evidently, this fact does not
interfere the validity of what will be followed.

Definition: Let (M, g) stands for a u dimensional space-like Riemannian manifold described in sections
(1),(2) with g, as metric and f/w as joint probabilities described in section (2). Evolution of particles
system evolves this manifold through time axis. The overall manifold M comprises space-like manifolds
M and time coordinate generally constructs a Lorentzian manifold where a Wick rotation (i.e.t = ict =
it) convert it to a Riemannian manifold of dimension v + 1. Therefore M foliated by hypersurfaces M
through time axis. This approach is close to ADM formalism and numerical relativity [9]. From now on we
use alphabetic indices instead of Greek letters. Metric compatibility known as vanishing of covariant
derivative of metric tensor i.e. Vi g;; = g;j;x = 0 . Here we use the covariant derivative respect to Wick
rotated time axis: g;;,0 = 0 because the evolution of these systems occur along the time axis and this
reveals the rational for exclusive role of time covariant derivative of metric tensor in comparison with the
spatial derivatives. This condition is also valid for metric gll:.

Theorem: For a system of particles and associated manifold M endowed by the metrics g;; defined in
section (2) vanishing covariant derivative of metric tensor (respect to Wick rotated time) is equivalent to
guantum Liouville equation.

Proof: Density matrix evolution in quantum setting and its Liouville-von Neumann equation for time
evolution with H,; as matrix form of Hamiltonian operator could be read as [2, 21]:

a mn i
’;t = _%Zj(Hmjpjn — Hinpmj) (21)

In the Planck units A = ¢ = 1 by taking into account the Euclidean coordinate after a Wick rotation i.e.
t = ict = it and substituting it in above equation we have:

0pmn

e = 2j(Hmjpjn = Hinpmj) (22)

Regarding metric compatibility in differential geometry [4]i.e.V; g;; = Vi g"/ = 0 and equation (19) i.e. ¥
it = gf* = Pmn- The joint probability f;™ is equivalent to metric tensorg;'. Taking into consideration
the temporal component (covariant derivative of metric tensor respect to Wick rotated time 7) of tensor

compatibility, by definition of covariant derivative we obtain:

ofm j '
Vogm =Vofm =0 = =T, /"~ I(jfa (23)
Then we get (by Einstein summation convention on j index and symmetry of matrix f;"* = fi ):
ofm ' j
o7 = Tomf}" = T0jfm (24)

Where F({m terms denote the Christoffel symbols. Comparing equations (22) and (24) reveals a new
relation between Christoffel symbol and Hamiltonian matrix of the considered state:

Y1 HmiPin = X1 Hpu fi* ~Tom S (25)
Accordingly we achieve a correspondence: Hpj~ l"ij (26)
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For general strict equation instead (26), one needs an additional constant term to F({m which does not
depend on metric tensor, namely:

Hynj = Tgm + Ch, (27)

Then the equation (22) and (24) remain compatible. In next sections taking C,],.l = 0, leads Hamiltonian

J . The term C}, stands for a constant trace mixed tensor which
independent of indices remains with constant trace i.e.

operator to be reduced to Hp,; = r/

Tr(Cl) = K (28)
4. Derivation of Mean energy

Considering the relation of energy expectation value (E) of a system with Hamiltonian H and density
matrix pyyj

(EY =Tr(pH) = YmjHmj Pmj (29)

With substitution of Hy,; and pp,; from (19) and (27) and identity I‘({m = gj"gkm_o and using Einstein
summation convention we have:

Tr(pH) = g7 (T + Ch) = (9797 Giamo + 97 C) = (9™ Gremeo + CI2) (30)
1

Using the formula for trace of Christoffel symbol ( [}, = gmkgkm,(, = E%logg) [10] we get a relation

between energy expectation value as trace of pH and the trace of FOJm as follows:
1

—~ a
(E) = Tr(pH) =+ = Eglogg +K (31)

Where (E') denotes the energy per particle (constituent)[2] at a specific point P where both p,,,, and g%

in equation (19) are defined, g stands for determinant of metric tensor g;;. The trace of C,L substituted
by K and appears as a constant. Without loss of generality, we could assume K = 0 then:

a
(E) =>=logg (32)

K as the constant part of particle energy, could be considered the rest mass energy of particle i.e. K =
myc?, however it can be omitted in non-relativistic approximations. As described above, (E) stands for
mean energy per constituent (particle) at an exact interval of parameters (i.e. volume element d"w of
the related manifold). Since at equilibrium state, each particle contains u bit of information, therefore in
our model (E) is equivalent to energy of u bit. We will show the consequences of this result in sec (7).
Accordingly, the whole expected energy of N particle system at thermal equilibrium, E can be read as:

7]
E=N(E)=%Elogg (33)

The main result of this equation, regarding the energy conservation of system, is a continuous evolution
and matric change. Metric of considered system and its determinant g should change by a rate
determined by the total energy content of system. If we denote g;; as the corresponding matrices of

spatial coordinates in ddT this metric is also involving in time evolution. In a system with equilibrium state


https://doi.org/10.20944/preprints201612.0049.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 February 2022 d0i:10.20944/preprints201612.0049.v2

respect to parameters other than space parameters, we expect the change rate of determinant g is
determined by the time evolution of g;; :

7]
E ~Elog(detg,ij) (34)
The default positive sign of E yields: %log(detg,ij) >0 (35)

This reveals that in any unbounded system there is a tendency toward the expansion of spatial coordinate.
We realize this result in section 7.5. Of course, N(E) stands for the mean energy of total system consisting
of particles or a hierarchy of information bits or the energy density. We will present M in next sections
as a non-compact manifold specified for a class of ensembles with certain energy and particle number.

