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Abstract: Ionospheric delay has been a critical issue that limits the accuracy 
of GNSS precise positioning and navigation for single-frequency users, 
especially in mid- and low-latitude regions where irregularity of ionosphere is 
often significant. Kriging spatial interpolation techniques have been recently 
introduced to model the spatial correlation and variability of ionosphere, which 
intrinsically assume that the ionosphere field is stochastically stationary but 
does not take the random observational errors into account. In this paper, by 
treating the spatial statistical information on ionosphere as prior knowledge 
and based on TEC semivariogram analysis, we use Kriging techniques to 
spatially interpolate TEC values. By assuming that the stochastic models of 
both the ionospheric signals and measurement errors are only known up to 
some unknown factors, we propose a new Kriging spatial interpolation method 
with unknown variance components for both the signals of ionosphere and 
TEC measurements. Variance component estimation has been integrated with 
Kriging to reconstruct regional ionospherical delay. The method has been 
applied to data from the Crustal Movement Observation Network of China 
(CMONOC) and compared with the ordinary Kriging and polynomial 
interpolations with spherical cap harmonic functions, polynomial functions 
and low-degree spherical harmonic functions. The results have shown that the 
interpolation accuracy of the new proposed method is better than the ordinary 
Kriging and polynomial interpolation by about 1.2 TECU and 0.7 TECU, 
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respectively. The root mean squared error of the proposed new Kriging with 
variance components is within 1.5 TECU and is smaller than those from other 
methods under comparison by about 1 TECU. When compared with 
ionospheric grid points, the mean squared error of the proposed method is 
within 6 TECU and smaller than Kriging, indicating that the proposed method 
can produce more accurate ionospheric delays and better estimation accuracy. 

Keywords: ionospheric delay, Kriging spatial interpolation, semivariogram, 
variance component estimation, CMONOC 

 

 

1. Introduction 

The ionosphere is the upper part of atmosphere located between from 50 km to 1300 

km above the Earth’s surface with high density of ions and free electrons that can affect 

the propagation of electromagnetic radio frequency waves [1]. Ionospheric delay is an 

important source of errors in GNSS positioning and navigation, which can be determined 

from Total Electron Content (TEC) measurements. Accurate ionospheric delay 

corrections can significantly accelerate the convergence of real-time GNSS ambiguity 

resolution and thus essentially improve precision and performance of positioning and 

navigation products for single-frequency users [2].  

Regional ionospheric models can be generally classified into two categories: function- 

based and grid-based [3]. The former represents regional ionospheric TEC by estimating 

the coefficients of the employed mathematical functions, such as (generalized) 

trigonometric series functions [4, 5], polynomial functions, low-degree spherical 

harmonic functions and spherical cap harmonic functions [3]. Mathematical function-

based models cannot effectively reflect high-frequency variations in local ionosphere, 

unless the functions employed possess high frequency components. Grid-based 

ionosphere models have often been adopted by single-frequency users in wide area 

augmentation systems such as WAAS and European Geostationary Navigation Overlay 

Service (EGNOS). Chao (1997) proposed Inverse Distance Weighted (IDW) functions 

with the Klobuchar model to compute ionospheric delay in WAAS [6]. Komjathy et al. 

(2002) suggested a planar fitting method to interpolate regional ionospheric grid delays 
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[7]. Then WAAS uses a spatial correlation interpolation scheme of Kriging [8], while 

EGNOS employs a non-uniform partitioning scheme for ionospheric grid [9]. Moreover, 

grid-based models can be more effective in detail description of local ionosphere 

variations.  

Ionosphere changes spatially and temporally. Kriging (see e.g. Sarma 2009), though 

originating in the field of mining, is developed to fully account for spatio-temporal 

information on data [10]. Since then, it has become a powerful tool in geostatistics and 

spatial statistics to handle spatially and/or temporally correlated and irregularly 

distributed data and has been widely applied to other fields such as hydrology [11], 

climatology [12], soil science [13], ecology [14], Geo-Information System (GIS) [15], 

atmosphere science [16], geophysics [17] and geodesy [18]. Since 2002, it has been 

shown to be efficient for ionospheric delay estimation as well. Blanch (2002) conducted 

extensive experiments to validate the technique of Kriging for ionospheric estimation by 

using WAAS ionospheric measurements collected during quiet and disturbed periods [8]. 

