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Abstract. Exact solutions to conformable time fractional (3+1)- dimensional equations are derived by using

the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to
an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is

substituted into this ODE. The resultant polynomial equation is solved by using algebraic operations. The

method works for the Jimbo-Miwa, the Zakharov-Kuznetsov and the modified Zakharov-Kuznetsov equations
in conformable time fractional forms. All the solutions are expressed in explicit forms.

1. Introduction

The particular integer ordered form of the time fractional Jimbo-Miwa (JM) equation of the type

ηxxxy + pηyηxx + qηxηxy + rDα
τ ηy − sηxz = 0 (1.1)

where Dα
τ is the α.th order fractional derivative operator with respect to τ is proposed in [1] as the second

member of an integrable systems of the KP-hierarchy even though it is not successful to pass the integrability
tests[2, 3]. Some multi-soliton solutions are determined by bilinear form with an homoclinic test method[3].
These multi-soliton solutions are different from the multi-solitons described by using homogeneous balance
and a Bäcklund transformation[4]. Some exact solutions in the forms of solitary waves, periodic waves and
variable separation solution to the JM equation are derived by the aid of improved mapping approach[5].The
generalized tanh method can be used to generate non traveling-solitonic and moving solitary wave type exact
solutions[6]. ı̈¿ 1

2zïı¿ 1
2 and Aslan also determine some exact solutions to the JM equation by using the method

of exp-function[7]. The exact solutions to space-time fractional version of the JM equation are proposed in [8]
by using generalized Bernoulli equation method.

The time fractional Zakharov-Kuznetsov (KZ) equation is of the form

Dα
τ η + pηηx + qηzzz + rηxxz + sηyyz = 0 (1.2)

where p, q, r and s are real parameters. The original form of the equation has been proposed to define three
dimensional ion-sound solitons in a magnetized plasma with a low pressure[9]. The three conservation laws
describing mass, momentum and center mass are also formulated in the same study. The ZK equation also
admits the ellipsoidal and plane type solitons[10]. Some solutions of the cnoidal, periodic, singular periodic,
solitary wave and non topological soliton forms are constructed by using the extended hyperbolic tangent, G′/G
and ansatz methods[11]. The traveling wave solitons in various forms are derived in Ebadi et al.’s study by
implementing the exp-function, modified F-expansion and G′/G methods[12]. Zhang and Zhou [13] obtains kink,
antikink, solitary wave and periodic solutions to the ZK equation in general form by employing the bifurcation
theory.

When the nonlinearity of the ZK equation is increased to three, the equation is named as the modified ZK
(mZK) equation and the conformable time fractional form of the equation becomes

Dα
τ η + pη2ηx + qηzzz + rηxxz + sηyyz = 0 (1.3)

Liang[14] derived some exact solutions in forms of some trigonometric and hyperbolic functions to the mZK
equation by using modified simple equation method. More than twenty exact solutions of the mZK equation
are derived by using enhanced G′/G method in [15]. The fractional forms of both equations are solved exactly
by using improved sub equation adapted for fractional cases[16].

In the present study, finite series of a rational exponential function types solutions are derived for the three
dimensional fractional PDEs in conformable sense listed above. All the solutions are expressed explicitly.
Before explaining the used procedure, some significant descriptions and calculus properties of the conformable
derivative are summarized below.
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2. Preliminaries

Consider a function ζ = ζ(τ) defined in the positive half space and α be number ∈ (0, 1]. Then, the
conformable derivative of ζ for τ > 0 is defined as

Dα
τ (ζ(τ)) = lim

h→0

ζ(τ + hτ1−α)− ζ(τ)

h
, τ > 0, α ∈ (0, 1] (2.1)

for ζ : [0,∞)→ R[17]. Even though this definition of the fractional derivative is pretty new, various important
properties such as derivative of multiplication and division are defined clearly. The fundamental properties of
the conformable derivative required to solve fractional PDEs are summarized below.