5. Canonical formalism Of BDM model
Taking into account that metric compatibility condition includes all coordinate variables we generalize the
previous section discussion by extending the Liouville equation for other physical coordinates. First, we
rewrite the general metric compatibility condition:

Vigij = Vig” =0
In this section we show that the term introduced as ¢ = —Elogg appeared in energy equation of BDM
model:

E = ;Elogg

Is equivalent to Hamilton principal function in classical mechanics. The equation for energy has been
derived from quantum Liouville equation:

ap i

5 = 7 0] (36)
Replacing time and Hamiltonian by spatial coordinates and linear momentum respectively gives:

ap _ i

dx - A [px' P] (37)

Evidently this relation also holds for any other degree of freedoms. Like equation (36) using Wick rotation
t — it and assuming the new parameter (e.g. x ) instead of “time”, and p, instead of E, it is straight
forward to conclude the relations for momentums

Px =3 ax ~logg (38)
Comparing these equations with Hamilton-Jacobi formalism reveals the role of — %logg as the Hamilton

principal function F. This function acts as Euclidean action Af with similar equations for Hamiltonian
H and momentum p; :

E E
L= ——n . == (39)
This shows that AE=F=—¢= —%logg (40)
This satisfies the basic relation in BDM modeI i.e.
(E) = ( logg) = -2 (41)
And consequently: Dx = —Ealogg = Z—i (42)
Regarding (38), (39),(41) and (42) a simple solution to g will be read as:
\/E = e(ET—pr1) (43)

Where p and r denoted as the momentum and position vectors. Therefor with the definition A =
—(Et—p.1), \/Etakes the form:

Jog=e ¥ (44)
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Therefor the Euclidean action in BDM theory could be derived from its metric determinant.

6. Ricci flow as a consequence of BDM model
If D,, denotes the binary data matrix for physical parameter x ,,, then a DFT (Discrete Fourier transform)
transformation of basis vectors e;” maps them to a set of new complex bases &;¥ with complex
components. Discrete Fourier Transform of a binary sequence; e;¥ = (j?,j7, o Jm, | With ¥ € {0,1}is
defined as:

ZY (i) = T jy (D)e2mImk
So, the binary basis transform to the complex basis:

Jn = Zk

According to Parseval theorem DFT is an isometric map from the real manifold to a complex manifold with
Riemannian metrics and consequently a Kahler complex manifold. This reveals that the manifold (M, g)
is the real version of a general complex manifold and obeys the general properties of a Kahler manifold.
As we saw in previous sections, the Hamilton’s principal function takes the form:

F= —%logg (45)
Consequently, we could derive the exact equations for momentum:
OF
pi = —;glogg 7l (46)
In the non-relativistic approach, we can choose p; = mv;, then (54) reads becomes:
19 OF
my; = —--—=logg == (47)
Ricci tensor on a Kahler manifold reads as [ ]:
__0d%logyg
le - aZiaZ_]'

This equation describes Ricci tensor on a Kahler manifold where we define the main manifold of BDM

theory. Substitution of— and its conjugate by ( Py li) and ( —+ l—) and taking into account the

ay; 0x; ay;
independency of g, and g of imaginary coordinate y; summarizes equation of R;; to:
__0d%logyg

RU - 6xi6xj (48)

By equation (46) we obtain an interpretation for R;; in BDM model:
~ i _ 9p;

R = ox] T oxi
Recalling the symmetry property of R;;as a symmetrlc bilinear from and p; = mv; results in:

ovi _ )

axJ ~ oxi
This equation means that the flow is irrotational and curl vanishes. Moreover the rate of change of particle
density is proportional to — (o aZ’l ):

oy ovi _ 99
at  axJ ~ axi
This rate in BDM can be represented by g;;, therefor we have:
99y _ 9nij  Ovi _ 9v;
at gt axJ — axt
=Ry
This means that Ricci flow family is compatible and a resultant row of BDM theory.

Finally, we get the equality:

7. Evolution of manifold M under Ricci flow Dynamic

11
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The very first notion of Ricci flow[22, 23] which Introduced by Hamilton (1984) as an evolution equation
of metric tensor:

Jijo = — 2Ry (49)

Hamilton showed the unique solution of Ricci flow equation on a closed manifold for sufficiently short
time. It is noteworthy that Ricci flow is an evolution equation comparable to Heat diffusion and is not a
tensor equation because the derivative of metric tensor is not generally a tensor. The equation (49) shows
similarities with evolution model in ADM and Numerical relativity [9]. In section (6) we have proved the
Ricci flow as a direct consequence of binary matrix model. We show that this flow and its solution is in
agreement with our notion of Ricci tensor and mean energy based on binary data matrix. These equations
reveal straight- forward similarity between Einstein gravity emerging from curvature of space-time and
curvature in data space, perhaps includes leading reasons for emerging gravity as an entropic force. Taking

. . j
into account expression for FOm

. L.
I‘(;m = Eg]k(gko,m + Ikm,o — gOm,k) (50)
And orthogonality of time base vector (Killing vector) relative to the other bases, by g™° = g0 = 0 for

k,m # 0 results in: Hp,j = r; +cl = %gfkgkm,o +Cl (51)
Assuming a Ricci flow like dynamic proved in section 15:

Rym = AGkm,0

With a as an arbitrary constant, for the sake of simplicity, we take it as @ = 1. By g,o = 0 and equation
(46) we obtain:

Tom = 9" Rim (52)

Then equations (31), (32) are converted to:
(E)=TJ; = g/Ry; =R =12 (53)
Thus gives rise to: ' (EY=R (54)
Here we use the expression for trace of de , and definition for Ricci scalar curvature. As before ¢ stands

for the logarithm of determinant of metric tensor; ¢ =logg .

Corollary If metric tensor g;; for a system is defined by equation (11) then the related partition function

could be derived by equation: Z = g_% (55)

Proof: The relation for mean energy of a mixed system with density partition function Z in thermal
equilibrium at temperature T, given by [24]:

(E)=U = ksT?logZ (56)
Where kg stands for Boltzmann constant. By replacing T by (kg7)~! as in thermal field theory [25] this

equation transforms to:
_ 2, -1 0
<E) - kBT (kBTZ 6‘[

Comparing this equation with (64) results in:

a
)ogZ = —ElogZ
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d 190
—ElogZ —Ea—glogg
Then we have: Z=Cg: (57)

Where C is a constant respect to time.
8. Least action principle and Einstein Field Equation

In section (5) we showed the manifold M with a local curvature R representing the mean energy per
particle at any point on this manifold. The particle density p,, (the number of particles per unit parameter
volume at each point) evidently is not a strict function of metric g, and consequently its variation respect
to g, vanishes. Then energy density on manifold will be denoted by p,(E). By this energy density the
variation of Euclidean action integral in our model could be read as:

5SPPM = & [ po(E) Jgd"w dr =5 [, pp52L [gd wdr =0 (58)

It is straight forward to impose the relation 6S = 0 which guarantees the role of p,,(E) as a Hamiltonian.
Subsequently the action S will remain invariant under coordinate transformation. This means that the

covariant divergence of H,,, = (63%) should be vanished:
S
Hyo = Y, (557) =0 (59)

This can be easily verified by taking the covariant derivative of% as follows. Replacing Z—f by the term

a L. . . .
—lo and some variation calculus, equation (58) gives rise to:
5. 089

19 1 1
8SBPM =& [\, pn oo [ @dT == py [y (Guvo = 597 Gji0gin)89* gd wdT = 0 (60)
Let Hyy = (Guv,0 — %gj"gjk_ogw). Note that the density in the parameter space; p,, due to Liouville

theorem is independent of g*¥ and time and acts as a constant under variation. Recall the variation of
Einstein-Hilbert action in n 4+ 1 dimension namely:

§SE-H =§ fM R \/Ednx dr = fM (Ryy — %ng)agw\/gd"xdr =0 (61)

Where G, = Ry, —%Rgm, is Einstein tensor. We have proved in the Ricci flow like dynamics as a
straightforward consequence of BDM model section (6):

Juv,o = aR,uv

Substitution of g,,,, o by @Ry, (with @ as a constant) in BDM action (68), results in the equation:

>0n fy (Ruy = 5 R9,0)8g"[gd" wdt = 0 (62)

Deleting the constants p,, and « gives:

1
Sy (Ruy =5 R91n)89* [gd" wdr = 0 (63)
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Comparing H,, and G, reveals that G,, = H,, with the same solutions of equation §SE-H =0
for 6S = 0 Thus, under the condition of Ricci flow like dynamics, two integrand remain proportional i.e.
H,, = Gy, and solution of two action integral will be identical. This reveals that imposing Ricci flow as a
natural consequence of BDM on evolution of manifold gives the structure of space-time in General
relativity and Einstein field equations.

9. Other Results:

In this section we bring some examples for compatibility of the results of previous sections with some
well-known results of astronomy, information theory, thermodynamics etc.

9.1 Relation to average energy in canonical ensemble statistics

In this section we prove an interesting relation between energy averages (E) and partition function in the
path integral notion of quantum field statistics. First we note the relation of imaginary time periods T =

—it in thermal field theories which coincides the Wick rotation we used in section.3 and § = L (with

kgT
kg as Boltzmann constant) in statistical mechanics:
=B =— (64)
T=p= kgT
Now recall the well-known derivation of average energy from canonical partition function [24].
_ g7 _ _ OlogZ
(E)=U=~"" (65)
According to equations (31) and (32) and assuming U, = 0:
_ 10 _19%
(E) = 3=-logg =32 (66)

20t
Considering the relation between partition function Z and determinant of a non-negative self-adjoint

(symmetric) operator A in the context of field theory [25] gives:
1
L= [, e <?49>D¢p = (detA)™> (67)

Or in a brief notation [26]: 7 = fM e P<E>Dg

Here (E) should be introduced as Dirichlet energy [26]. We see if one assumes gij as an operator A in

above equations, then equations (66), (67) and corollary (i.e. Z = g_% ) yields the identity:

_ 0 _ a _ 7] —1<E _
(E)—Elog\/_——alogZ——Elong e ™<E>Dyp = (E) (68)
This reveals the compatibility of expected energy formula (66) of the model with field theory formalism.
9.2 Stress-Energy tensor

Energy momentum tensor of model can be derived by variation of action § respect to g, :

- 8s 1 1
T,uv = W = H;w ~E(.g,uv,0 - Egjkgjk,og,uv) (69)
Recall the Einstein field equation: Ry — %gwR = KTy (70)

14
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With assumption of Ricci flow as the governing dynamics and replacing gy j o = —2Ry;in (69), we obtain

the energy momentum tensor of model: T, = Hy,~Ryy — %gﬂvR = kT (71)

This is also consistent with the result of previous section and implies a linear relation between (E') and
temperature.

9.3 Energy equipartition and Landauer’s principle

As we showed in previous sections, the state of system could be characterized by a data matrix containing
a set of information bits. Any column of this matrix (i.e. §&x1) contains the set of information of one
particle in which the values of parameters given by u bit of information, each bit for a positive interval in
each degree of freedom (u denotes the degree of freedom). If € stands for the mean energy of a bit of
information, then the mean energy per particle (E) is given by:

(E) = né (72)

Regarding the Landauer's principle which states that for erasing a bit of information the minimum
required energy is: € =kgTlog2 (73)

Substitution of € in equation (72) gives:
(E)=ué=pukgTlog?2 (74)

This is in analogy with the equipartition theorem of energy which states that the mean energy of each
particle is proportional to the degree of freedom, Boltzmann constant and temperature, and shows the
compatibility of the model with these two basic principles.

9.4 Universe Inflation and extrinsic curvature

If except for spatial dimensions all other parameters confine in a relatively equilibrium range, the large
part of g;; will be constant with a fairly good approximation while the 3D-space metric g;; increases as
was proved in (35). In this situation which could be realized by our universe, the change rate of the whole
metric g;; equals the change rate of spatial part of the metric. Therefor we can substitute the 3-
dimensional spatial metric g;; with j = 1,2,3 into FRW equation which reveals a relation between spatial
metric tensor and scale factor a(t)[27]:

gij = a*(t)8;; (75)
In n dimensional manifold the determinant of above metric reads as:
g = a*"(t)
. 10 _ 2 _.a
Accordingly we have: E ~ Ealogg, =no loga(t) =n " (76)

With a as time derivative of scale factor a and E as total energy content of universe. Hubble parameter
has been defined as:
a
H=3
Substitution in (76) gives:
E~R =nH (77)
Usually Hubble parameter H considered to be equal to R~1 with R as the observable Universe radius.
Respect to the equations (87) we achieve the equation:
E=nR! (78)
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On the other hand, in ADM notion of general relativity, 3+1 dimensional splitting of space-time reveals a
relation between K (the trace of extrinsic curvature K;;) and determinant of metric tensor i.e. g [9]:

%%logg = —aK + D;p* (79)
Where ,Bi stands for shift vector and assumed to be vanished. Therefore, by equation (86) we have:
E=R=—-0aK

This relation supports the curvature concept of (E) as predicted in our model. In 3+1 decomposition of
general relativity, one of the important concepts related to 3 spatial submanifold is external curvature K;;
with a well-known equation as follows[9]:

dogij = —2NK;; (80)
Where N is considered as a constant respect to time. On the other hand, as mentioned in previous
sections by applying the Ricci flow, dynamic for metric tensor reads as:

Sijo = — 2R;; (81)
This reveals that the Ricci flow can be traced out as the main dynamic in time evolution of spatial
hypersurfaces in ADM formalism and Numerical relativity and supports the main idea of our model in
applying this flow as a universal dynamics.

The interesting result of equation: (E) = %%logg

Indicates that not only the spatial coordinates, but also all other physical parameters undergo expansion
of their base vectors. Linear and angular momentum subsequently obey the conventional patterns of
Universe inflation. We call this fact as the generalized inflation principle and in section 9.19 show that the
velocity curve problem of far stars in galaxies and dark matter could be resolved by the results of this
principle. As the Hubble law holds true just for large astronomical distance at 2 — 4 Mpc, the generalized
inflation principle applies the distances beyond these intervals.

9.5 Equivalence of action and entropy of Black holes
Black holes reveal an exact entropy and actions. The entropy of black holes has been widely investigated
by Hawking and Beckenstein [30,31]. This entropy has been proved to be proportional to the black holes’
surfaces without a statistical inference. Recent approach to Euclidean action of black holes [32] while
smearing the delta function distribution to a Gaussian distribution in the limit ¢ — 0 has shown an
equivalence between Euclidean action and entropy of black holes.
In this section we try to show in the context of BDM model the relation between Fisher information metric
and entropy and action of black holes and equivalence of gravitational action and entropy of black holes.
In this approach we apply the basic results of BDM theory and to prove the equivalence of entropy and
action of black holes. Fisher information metric matrix definition results in the equivalence of inverse of
covariance matrix (C%) and fisher metric tensor [34]:

gij = (C)~ ' =CY (82)
Where @ij stands for Fisher information metric. For jointly normal random variables x4, x5, .. x,, the
entropy calculated as [34]:

H =logA+k (83)

With constant k = log 2me and A= det(;;. By (82) we have H = %loggf1 + k. Where g stands for

determinant of Fisher information metric. We show in the case of black holes at the limit ¢ = 0 we can
exchange the fisher metric with metric of BDM model (appendix A). Therefor substitution A= det C;; = g
into equation (83) gives the entropy H in terms of BDM matric tensor and its determinant g. The Fisher

metric g;; replaces the metric g;; In quatlons an to result in:
ic g;; replaces th ic g;; in Equations (82) and (83) Iti
a 10

E}[ = —Ealogg' = —(E) (84)
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The relation of statistical entropy H =%1oggf1 and the equation (40) reveals that H could be

interpreted as Euclidean action A¥ or Hamilton principal function F. This connects two different concepts
of statistics and Hamiltonian mechanics.

H = AE (85)
This coincides the result of recent works that state the entropy of black hole is equal to Euclidean action

i.e. Sy, = AF [31,32]. Thus, we have:
aSpn _ 0 g _
= =54 = —(E) (86)
9.6 Maxent and Least Action Principle
The equivalence between action integral and entropy conveys the relation between least action principle

and maximum entropy (Maxent) principle. If we accept the opposite signs of entropy and action integral:

S=-I (87)
Where S stands for entropy and I for action integral. Then the maximum of action results in the minimum
(extremum) of action integral: 65=-61=0 (88)
9.7 Lagrangian
Following the results of identity (40); F = — %logg we can derive the Lagrangian as:
Ep=T-U (92)

dt
For a free particle i.e. U = 0 the expansion of (16) reads as:
dF _ 9F | 9F dx
e + Irdr —E+p,v, =T (93)
For free particle E = T, then we have:

E=T= %mvf (94)
Matrix version for Lagrangian could be derived by replacing F by —%logg:
_dF_ _1dy. o 1dg
L= dr 2 drlogg 2g dt (95)
Using Jacobi formula for derivative of determinant we get:
-1 4oy - L a9ij
L= ZgTr( Y dr)_ Tr(gCU dr)

L _ 1
Taking into account (g;;) 1= gCij we have:
dgl.]

L= —%Tr[ (gi) 12| = —21r(6716) (96)
Where G = DDT. This is the matrix form for Lagranglan in BDM.
9.8 Derivation of Schrodinger wave function
If D,, denotes the binary data matrix for physical parameter x ,,, then a DFT (Discrete Fourier transform)
transformation of basis vectors e;” maps them to a set of new complex bases &;¥ with complex
components. Discrete Fourier Transform of a binary sequence; e;¥ = (j?,j7, e Jm, | Wlth]n € {0,1}is

defined as:
Zy(0) = Tpjn (D)e2mmk (97)
So, the binary basis transform to the complex basis:
Jn > Zg

According to Parseval theorem DFT is an isometric map from the real manifold to a complex manifold with

Riemannian metrics and consequently a Kahler complex manifold. It could also be proved that these

complex bases é;V are orthogonal for a specific parameter x,, and their inner products with complex

bases é; “H of another parameter X ,, returns the metric tensor g,,,,. So, with DFT of real bases the metric
tensor will be preserved. If ¢ denotes a matrix with the set of row matrices[ &;] while index "i stands for
the number of interval for a specific value of parameter x,, assumed to be constant and v denotes the

number of parameter as well as the row number of ¢ ,then we have:
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cc’ =6 =g (98)
If the determinant of ¢ be defined by Cauchy-Binet formula, then taking the determinant of both sides of
(98) gives:

(detc)(detc)* =detG =g
Obviously det ¢ is complex valued. We replace it by . Therefor i takes the form:
¥ =[ge' (99)
Imposing the reverse Wick rotation on real time axis, results in the transformation Et — iEt, therefor
the equations (42) and (43) change to:
\/5 — ei(Et—p.r)