Blanch et al. (2004) developed a hybrid algorithm by combining Kriging and tomography 

for Satellite Based Augmentation Systems (SBAS) and applied it to post-process 

ionospheric TEC measurements from the US and Brazil [19]. Wielgosz et al. (2003) 

compared Kriging with multiquadric models by using GPS observations from five Ohio 

CORS stations; the results have shown that both methods are suitable for instantaneous 

regional ionosphere modeling [20]. As one of the Internal GNSS Service (IGS) 

ionosphere analysis centers, Technical University of Catalonia (UPC) has adopted 

Kriging to re-process existing UPC Global Ionospheric Map (GIM) products. The results 

have shown that the Root Mean Squared error (RMS) of the UPC Kriging GIM is about 

16% lower than the current UPC GIM and about 2% lower than IGS GIM, where the 

RMS is the root mean square of the difference among the geometry free combination 

observations and the Slant TEC (STEC) computed by each GIM at the same elevation in 

a continue arch at two different time. Both the standard deviation and the RMS are 

reduced approximately by 0.3 TECU (TEC Unit, 1 TECU = 1×1016 electrons/m2) (6%) 

and 0.1 TECU (3%) over the current UPC GIM products when compared with 
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TOPEX/Poseidon and JASON TEC data, respectively [21]. These studies have shown 

that the Kriging method is useful and effective for ionospheric TEC estimation.  

Sayin et al. (2008) compared the performance of the Ordinary Kriging (OK) with the 

Universal Kriging (UK) using a synthetic data set with different variances and different 

types of sampling patterns. They observed that for small sampling numbers and with 

higher variability, OK performs better. However, UK gives better results in case of smaller 

variances in synthetic surfaces and increasing sample number [22]. Although UK takes 

the random signals of TEC observations into account, it does not consider measurement 

errors. Li et al. (2011) demonstrated, with the Ground-based Regional Integrity 

Monitoring System (GRIMS) reference stations in China, that UK can produce a more 

accurate ionospheric delay correction than distance-weighted method and a tight 

confidence bound in the boundary areas [23]. The technique has also been well used to 

reconstruct the ionosphere critical frequency (foF2) instantaneous mapping [24-26]. 

Relevant studies can be found in Tierno et al. (2012) [27], Deviren et al. (2013) [28] and 

Chen (2014) [29]. 

It has been demonstrated that some trend and signals may exist in ionospheric delay 

[8]. The accuracy of measurements and the stochastic model of signals are two basic 

elements in Kriging. However, TEC measurement noise has often been neglected in the 

estimation of ionospheric delay, as can be found in the research works mentioned above. 

Additionally, in the real conditions, TEC measurements can be of different accuracy. 

Nevertheless, any Kriging kind cannot are able to handle the situation with a number of 

different unknown variance components of spatial/temporal data.   Therefore, as the 

first motivation of this paper, we will consider the estimation of ionospheric delay with 

TEC measurements of different (unknown) accuracy. On the other hand, even if 

measurement noise and the stochastic model of the signal would be fully taken into 

account in the estimation of ionospheric delay, we have to determine whether the level of 

measurement noise and the stochastic model of signals are correctly given, since incorrect 

stochastic models can distort the estimation of trends. The second motivation of this paper is 

to apply the new Kriging method to real data and to demonstrate how to eliminate the 
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distortion by calibrating stochastic models of measurements and signals. More 

specifically, we will theoretically extend the basic Kriging principle to the case with 

measurements of different (unknown) variance components and calibrate factors for 

signals to balance the stochastic models of both measurements and signals.  

This paper is organized as follows. In Section 2, we will briefly outline ordinary 

Kriging algorithms and semivariogram for the construction of signal stochastics. In 

Section 3, we will theoretically extend Kriging methods to the case in which the stochastic 

model of measurements contains a number of unknown variance components. In other 

words, we can introduce calibrating factors to properly balance the stochastic models of 

both measurements and signals. The general formulae to estimate trend parameters, 

signals and the unknown stochastic models of measurements will be worked out in detail. 