Theorem 1. Let ζ = ζ(τ) and η = η(τ) be two α-differentiable functions for α ∈ (0, 1]. Then

• Dα
τ (c1ζ + c2η) = c1D

α
τ (ζ) + c2D

α
τ (η)

• Dα
τ (τp) = pτp−α,∀p ∈ R

• Dα
τ (ζ(τ)) = 0, when ζ(τ) = c3 is constant

• Dα
τ (ζη) = ζDα

τ (η) + ηDα
τ (ζ)

• Dα
τ ( ζη ) =

ζDα
τ (η)− ηDα

τ (ζ)

η2

• Dα
τ (ζ)(τ) = τ1−α dζdτ

for all real c1, c2, c3[18, 19].

The significant properties covering Laplace transform, derivative of composite functions and Gronwall’ in-
equality are defined in[20, 18].

Theorem 2. Let ζ be a differentiable and α-conformable differentiable function and η also be defined defined
in the range of ζ and be differentiable. Then,

Dα
τ (ζ ◦ η) = τ1−αη1−αη

′
Dα
τ ζ(t)

∣∣∣
t=η(τ)

(2.2)

where
′

denotes the derivative with respect to τ [18].

3. The Modified Kudryashov Method

Let P be

P (η, ηατ , ηx, ηy, ηz, η
α
ττ , ηxx, ...) = 0 (3.1)

where η = η(x, y, z, . . . , τ) and α ∈ (0, 1] be the fractional derivative order. The transformation

η(x, y, z, τ) = η(ξ), ξ = ax+ by + cz − ν

α
τα (3.2)

converts (3.1) to an ODE for new variable ξ

Q(η, η′, η′′, . . .) = 0 (3.3)

where the prime (′) indicates the derivative operator d
dξ of η with respect to ξ[21].

Assume that the equation (3.3) has a solution of the form

η(ξ) = a0 + a1H(ξ) + a2H
2(ξ) + . . . anH

n(ξ) (3.4)

for a finite n with all ai, 0 ≤ i ≤ n and an 6= 0. The procedure start by determining the degree of the polynomial
type series n by balancing the non linear term and the highest order derivative term. The function H is required
to satisfy the first-order ODE

H
′
(ξ) = H(ξ)(H(ξ)− 1) lnA (3.5)

Thus, H(ξ) is determined as

H(ξ) =
1

1 + dAξ

where d and A are non-zero constants with the conditions A > 0 and A 6= 1.
Substituting the predicted solution (3.4) and its derivatives into (3.3) gives a polynomial of H(ξ). All the

coefficients of the powers of H(ξ) and the constant term are equated to zero. The resultant algebraic equation
system is solved for a0, a1, a2, . . . an and the other constants used in the wave transformation (3.2). This method
is explained in details in [22].
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4. Solutions to (3+1)-dimensional JM equation

The JM equation given in the (1.1) is reduced to

a3bη(iv) + pa2bη
′′
η′ + qa2bη′η′′ − νbrη′′ − sacη′′ = 0 (4.1)

by using the compatible form of the transformation (3.2). Rearrangement of the last equation by integrating
once gives

a3bη
′′′

+
(p+ q)

2
a2b
(
η
′
)2
− (νbr + sac) η′ = K (4.2)

where K stands for the constant of integration. The balance between the non linear and the highest ordered
terms gives n = 1. Accordingly, the predicted solution (3.4) should be

η(ξ) = a0 + a1H(ξ) (4.3)

where a0 and a1 are the constants to be determined. Substituting this solution and its derivatives into (1.1)
leads

(
6 a3ba1 (ln (A))

3
+ 1/2 a2ba1

2 (ln (A))
2
p+ 1/2 a2ba1

2 (ln (A))
2
q
)
H4 (ξ)

+
(
−12 a3ba1 (ln (A))

3 − a2ba12 (ln (A))
2
p− a2ba12 (ln (A))

2
q
)
H3 (ξ)

+
(

7 a3ba1 (ln (A))
3

+ 1/2 a2ba1
2 (ln (A))

2
p+ 1/2 a2ba1

2 (ln (A))
2
q − a1 ln (A) sac− a1 ln (A) brν

)
H2 (ξ)

+
(
−a3ba1 (ln (A))

3
+ a1 ln (A) sac+ a1 ln (A) brν

)
H (ξ)−K = 0

(4.4)
It is clear that a H(ξ) should be nonzero. Hence, the coefficients of all powers of H(ξ) and K should be zero.