Complexification of the manifold and reverse Wick rotation transforms real g to complex §. In g the new
time parameter was added with v = 0 and this results in additional negative and imaginary entries to G
to form complex G with complex determinant g

If action denoted by S, the new action will be S = iS so we obtain:

—iS =log,/d (100)
Substitution g in Equation (99) gives: \/5 = ll)e_ie (101)
Inserting (101) into (100): —iS = log(lpe‘ie)
And finally: P = e~ i5-0) = ge-iS (102)

Where «a stands for a complex constant. The relation i ~ ae ™S guarantees the Schrodinger equation:

]

La—‘f = AP (103)
Y is the determinant of matrix ¢ and takes the multilinear form of ¢ entries. Using the general definition
of determinant in the context of Cauchy-Binet formula, the determinant is a multilinear form of c. It is

straight forward to impose the time partial derivatives on this summation and deduce that Schrodinger
equation (103) holds for all entries of c. Then for each particle we have a similar equation:

i = Ay, (104)

Where y,, stands for a function of parameters for nth particle. At any point in the parameter space it

turns out the corresponding entries of nth particle for specified parameter.

9.9 Derivation of Slater Determinant

Consider sub-matrix D,, of D which contains the coordinate v of related parameter. If all particles set to

be fermions, Pauli Exclusion Principle limits the number of particles in each row by 1. This means that the

related matrix D,, is of order N X N and its determinant takes the values 1 or -1. DFT transformation of

D, changes the real basis to complex basis and produces a complex manifold with Riemannian metrics.

Consequently, this manifold is compatible with a Kahler manifold. Let denote the transformed D,, by 51,.

If we restrict the notation for D, to a spatial parameter x with other parameters independent of time,

then D, contains the entries defined by, (x) as proved in (30). Therefor if we would define ® as the

determinant of D,, = 1,,(x) , the determinant of corresponding block matrix G, in G appears as:

gx = [dety, (x)] [det, (x)]”

Thus we have: ® = [detp, (X)] ~\/gx ~ 75 (105)

This means that @ is the wave function of N fermions as known as the Slater determinant.

9.10 Ideal gas

Ideal gas as a non-interacting system of particles brings a good example for our model. Let us consider a

confined ideal gas with volume V; while imposing a compression contracted to volume V, with change of
Vi

energy AE = W, where W denotes the performed work. If the contraction coefficient defined as a = 7
2

, and contraction occur along x axis, then the related BDM metric transforms by scale factor a on the
basis e;” which corresponds to x axis. Evidently the reason is the increase of particle number density
along x axis proportional to a. Since the entries of g;;are the inner product of basis vectors e/, the
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resultant change in determinant of g;; will be the product by scale factor a?. Consequently the \/E
changes to \/? = a\/g. Therefor taking the action § = —log\/— = Et, the energy change reads as:

AE.t = log‘/\; loga = log— (106)
Taking into account the periodic time and replacing time with 1/kT , we have:
AE = kT log* (107)
2

Which is compatible with the formulas of ideal gases.
9.11 Symmetries of BDM theory
BDM model is compatible with a few symmetries. Here we list the most important symmetries a
1) Unitary symmetries: we have shown that DFT transform of data matrix D leaves the
determinant g invariant. Similarly, all unitary transformations are symmetric groups of BDM
model. Let U denotes an arbitrary unitary matrix which transforms the data matrix D:
D' =UD (108)
Taking the determinant:
detG’ = detD’ D'" = detUD det(UD)' = detU detUt detDDt = detG (109
This reveals the unitary symmetries of Lagrangian in BDM model.
2) Conformal symmetries: a conformal symmetry refers to those transformation of metric tensors
that rescales the metric either global or local while the theory remains invariant:
Guv = LGy (110)
Where Q2 stands for a function of space time coordinates.
Determinants of metric transform as:

g =0*"g (111)
If Q2 is time independent then we obtain:
d
=——log\/— —a(log\/g+nlogﬂ)=L (112)
For time dependent Q% we get:
L =L—n%logﬂ (113)

Equation (113) guarantees the invariance of Lagrangian under conformal transformation, because
additional term is a total time derivative. Therefor the conformal symmetry is an inherent
symmetry of BDM theory.

9.12 Bremermann limit and maximum Curvature
In this section we reveal an interesting relation between Bremermann limit and maximum space-time
curvature and Plank time and length. Bremermann limit is the upper bound of bit information transfer

2
rate per unit mass and is defines as % . Due to the dynamic of Ricci flow we have:
1

Ruv = _guv (114)
2
For a space with spherical symmetry (like the black holes) Ricci tensor equals extrinsic curvature i.e.
Ry =Ky (115)

The scaler curvature for 3-hyper surface with spherical symmetry reads as:
1
=
To be compatible with physical scaler curvature it requires a Planck constant A to admit the correct

dimension of R:
h
R=1 (116)
Now respect to the limit of maximum bit information rate (i.e. maximum average of transmitted bit per

second) known as Bremermann limit (we denote it by Lg), we should consider the maximum limit of
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Juv as Bremermann limit. The main reason is the structure of g, in BDM theory. In BDM the entries of
Juv is the time average of number of bits restricted to some intervals of physical variables. Therefor the
maximum changing rate of the bits involved in g, i.e. g,,, will be proportional to Bremermann limit:

(guv)max~ Lg (117)
To satisfy homogeneity of dimensional equation, respect to Einstein field equation dimensional

. 1
homogeneity: Ry — ERguv = 8nGTy,y (118)
The term g,,, /G is Dimensionless quantity required for dimensional homogeneity of equation (118). Then
we should replace (117) with:

1,. 1
Cax = E(guv)maxNELB (119)
Where (4 denoted as the possible maximum rate of bit (particles) transfer in BDM theory. For

calculating the scaler curvature, we contract the Ricci flow (49) with g*V:
1 . 1 14 10 19
R=g"Ry =-9" g = ETr(G 16) = ~5,log(detG) = -—-logg = (E) (120)
Thus, the total scaler curvature equals the energy per particle multiplied by particle density. In each row
of data matrix D the number of positive bits ‘1’ is the same as the number of particles with the same
value of specific physical variable. Therefor the maximum energy of all bits (particles) in this interval could
be calculated by multiplying the maximum energy of each particle €4, by the maximum change of the
number of bits (particles) in this interval i.e. (g, )max = Lg- Then we have:
Emax = €maxCmax (121)
Respect to (120) the maximum total curvature of involved particles is R, 50 = Epmax- On the other hand

the maximum energy per particle, due to uncertainty principle, could be derived by:
h
Emax = - (122)
Where 7, stands for the Planck time. The relation between maximum curvature, E;,4and equation (116)
. . . . i
shows that R,,,, for a 3-hypersurfac with spherical symmetry is proportional to r—3when r3 takes the

minimum length L, (Planck length):

h

Rpax = lp_3 = Emax (123)
Equations (121), (122), and (123) results in:

ho_he i

lp3 - Tp Cmax - Tp G (124)

We can verify this equation by substituting the values of Planck time and length and Bremermann limit:
9

5= (125)
G2 h2 G2 h2

This interesting result confirms the “information bit” nature of space metrics and brings an example to

the authentication of Ricci flow and compatibility of BDM theory with Planck length and time and

Bremermann limit.

9.13 Energy density of Light wave propagation

As an example for applying the Ricci flow as the dominant dynamics of isolated free system of particles,

we imagine a spherical wave front of light propagating from an origin point of space-time. Due to (120)

we have: (E)=R

Therefor for energy density of propagating wave of which is an example of an isolated free system of

photons we apply this equation and deduce that it equals the curvature of the system. In this example

this curvature reduces to 2-dimensional sphere curvature (wave front is spherical) and amounts:
(E) = R~ riz (126)

2
2

This results explains the inverse square law for energy density of light propagation in vacuum.
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9.14 Power spectrum
It is valuable to calculate power spectrum of a system via the BDM model. First we note that strict
definition of power spectrum reads as [34]:
+00

S(w) = 17 x;i %,G(x;, x;, w)dox;dx;
Where G stands for the Fourier transform of joint probability density f(xl-,xj, t):

G(xi,xj, a)) = f(xl-,xj, t) e lwtde
In BDM model the joint density of pair variables x;, x; determined by g;;as mentioned in previous
sections. Therefor the power spectrum in BDM sense reads as:

+00 —i
S(w) = [~ xi % ([ gij (x1, xj, t)e ™t dt ) dx; dx;

9.15 Bit density principle
In this section we show the density of bits along spatial or time coordinate, represents hidden momentum
and energy of a system of particles. As we have shown in previous sections, the expression %logg could

be interpreted as “entropy” in some limiting situations such as black holes. If we agree on the classic value
of bit information as the entropy of a system, then we have the relation:

[=-S§= %logg
With this identity, the expressions for energy and momentum in BDM theory will be read as:
10 aI 10 a1
(E) = 55 logg = — , Pi = —5551089 = —7= (127)

These equations imply that there are relations between energy and momentum and bit density over time
and spatial dimensions. These particle densities in BDM model indicate the bits density principle. As a
generalization, the bits density over time should correspond to energy and the bits density along the

angular variables correlates with angular momentum.
i bits bits

second unit length ’ unit angle (128)
The best example for time density of bits is the density of a full wavelength (as a single bit) over the time.
The bits density over time, normally can be explained by the frequency of the propagating wave. Hence
the energy should be proportional to frequency:

exf
For dimensional compatibility, we use h as an appropriate coefficient and hence we have:

e=hf (129)
We know for electromagnetic waves (photons) this is the Planck formula for energy per photon.

energy~ ,momentum~ angular momentum~

For bits density along spatial coordinates this full wavelength (bit) density could be represented as % and

therefore the momentum is proportional to% and after multiplying with h as proportional coefficient
gives the De Broglie equation for matter wave:

p=1 (130)
9.16 Crystallography
BDM theory could be applied in special mode to solid state theory of crystals with its Bravais and reciprocal
lattice and coordinates. In other words, crystallography theory can be considered as a special case of BDM
model. We show the dual basis e*¥in BDM model corresponds the reciprocal basis in crystallography.
Metric tensor in BDM model derived from dual basis e™”. Respect to equation (7) for i = j we have:

(e (@), e () = TnleDnle” D], =1e™DI> = gy () = £©)

This means that the bit density on a specific value of parameter v, equals the square of e*V (i) module.
In crystallography theory the main basis is the lattice basis namely Bravais lattice. These vectors simply
connect two adjacent atoms and make a 3-dimensional parallelepiped structure as the spatial base
vectors. As has been mentioned before the reciprocal basis of a crystal determines the actual density of
particles along axis perpendicular to the related crystal surface. Dual basis in BDM model looks like the
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reciprocal basis in crystal lattices. Therefore, dual basis in BDM model seems to take the momentum
values and could be assigned by momentum like variables just similar to pseudo-momentum components
of the Reciprocal basis of crystal lattices. consequently, there is a connection between dual bases in BDM
model which reflects the probability density of particles in our system and pseudo-momentum of crystal
lattices. For spatial components these dual bases stand for the real pseudo-momentum or K-vectors of
crystal lattices. For bit density along the spatial coordinates in crystal lattices, the total density of a plane

of atoms along the axis perpendicular to that plane, is proportional to % where d is the distance between
atoms planes. The magnitude of corresponding reciprocal base lattice is aIso% :

6] =~ (131)
The vector with this magnitude perpendicular to the atoms plane is called crystal momentum or pseudo-
momentum. This momentum appears just in the interactions of atoms lattice with an incident photon or

particle waves. Respect to the bit density principle from previous section, this pseudo-momentum is equal

to density of bits (atoms) over the interval d by the equation:
bits n

—_— == (132)
unit length d
The related momentum is the product of density and # i.e.
P=hz
then the pseudo-momentum per atom reads as:
P=hz=hG (133)

this is the main relation for crystal momentum which derived by the bit information principles.
For non-spatial coordinates, these bases show similar concept.