The proposed new Kriging method will then be adapted for use in ionospheric TEC 

estimation in Section 4 and its implementation will be outlined as well. A brief overview 

of the common used ionospheric mapping models are given in Section 5 in order to 

compare with our introduced method. Finally, in Section 6, we will apply the new method 

developed in Sections 3 and 4 to analyze the data from CMONOC and to evaluate the 

quality of China Regional Ionospheric Maps (CRIM).  

 

2. Kriging spatial interpolation  

2.1 The principle of Kriging spatial interpolation 

Kriging originates from the field of mining and developed to deal with spatio-

temporally correlated data [30]. Since then, it has become a standard and powerful method 

in geostatistics and spatial statistics [10] and has found a variety of applications in all the 

subjects of study where (regularly and/or irregularly) spatially and/or temporally 

correlated data are routinely encountered. It is based on the variability and spatial 

correlation of regionalized variables to determine the weights of sampling points 

distributed around the point to be estimated, according to the principle of unbiased and 

optimal estimation. Finally, the value of the estimated point is obtained by using the linear 
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combination of data samples. The spatial variability and correlation of data is described 

by using spatial covariance function or semivariogram. Very often, we do not know the 

semivariogram in advance. Instead, it must be practically estimated from the original data 

set. In the remainder of this section, we will closely follow Cressie (1993) to briefly 

outline the basic principle of the ordinary Kriging.  

In geostatistics, we almost always assume the stationarity for spatially distributed data. 

In other words, given a spatial random function Z(x), we assume (i) that its expectation is 

constant and does not depend on the location x; and (ii) that the correlation function 

between any two points solely depends on their distance. These two assumptions can be 

mathematically described equivalently as follows:  

 ( )[ ]
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(see e.g. Cressie 1993), where the function ( )hγ   is called semivariogram, which 

characterizes the spatial correlation of random function ( )xZ , and h=h  is the distance 

between the two spatial points. If the assumption of isotropy is removed, then h will not 

be a scalar of distance but should be replaced by the vector between the two points. If we 

further remove the assumption of homogeneity, in this case, the semivariogram should be 

written in its most general form as ( )xhx ,+γ . 

Based on the above assumptions and given a semivariogram function, the basic 

Kriging method is to find the best linear unbiased estimator or interpolator with minimum 

variance. Given a set of measurements ( )1xZ , ( )2xZ , ..., ( )NZ x , we can interpolate the 

value ( )0
ˆ xZ  of a given (non-measured) point x0 by constructing a linear combination of 

the measurements as follows:  

 ( ) ( )
=
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i
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ˆ xx λ  (3) 
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where iλ  are the unknown coefficients to be determined. In general, we also require that 

these coefficients be non-negative. 

 The expectation of the difference between the linear interpolation (3) and the signal at 

the point 0x  can be written as follows: 

( ) ( )( ) ( ) ( ) ( )( ) ( )( ) 
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Since we require the linear interpolator (3) be unbiased, and bearing the condition (1) in 

mind, we must have: 
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Under condition (5), we can further compute the error variance for ( ) ( )00
ˆ xx ZZ − , which 

is given below: 
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where ( )ji xx ,γ  is the semivariogram between points ix  and jx . 

To construct the optimal interpolator (3), we require minimum error variance (6). In 

other words, Kriging is to construct the optimal interpolator by minimizing the error 

variance (6) under the constraint (5) of unbiasedness. Following Cressie (1993), we 

construct the augmented objective function: 
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where μ is the Lagrange multiplier. By computing the partial derivatives of the objective 

function (7) with respect to iλ  and setting them to zero, we have the normal equations: 
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from which, together with the equality condition (5) of unbiasedness, we can readily 

obtain the following linear system of equations: 
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 (9) 

By solving the equations (9), we have the solution of iλ  and μ , and as a result, can use 

them to construct the OK interpolator (3) and to complete the estimation of ( )0
ˆ xZ . Here 

ijγ  (i, j=1, 2 ,..., N) stands for ( )ji xx ,γ  in Eq. (8), and 0iγ  stands for the semivariogram 

between the i-th measured point and the point to be interpolated, for the conciseness of 

notations. The estimated error variance of the optimal OK interpolator can be derived by 

applying the error propagation law to (3) and is simply given as follows: 
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Eqs. (9) and (10) can also be written alternatively in matrix form as follows: 

 ΓΒλ =  (11) 
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 [ ]TN 102010 γγγ =Γ , [ ]TN μλλλ 21=λ , [ ]000 γ=Γ  (14b) 

Therefore, the weights iλ and the Lagrange multiplier μ can be estimated by solving Eq. 