Thus, the algebraic system of equations

−a3ba1 (ln (A))
3

+ a1 ln (A) sac+ a1 ln (A) brν = 0

7 a3ba1 (ln (A))
3

+ 1/2 a2ba1
2 (ln (A))

2
p+ 1/2 a2ba1

2 (ln (A))
2
q − a1 ln (A) sac− a1 ln (A) brν = 0

−12 a3ba1 (ln (A))
3 − a2ba12 (ln (A))

2
p− a2ba12 (ln (A))

2
q = 0

6 a3ba1 (ln (A))
3

+ 1/2 a2ba1
2 (ln (A))

2
p+ 1/2 a2ba1

2 (ln (A))
2
q = 0

(4.5)

Solving (4.5) for a0, a1, a, b, c, ν gives

a1 = −12
a ln (A)

p+ q

c =
b
(
a3 (ln (A))

2 − ν r
)

as

(4.6)

for arbitrary choices of a0, a, b, ν and K = 0. The formed solution

η(ξ) = a0 − 12
a ln (A)

(p+ q) (1 + dAξ)
(4.7)

gives

η1(x, y, z, τ) = a0 − 12
a ln (A)

(p+ q)

1 + dA
ax+by+

b(a3(ln(A))2−ν r)
as z−ν

τα

α

 (4.8)

for arbitrarily chosen a0, a, b, ν. It must be noted that the system (4.5)has three more solutions for a1 6= 0 but
at least one of a, b, c, ν are zero in those solution sets. That’s why these solutions are not reported here.

5. Solutions to (3+1)-dimensional ZK equation

The wave transformation (3.2) reduces the fractional ZK equation (1.2) to

−νη
′
+ paηη′ + qc3η′′′ + ra2cη′′′ + sb2cη′′′ = 0 (5.1)

where
′

denotes d
dξ . Integrating both sides of this equation converts it to

−νη +
pa

2
η2 +

(
qc3 + ra2c+ sb2c

)
η′′ = K (5.2)

with integration constant K. The balance of η2 and η
′′

gives the compatible n as 2. Hence, the predicted
solution must be in the form η(ξ) = a0 + a1H(ξ) + a2H

2(ξ). Substituting this solution into (5.2) yields
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(
1/2 apa2

2 + 6 b2csa2 (ln (A))
2

+ 6 a2cra2 (ln (A))
2

+ 6 c3qa2 (ln (A))
2
)
H4 (ξ)

+
(

2 a2cra1 (ln (A))
2 − 10 a2cra2 (ln (A))

2
+ 2 b2csa1 (ln (A))

2 − 10 b2csa2 (ln (A))
2

+ 2 c3qa1 (ln (A))
2

−10 c3qa2 (ln (A))
2

+ apa1a2

)
H3 (ξ)

+
(
−ν a2 + 1/2 apa1

2 + 4 a2cra2 (ln (A))
2

+ 4 b2csa2 (ln (A))
2 − 3 a2cra1 (ln (A))

2 − 3 b2csa1 (ln (A))
2

+apa0a2 + 4 c3qa2 (ln (A))
2 − 3 c3qa1 (ln (A))

2
)
H2 (ξ)

+
(
a2cra1 (ln (A))

2
+ b2csa1 (ln (A))

2
+ c3qa1 (ln (A))

2
+ apa0a1 − ν a1

)
H (ξ)− ν a0 + 1/2 apa0

2 −K = 0

(5.3)
The solution of this system for a0, a1, a2, a, b, c, ν gives two different solutions as

a1 = −6
apa0

2 + 2K

a0ap

a2 = 6
apa0

2 + 2K

a0ap

b = ± 1

ln (A)

√
−1/2

2 (ln (A))
2
a2cra0 + 2 (ln (A))

2
c3qa0 + apa02 + 2K

csa0

ν = −1/2
−apa02 + 2K

a0

(5.4)

for arbitrary constants a0, a, c and K. Thus, the solution of (5.2) is determined as