Curiously, the similar relation should govern the angular momentum. The suggested relation is as follows:
h
Le = 5 (134)

Interpretation of 8 as unit angle (angular period) needs more explanation. For crystals with N -fold
rotational symmetries it has been verified that the difference of pseudo-angular momentum of incident
and diffracted photons on a crystal with N-fold rotational symmetries obey the relation [33]:

Amh = oh + NPh (135)
And for Rayleigh scattering with g; and g, as incident and scattered helicity of photons we have [33]:
o, — oy = NP

Where P denotes an integer and N determines the particles or bits density per unit angle 2m (recall the
definition of N-fold rotational symmetries). Thus the equation (134) in BDM context is compatible with
pseudo-angular momentum relation in (135).

Another crystallographic evidence backing BDM model pertains to metric attributed to crystal lattice. The
relation between displacements &; = u;; (u;; denotes the diagonal strain tensor) under propagation of a
single pulse wave and the metric attributed to a crystal lattice is in the form:

di? = ¥;(1 + 2u;;)dx;” (136)
The determinant of this metric tensor will read as:
Its logarithm for small valued u;; takes the form:
log det G =Y jlog (1+ 2u;;) = ¥ 2uy; (138)
then (E) = %%log g approximated by:
d
(E) = Xj5-wj (139)
If assume the displacements ¢; = u;; a periodic function of time to impose vibrations on crystal atoms,

we get:
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g = gelot (140)
Then for energy with 7 = it we have: (E) = szj%ei‘”ft = —iYiwe @t =Y we' st (141)
Considering the real part of equation, expected energy for a pulse wave through crystal wave will read as:

And for each degree of freedom: (Ej) = w; f05|coa)jt| = w; (142)

This means the proportionality of energy per particle and frequency. After multiplying with A, this is
compatible with Planck equation:

And shows the energy of a phonon in crystal lattice.

9.17 Derivation of mass-energy equivalence

What is the relation of energy for a body with mass m in the notion of bit information density formalism?
For a body with mass m the number of bits is obscure, because the constituent particles are different in
mass and type and could not be assumed as individual bits in the context of BDM theory. Nevertheless, a
direct approach is to define a fundamental mass unit that scales the body mass in dimensionless numbers
as the information bit content. The most fundamental mass unit is presented as Planck mass by definition:

my = \/% (144)

This mass is also the minimum possible mass of a black hole. Hence the number of bits of a body with

mass m reads as:
m ,G
n= m—p =m E (145)

due to bit density principle the related energy could be derived by calculation of bit density over a definite
time interval, which is defined by Planck time:

hG
Then for equivalent hidden energy for mass m we should work out the density of bit information over

time scale t,, times f1 : E = htl = mc? (147)
p
This reveals the exact mass-energy formula in the context of especial relativity and asserts it as a potential

form of energy that can be appeared just in the interactions with other bodies. This is equivalent with the
pseudo-momentum in crystal lattices as the hidden momentum that appears when the lattice exposed to
interactions with particle waves and photons.

9.18 Beckenstein Bound

The maximum information confined in a region with radius R and energy E due to Beckenstein is:

2TTRE
~ hcln2 (148)

Here the time span for bit information is the interval by which the light travels from center of black hole
(singularity point) to horizon at the radius R:

At == (149)
Therefor the bit density over this interval is proportional to energy E up
to a coefficient A : E = hé = h% =] = % (150)

is compatible with Beckenstein bound.

9.19 Rotation (velocity) curve problem as the results of generalized inflation

Velocity (rotation) curves of distant stars relative to their galaxy’s center do not obey the Newtonian
dynamics. Based on astronomical observations, the orbiting velocities of these stars are approximately
equal or slowly increasing over the large distances whereas the Newtonian dynamic predicts a lowering
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speed proportional to NG with r as the distance of star from galaxy’s center. The problem has been

justified by assuming an unobservable dark matter distributed in the galaxies with a certain pattern. The
modified Newtonian dynamics (MOND) is also another approach to this discrepancy by suggesting a
modification of Newtonian dynamics at very large distances and very low gravity accelerations. | suggest
an interpretation of both Universe inflation and velocity (rotation) curve in the context of BDM theory.
From the main equations of the model we conclude that all base vectors of all parameters inflate through
time:

(E)= 22logyg (151)
Because g is the determinant of parametric space metric which include base vectors of all parameters i.e.
spatial, linear momentum and angular momentum. Therefor in BDM the inflation involves all parameter
and not only the spatial dimension and consequently it implies a generalized inflation. The rate of
inflation is proportional to energy content of the system. For universe, the expansion rate is proportional

to its energy or mass content. If a stands for the scale factor of this inflation, then the ratio% equals the
Hubble constant H:

H=2 (152)
As a generalization to inflation of spatial metric, equation (151) guarantees the inflation of all parameters
with equal footing. Therefore, as the Hubble law describes the expansion rate through such an equation:

Due to generalized inflation principle, we could also apply the same equation for linear and angular
momentum:
H=2==L (154)
p L

For linear momentum we obtain: p=pH-ov=vH-ov=rH-o>r=rel
Which is compatible with Hubble law. For angular momentum we have:

L=LH~-> dfivtr) = vrH - log vr = Ht - vr = vyrgel’t = vyr (155)
Or: Ur =vor 2 v =1, (156)

Here v stands for orbiting velocity of stars andvy is a constant velocity. These equations are valid at the
limit of a far distance D, from other galaxies where the gravitational acceleration amounts to negligible
limit and the observable inflation begins. At this critical distance which is about 2-4 Mpc (Mega Parsec)
the radial velocity respect to Hubble’s law start to be observable and yields:
vy = DoH (157)
The initial velocity vy should be interpreted as the escape velocity which determines the lower limit of
expansion velocity. Consequently, the orbit velocity v also equals this escape velocity and obeys the
expansion effects in the negligible gravity. Then we have:
v =vy = DyH (158)
Evidently the observable expansion of galaxies is possible for galaxy’s stars at very large distances where
the gravity loses required binding potential to hinder expansion of spatial and non-spatial parameters.
Based on astronomical observations, the least distance D, is about 2-4 Mpc (Mega Parsec) [38]. Then the
estimated constant velocity v, will be read as (with H = 70km/s. Mparsec:
vy = DyH = 140 — 280 km/s (159)
Surprisingly, this is the range of asymptotic constant velocities of the stars at the rim of galaxies. The

acceleration emerged from generalized inflation at large distances will read as:
2 DnH 2
= Yo _ ol (160)
T r