(11). 
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2.2 Construction of semivariogram  

The semivariogram describes the spatial correlation of a random field and plays a key 

role in spatial Kriging interpolation. In practice, a semivariogram is generally unknown 

but has to be estimated from spatial measurements. To simplify the numerical 

representation of spatial correlations among random points under the assumption of 

stationarity and isotropy, the semivariogram in this case is often represented by using a 

few parameters [30].  

By definition, a semivariogram is half of the variance of the difference between ( )xZ

and ( )hx +Z  , which is related to the covariance function through the following 

relationship [30]:  

 ( ) ( ) ( ) ( )lklklk CC xx0xxxx ,,, 2 γγσ −=−= ∞  (15) 

Given N(h) pairs of measurements separated at a distance h and under the assumption of 

stationarity and isotropy, the semivariogram can then be numerically estimated as follows: 

 ( ) ( ) ( ) ( )( )
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Practically, all the measurement points may not be regularly distributed in space. In 

this case, we will have to allow a certain tolerance in order to have a sufficient number of 

data pairs to estimate semivariogram. Nevertheless, a large number of semivariogram 

values, as given by (15), may not be convenient to use. Thus, one often selects some 

appropriate and simplified models to fit and represent semivariogram. The most common 

used semivariogram models include spherical functions, exponential functions and 

Gaussian functions [8, 30].  

 

3. Variance Component Estimation(VCE) Based on Collocation 

Variance component estimation (VCE) has been one of the most important topics in 

geodesy [31-35]. To correctly determine the weights of different types of measurements 
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and/or measurements of different precisions, we have to simultaneously estimate both the 

model parameters and variance components. A number of methods have been proposed 

both in geodesy and statistics to estimate the unknown parameters along with the 

unknown stochastic model of measurements. The most widely used methods include 

Helmert quadratic estimation [32], maximum likelihood [33], the Best Invariant 

Quadratic Unbiased Estimation (BIQUE) [34], the Restricted Maximum Likelihood 

Method (REML) [36], and the MInimum Norm Quadratic Unbiased Estimation 

(MINQUE) [37, 38]. Extensions to ill-posed problems can be found in Xu et al. (2006) 

[35], Xu (2009) [39] and Eshagh (2011) [40].  

In this section, we focus on the following collocation model:  

 εBsAβy ++=  (17) 

where y is an n×1 observation vector. In the literature of ionospheric modeling, one also 

often uses the notation I(x), instead of y, to denote observations of ionospheric delays. ε  
is the corresponding measurement error vector; A is the (n×t) design matrix of the 

unknown parameters, β   is a t×1 vector that contains (deterministic) unknown trend 

parameters to be estimated; s is an m×1 vector of random signals with an associated (n×m) 

design matrix B. 

In general, the least-squares collocation method almost always assumes that the 

variance-covariance matrices of the measurement errors and the signals are given and 

then uses the measurements y to estimate the parameters β and the random signals s. Yang 

and Xu (2003) extended the collocation model to the case to allow one unknown variance 

component for the measurements y and one unknown variance component for the random 

signals s[41]. Yang et al. (2009) introduced an adaptive factor into a new adaptive 

collocation procedure and used the maximum likelihood technique to determine the 

weights of the signals and measurements [42]. 

In this paper, we will further extend the collocation model to a very general case with 

a number of unknown variance components for the stochastic models of both the 
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measurements ε and the random signals s. For simplicity, we will focus on the following 

stochastic model:  
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where the variance-covariance matrix Σ  contains εΣ  and sΣ  that are the variance-

covariance matrices of the measurements and the random signals, respectively. isU and 

iεU  are the given positive (semi-) definite matrices, and 2
isσ   (i=1,2,…, sk  ) and 2

iεσ  

(i=1,2,…, εk ) are the unknown variance components. If the measurements and the random 

signals can be divided into a number of stochastically independent sub-groups, and if the 

measurements and the random signals are stochastically independent as well, then sΣ and 

εΣ become block-diagonal, which can be rewritten as follows: 
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where isP and iεP are the weight matrices, corresponding, respectively, to the i-th sub-group 

of the random signals s and the measurement errors ε . In this case, the matrices isU and 

iεU become  
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If the signal vector s′ at unmeasured points is also included into the collocation model 

(16), we then have:  

 [ ] ε
s
s

0BAβy +







′

+=  (20) 

If the variance components in the stochastic models is known or given with some initial 

values, we apply the least squares collocation principle (see e.g. Huang 1992) [43] to (19) 

and obtain the following solution: 
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where ( ) 1−
+= ε

T
sy ΣBBΣP , β̂ is the estimated trend parameter vector, ŝ is the estimated 

signal vector at the known points, s′ˆ is the estimated signal vector at the unmeasured 
points. 