η(ξ) = a0 − 6
apa0

2 + 2K

a0ap

1

1 + dAξ
+ 6

apa0
2 + 2K

a0ap

1

(1 + dAξ)
2 (5.5)

arbitrary a0 and K. The solution of the conformable time fractional ZK equation (1.2) is expressed as

η2,3(x, y, z, τ) = a0 − 6
apa0

2 + 2K

a0ap

1

1 + dA
ax+by+cz−ν

τα

α

+ 6
apa0

2 + 2K

a0ap

11 + dA
ax+by+cz−ν

τα

α

2

(5.6)

where a0, a, c arbitrary b, ν are as given in (5.4).

6. Solutions to (3+1)-dimensional mZK equation

The modified form of the ZK equation in the time fractional form (1.3) is reduced to

−νη
′
+ a

p

3

(
η3
)′

+
(
qc3 + ra2c+ sb2c

)
η
′′′

= 0 (6.1)

where
′

denotes d
dξ . Integrating this equation once converts it to

−νη + a
p

3
η3 +

(
qc3 + ra2c+ sb2c

)
η
′′

= K (6.2)

with the integration constant K. The balance between η3 and η
′′

gives n = 1. Thus, the solution is formed as

η(ξ) = a0 + a1H(ξ) (6.3)

for a nonzero a1. Substituting this predicted solution and its derivative into (6.2), a polynomial equation of
H(ξ) of the form(

1/3 apa1
3 + 2 a2cra1 (ln (A))

2
+ 2 b2csa1 (ln (A))

2
+ 2 c3qa1 (ln (A))

2
)
H3 (ξ)

+
(
−3 a2cra1 (ln (A))

2 − 3 b2csa1 (ln (A))
2 − 3 c3qa1 (ln (A))

2
+ apa0a1

2
)
H2 (ξ)

+
(
a2cra1 (ln (A))

2
+ b2csa1 (ln (A))

2
+ c3qa1 (ln (A))

2
+ apa0

2a1 − ν a1
)
H (ξ) + 1/3 apa0

3 − ν a0 −K = 0

(6.4)
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is obtained. This algebraic system has two different solutions satisfying the condition a1 6= 0 and can be written
in the form

a0 = ±3
c ln (A)

(
a2r + b2s+ c2q

)
ap

1√
− 6 ra2c+6 sb2c+6 qc3

ap

a1 = ±

√
−6 ra2c+ 6 sb2c+ 6 qc3

ap
ln (A)

ν = −1

2
(ln (A))

2
c
(
a2r + b2s+ c2q

)
(6.5)

for arbitrarily chosen a, b, c and K = 0. Thus, the solution to (6.2) is constructed as

η(ξ) = ±3
c ln (A)

(
a2r + b2s+ c2q

)
ap

1√
− 6 ra2c+6 sb2c+6 qc3

ap

±

√
−6 ra2c+ 6 sb2c+ 6 qc3

ap
ln (A)

1

1 + dAξ

(6.6)

with the condition (qc2+ra2+sb2)c
ap < 0, ap 6= 0. Hence, the solutions of the (1.3) are of the form

η4,5(x, y, z, τ) = ±3
c ln (A)

(
a2r + b2s+ c2q

)
ap

1√
− 6 ra2c+6 sb2c+6 qc3

ap

±

√
−6 ra2c+ 6 sb2c+ 6 qc3

ap
ln (A)

1

1 + dAax+by+cz+
1
2 (ln(A))2c(a2r+b2s+c2q) τ

α

α

(6.7)

7. Conclusion

The method of Kudryashov in modified form is implemented to derive the exact solutions to (3+1)-dimensional
conformable time fractional JM, ZK and mZK equations. The valid and compatible traveling wave transfor-
mation reduces these equations to integer ordered ODEs. The predicted solution of the finite series form of a
rational exponential function is substituted into the resultant ODEs. The algebraic operations are used to de-
termine the relations between the coefficients originated from both the equations and the transformation. Once
these relations are determined, the traveling wave type solutions in three dimensions are developed explicitly.
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