This acceleration replaces the Newtonian acceleration around the distance Dy and dominates it at the
astronomical distances comparable to it. Therefore, we get two separable acceleration, Newtonian which
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is proportional to = and BDM derived acceleration that is proportional to . At the astronomical

distances the Newtonian acceleration decreases rapidly and v approaches to DyH as the final constant
velocity that corresponds to v, in MOND theory. Equation that fits almost all observed data of galaxies
rotation curves could be extrapolated in a way followed by MOND approach to connect these limits of
velocities at the far and near astronomical distances. At this level it is compatible with MOND results after
clarifying the reason for Newtonian modification at very large distances based on BDM theory results.
This reveals the reason for rotation curve discrepancies without invoking the existence of hidden Dark
matter or phenomenological modification of Newtonian dynamics (MOND). For far orbiting stars in a
galaxy, the angular momentum obeys the Newtonian dynamics up to a distance where the expansion of
parameters overcomes the gravitational field acceleration. Of course, this velocity is equal to asymptotic
velocity of stars in the galaxy disk as assumed in the context of MOND theory and be achieved by stars
when the distances are about Dy = 2 — 4 Mpc from galaxy center. Stars speed behave asymptotically
between the points where we arrive the fundamental acceleration a, and the point of critical distance
Dy which have been observed through astronomical data. Here we proved the relation between the
Hubble constant, orbit velocity limit and D, as the minimum distance where the inflation begins.

9.20 Physical constants and generalized inflation

The spin of particles as an internal angular momentum with its involvement in electromagnetic interaction
between electron and photon, is included in the parametric space. The any generalized inflation that
evolves the angular momentum as described in previous section, would impact on electron spin. The

electron spin S with the value ofg will lose its quantity due to the equation (155):

S = Syeht (165)
If we calculate the relative change of spin over 1 year, we get:
g ~ 6x10~11 (166)

Fine structure constant () is among the most suspicious constant which should be evolved over universe

evolution. The definition for this electromagnetic coupling constant is:

a=2 (167)
e and c are constants that are not included in parameters of BDM and therefor are not involved by inflation
evolution. However, h as an angular momentum will alter over inflation and results in negative relative
change to a. Consequently, the rate of relative change of a reads as:

Z=2=6x1071

This change rate is compatible with one of the related data was given by Shylakhter [ 35] and reviewed by
Cardenas [36,37] which is reported as 4 x 1011, This shows an amazing compatibility of BDM generalized
inflation results and astronomical results of physical constants evolution.
10. Conclusion
Binary data matrix (BDM) and constructed Hilbert space fitted for physical measurements recording,
represents a set of base vectors with associated metric tensor and entries that interpreted as observed
joint density probabilities of related system parameters. Both metric tensor and joint probabilities are
symmetric and positive semi-definite. Definition of density matrix in the sense of quantum statistics
conveys the full analogy between these matrices and metric tensor. We define a manifold with the
dimension of the whole parameters intervals number, and its submanifolds expanded by basis vector
subsets identified on each independent parameter intervals. We prove that this geometry and induced
metric not only reveals the properties of a Riemannian manifold, but also proves the equivalence of metric
compatibility and Liouville-Von Neumann equation. We generalize the equivalence to spatial dimensions
and prove the compatibility of BDM model with Hamilton-Jacobi formalism. This model also explores the

relation of the manifold curvature and ensemble average energy of the under measurement system and
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uncovers the rational for equating the pure geometrical side and stress energy tensor of Einstein field
equation. We have shown that this mean energy is proportional to energy per bit of information that
recovered from measurements. We assert the compatibility of normalized Ricci flow dynamics with our
Hamiltonian action integral and equivalence of this integral with Einstein-Hilbert action integral. Other
successful interpretations included in this model, consist of equipartition theorem of energy, average
energy in canonical ensemble, and Landauer's principle. Compatibility with Universe inflation and FRW
equation is mentioned in last section. Interestingly the concept of generalized inflation justifies the
rotation curves of galaxies’ far stars and obviates the assumption of dark matter with a strong theoretical
framework that could substitutes the MOND theory.

Appendix A

In the case of black holes where all the physical variables of its constituent confined to infinitesimal
intervals 8x*, around the singularity point, if we fix the center of mass of black hole on the origin of spatial
coordinates, the expected values of position and momentum of constituents are near zero corresponding
BDM metric will be concentrated over these intervals with negligible values out of §x and mean values
near to zero. Thus the correlation (covariance) matrix element R;; while the mean of all random variables
vanishes i.e. X = 0 reads as:

Rij = 015 = (9:j6x,6x;) = 9;;6x;6x; (A1)
Determinant of g;; matrix (denoted by A ) could be calculated as:
A= Yijk.. Eijk.. 0i10j20k3 - (A2)
Substitution of g;; with g;;6x;8x; gives rise to:
A= g[li(6x)? (A3)
Logarithm of both sides results in:
logA =logg + 2);logdx; =logg + C (A4)

On the other hand a multivariate normal distribution at the limits g; = 0 approaches to Dirac delta. At
this limit dx is proportional to o i.e. g; = ax; . This results in an equivalence between Fisher metric and
space metric:

dlogPOdlogP, ._ 1 ,0logPdlogP, _ 1
ij = <a_9ia_9,-> = ﬁ(a_xia_x,-) = — 9ij (A5)
Where 0; = g; and P multivariate normal distribution. The reason is the exchangeability of g; and x;
inlog P:
x2
logP = = (AB6)

Metric tensor g;; stands for Fisher metric for coordinates x; and could be regarded as metric of BDM
theory that in empty space converts to usual metric of space and in the presence of matter requires stress
- energy tensor. Therefor the limit identity (A1) reveals the equivalence of BDM entropy and Fisher
entropy:

7—(=%10gA=%logg+C (A7)
The distributions of g; and x; from which we derive the expectations in (A1) are identical because the
normal distributions at the limit g; = 0 tends to Dirac delta:

P - §(x;) = 6(0;/a) = ad(o;) (A8)
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