Since the variance components are unknown, we now apply variance component 

estimation to the collocation model (19) to estimate the variance components of the 

measurements and the random signals. Specifically, we will use the MINQUE method in 

this section.  

To estimate the variance components for the measurements and the random signals, 

and keeping in mind that the variance component estimation has nothing to do with the 

unobserved signals, we rewrite the stochastic signals as pseudo observations. Thus, (16) 

can be alternatively presented as follows: 
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where sy  and sε  denotes the prior values and errors of the signals, respectively. 
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the unknown variance components, the MINQUE estimate of the variance components 

can be computed by using the following equations (see e.g. [35], [37], [43]): 
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and the elements of the coefficient matrix G and vector q are given by 
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tr(·) denotes the trace of a square matrix, and

 
 









=

I0
BA

F
 

(23g) 

 ( ) 1
0

11
0

1
0

1
0

−−−−− −= ΣFFΣFFΣΣC TT
 (23h) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2016                   doi:10.20944/preprints201612.0018.v1

http://dx.doi.org/10.20944/preprints201612.0018.v1


 

 ( )ε
ε

ε 00
0U

U kiii ,,2,1, =







= , ( )s

s
s U0

00
U ki

i

i ,,2,1, =







=  (23i) 

 
000 ˆ,ˆˆ, sVysBβAV

V
V

V sε
s

ε =−+=







=

 
(23j) 

0Σ stands for Σ with initial sets of 2
0sσ and 2

0εσ . After obtaining the estimates of 2
0ˆ sσ and

2
0ˆ εσ  , we can re-estimate β̂  , ŝ  and s′ˆ   in (20) and further use these formulae (22-23) to 

iteratively estimate the variance components. Then the estimations y′ˆ  at unmeasured 

points can be get by the following Eq. (24): 

 sBβAy ′′+′=′ ˆˆˆ  (24) 

and the corresponding variance-covariance matrix yΣ ˆ ′  is: 
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where A′  and B′  are the design matrices, and the formulas of variance matrices in Eq. 

(25) can refer to Huang 1992 in detail.  

 

 

4. Implementation of VCE integrating with Kriging in ionospheric delay 
estimation 

The observable of STEC can be formed by using geometry-free linear combinations 

of processed L1 and L2 pseudorange and phase data. The Vertical TEC (VTEC) can then 

be derived from STEC at the corresponding ionospheric Intersecting Pierce Point (IPP) 

by multiplying with the mapping function [44]. In this paper, the mapping function is the 

Modified Single-Layer Model (MSLM) [44]. The variance of the TEC observations at 

different elevations is calculated using the following formula: 
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where e is the elevation angle of the satellite (the cut-off elevation angle is set to 15°), 

iΣε is the corresponding variance of the ionospheric delay observation error; 2
0σ  is the 

prior variance of the pseudorange observation noise. 

For ionospheric delay estimation, we set the trend in the equation (16) to be constant. 

Moreover, the matrix B is an identity matrix. The observation equation for the vertical 

ionospheric delay at the IPP located at x (latitude,longitude), denoted by I(x), becomes: 

 ( ) εsβxI ++=  (267) 

For the sake of simplicity in the ordinary Kriging interpolation, we directly use the VTEC 

observed at IPPs within a certain limit around the Ionospheric Grid Points (IGPs) to 

interpolate the VTEC according to the algorithm in Sect. 2.1. 

In order to apply Kriging interpolation and VCE for ionospheric estimation, we need 

to choose some appropriate semivariogram or variance function which can give exact 

veracious description for ionosphere random behavior. Fig. 1 presents the semivariogram 

of the ionosphere on day-of-year (DOY) 305 in 2014 which are computed by using  Eq. 

(15) based upon CMONOC observational data sets. The dots and curves shown in Fig. 1 

are the experimental semivariograms and fitting results respectively. According to the 

shape and behavior of the experimental semivariogram, the Gaussian semivariogram 

function of the signals is selected: 

 ( ) 












−+=

− 2

2

10
a
h

eCChγ  (278) 

(see e.g. [30]), where C0, C and a are the unknown parameters to be estimated. In 

geostatistics, C0 is called “nugget” which is linked to the continuity and to the spatial 

regularity of the regionalized variables. The physical explanations in ionosphere study, 

the discontinuity at the origin are expounded due to the obliquity error, remaining bias in 
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the measurements and the fast-changing ionosphere [8]. The semivariogram reaches a 

limiting value, C0＋C , termed as “sill” on behalf of the structural variance of spatial 

variation, and reflect the biggest variation extent of the variables. The two observations 

are uncorrelated if the distance is beyond a limit. This distance is called the “range”. 

 

 

Figure. 1  Experimental semivariogram(dots) and the fitting results using Gaussian 
function(line) at different UTC time on DOY 305, 2014 

The prior variance-covariance of the signals can be computed according to Eq. (15) 

after fitting the experimental semivariogram to the theoretical semivariogram model (28) 

by using the least squares estimation. Once the semivariogram and variance are computed, 

with the known and typically diagonal measurement noise matrix, the Kriging and VCE 

methods can be used to estimate the results and the estimation variance. Using the 

developed algorithms, the maps for regional TEC in China can be obtained in real-time 

with the fitted semivariogram function automatically at any desired epoch. 

In order to estimate the VTEC at a given IGP at a given epoch, we must first select a 
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set of VTEC measurements whose IPPs are distributed within the restricted scope 

centered upon this IGP. We set the maximum radius and minimum radius as maxR =2000 

km and minR =500 km respectively. It is important to note that the appropriate radius R~  

for searching IPPs at a given IGP must be within a half of the given searching limits and 

half of the range, as well as the maxR  . The minimum and maximum number of IPP 

measurements is set as minN =5 and maxN =25. If there are IPPs fewer than minN  within R~ , 

no corresponding estimate is computed. If we find the maxN  IPPs around the estimated 

IGP, then we stop searching. On the other hand, due to the variation level of ionospheric 

activity which calls for a change for the degree of the ionosphere measurements 

correlation, the experimental semivariograms have to be fitted in real-time with the IPPs 

located within appropriate searching limits, with the distance interval to compute the 

semivariogram from data and its tolerance set to 100 km and 50 km, respectively. The 

searching limits here refer to the maximum distance between any two IPPs with 

correlation. From Fig. 1, we can see that in the disturbed ionospheric condition, the 

semivariograms have smaller range and larger sill than those in the quite ionospheric 

condition. In the measured data tests, this value of searching limits is set as 3500 km 

between 14:00 and 22:00 in China local time (=UTC+8 h), and 4500 km at other moments, 

as shown in blue vertical dashed lines in Fig. 1. 

 

5. Regional ionospheric models 

For the purpose of numerical comparisons in this paper, we will briefly outline some 

ionospheric interpolation methods used for ionospheric mapping, namely, polynomial 

interpolations and interpolations with low-degree spherical harmonic functions and 

spherical cap harmonic analysis. 

The polynomial ionospheric interpolation method is to use a polynomial function of 

the latitude differentials and the hour angles differentials of the Sun to interpolate 

ionospheric delays. The mathematical model can be written as follows:  
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(see e.g., [44, 45]), where Iv stands for an VTEC measurement, ( )λϕ ,  are the geographic 

latitude and longitude of the IPP, Eik are the coefficients of the polynomial function, S0 is 

the hour angle of the Sun observed at the central point of the central epoch t0 in the 

observation session, e.g. ( ) ( )000 ttSS −+−=− λλ  , ( )00 ,λϕ   are the central point 

coordinates of the IPPs, and t is the observation epoch. In this study, the degrees (n,m) of 

the polynomial function (29) are set to n=m=8 for regional modeling and n=m=1 for local 

interpolation, respectively. 

The interpolation method with low-degree spherical harmonic functions is to represent 

an ionospheric delay measurement with the latitude-dependent associated Legendre 

functions and the sum of the longitude-dependent sine and cosine terms. The 

mathematical expression of a VTEC measurement Iv at an IPP with low-degree spherical 

harmonic functions is given by 
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0 0
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n

m
nmnmnmv msSmsCPsI ϕϕ  (30) 

(see e.g., [44]), where ϕ  is the geographic latitude of the IPP, 0λλ −=s  is the sun-fixed 

longitude of the IPP, λ  is the longitude of the IPP, 0λ  is the longitude of the Sun, nmax 

is the maximum degree of the spherical harmonic expansion,  nmP   is the normalized 

associated Legendre function of degree n and order m, and nmC~ and nmS~ are the spherical 

harmonic coefficients to be estimated. In this paper, the maximum degree is set to 5 and 

the total number of the unknown coefficients is ( ) 361 2
max =+n . 

The regional model on the basis on spherical cap harmonic analysis has also been 

routinely used in ionospheric modeling (see e.g., Liu 2011). The model with a spherical 

cap in interval [0, 0θ ] for regional mapping of VTEC is expressed as: 
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where ( )ccvI λϕ ,   is the VTEC measurement at IPP ( )cc λϕ ,   inside the spherical cap, 

Kmax , M and nk(m) are the maximum degree, order of the series and the real degrees, 

respectively. k is the index of the real degrees nk(m) (0 ≤ k ≤ Kmax). ( )cP θcos~
  is the 

normalized associated Legendre function, kmC~  and kmS~   are the unknown normalized 

spherical cap harmonic coefficients. If the geographic coordinate of the pole of the 

spherical cap is ( )NN λθ ,  , a point with the geographic coordinates ( )λϕ ,   can be 

transformed into the spherical cap coordinates as follows (see e.g. [3]): 
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where the co-latitudes ϕθ −= 90 , and cc ϕθ −= 90 . In the next section of applications, 

Kmax and M are set to 8 and 6, respectively, and the total number of the unknown 

coefficients is 75)1()()1( maxmax
2

max =+−⋅−−+ MKMKK  

 

6. Applications to CMONOC data and result analysis 

We have applied Kriging with unknown variance components to reconstruct the 

ionospheric maps over China, which will be abbreviated as KVCE. We will also compare 

different methods for ionospheric reconstruction. The regional function models used 

include the low-degree SPHerical harmonic function model (SPH), POLYnomial function 

model (POLY) and Sphere Cap Harmonic Analysis model (SCHA). 

The Crustal Movement Observation Network of China (CMONOC) consists of about 

260 GPS stations. To demonstrate the construction of a regional real-time ionospheric 

model over China, 80 stations with a reasonable level of a uniform distribution from 

CMONOC are selected with data in November 2014 (from DOY 305 to 334). The 

processing interval is 60s. Paths with elevation angles less than 15° are removed due to 

its high level of errors. Fig. 2 shows the spatial resolution (2.5°×5° in latitude and 

longitude), the distributions of the CMONOC stations (blue pentagram points), the 
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selected reference stations (red pentagram points) and IPPs (green points). In the 

processing, due to the lack of P1 observations at most stations, the CA code pseudoranges 

are used to extract the ionospheric delay by carrier-to-code leveling process. The satellites 

differential code biases (DCBs) are calibrated using the products processed by Wuhan 

University [45], and the receivers DCBs are estimated using the GIM products and the 

known satellites DCBs. 

 

Figure. 2 The distribution of the CMONOC stations (blue pentagram points), the 
selected reference stations (red pentagram points) and IPPs (green points) at local time 

14:00 on DOY 305 of 2014 

 

 

6.1 Local interpolation residuals analysis 

The strategy of cross-validation is used to evaluate interpolation performances of 

different methods of KVCE, OK and polynomial interpolation (named as IPOLY here). 

For each IPP, its interpolated value of TEC is calculated in the same way as the procedure 

of IGP TEC estimation. This means that while polynomial is used for the interpolation, 
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only those IPPs around the target IPP are used to calculate the polynomial coefficients. 

KVCE and OK are performed by following the same procedure. Taking interpÎ  to denote 

the STEC by interpolated VTEC conversion using the MSLM mapping function and I to 

denote the observed STEC at the same IPP, we can then compute Interpolation Root Mean 

Squared error (IRMS): 

 
( )

N

II
N

i
iinterp

=

−
= 1

2ˆ

IRMS  (33) 

Figs. 3 and 4 present the IRMS results from KVCE, the ordinary Kriging and 

polynomial interpolation for DOY 305 to 334. The IRMS from the KVCE is from 0.5 to 

2.5 TECU, while the IRMS values from the OK and polynomial interpolation are from 

1.5 to 3.5 TECU and 1.5 to 3.0 TECU, respectively. As shown in Fig. 4, the IRMS mean 

values of the three approaches are 1.37 TECU, 2.59 TECU and 2.06 TECU, respectively. 

The IRMS of KVCE is smaller than those of OK and IPOLY by about 1.2 TECU and 0.7 

TECU, respectively, indicating that KVCE achieves a better interpolation accuracy than 

OK and polynomial interpolation. The polynomial interpolation fits the trend with 

weights from the measurements accuracy information, which is effective for the 

deterministic part (trend) of TEC distribution in local areas, but do not use the random 

signals in spatial variations of TEC. Since OK uses a constant model as the trend, and 

since a trend model plays a dominating role in TEC modeling, this explains why the 

results of local IPOLY with a more flexible trend model are better than those of OK. On 

the other hand, KVCE not only gives full consideration to the balance between the 

weights of measurement noises and random signals but also the spatial relationships of 

the scattered IPP measurements. This probably explains why KVCE performance is 

superior over OK and IPOLY in local interpolation. 
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.  

Figure. 3 The IRMS of KVCE, ordinary Kriging and local polynominal interpolation in 
2014.11 

 
Figure. 4 The daily mean of IRMS for KVCE, ordinary Kriging and local polynomial 

interpolation in 2014.11 

6.2 Regional modeling residual analysis 

POLY, SPH and SCHA can be used to make regional TEC maps. The IPPs’ STEC can 

be computed with the fitted coefficients. Thus, we can also compute the residuals. To 

compare the performances of POLY, SPH and SCHA, we will use the following measure: 
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II
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i
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=
−

= 1

2ˆ
 (34) 

where the modelÎ  is the STEC computed from the models above. 

For KVCE, only IGP VTEC is estimated locally and VTEC grid models will be 
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constructed here. With the estimates of the IGP VTEC, the IPPs with STEC surrounding 

IGP within a certain radius can be obtained sequentially. Then the KVCE residuals are 

computed. For the VTEC grid models from KVCE, the differences between the estimated 

IPP STEC and the observed IPP STEC are used to compute the modeling accuracy as 

follows: 
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where the KVCEÎ is the j-th estimated IPP STEC, iM is the number of IPPs surrounding the 
i-th IGP, IGPN  is the number of IGPs. 

Fig. 5 plots the mean Modeling RMS (MRMS) with the results from KVCE, POLY, 

SCHA and SPH. The MRMS from KVCE ranges from 0.5 to 3 TECU, with the mean 

value of 1.49 TECU, while the MRMS values from POLY, SPH and SCHA are about 2.57 

TECU, 2.75 TECU and 2.47 TECU, respectively. Obviously, the modeling fitting of 

KVCE is better than those of SCHA, POLY and SPH methods. This is reasonable because 

KVCE grid models take local fitting around IGPs while POLY, SCHA and SPH make 

regional fitting over China. Even if POLY is used both for local interpolation for IGPs 

with local IPPs around it and for regional fitting over China area, the fitting residuals are 

at a similar level of around from 2 to 4 TECU (compare Fig. 5 and Fig. 3). SCHA and 

SPH have a similar residual level as POLY in the regional fitting over China.  
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Figure. 5 The MRMS of KVCE and TEC modelings with polynomial functions, 
spherical harmonic functions and spherical cap harmonic functions 

 

6.3 TEC RMS maps 

After estimating the ionospheric delay at IGPs, we can further compute the estimation 

accuracy, namely, RMS or grid sigma σ  . The estimation accuracy of KVCE, POLY, 

SCHA and SPH can be computed by applying the variance-covariance propagation law 

expressed by Eq. (25). The estimation accuracy of OK can be obtained by Eq. (12). With 

the data from this CMONOC network, the daily mean RMS values of the POLY, SCHA 

and SPH are equal to 10.5 TECU, 9.05 TECU and 9.44 TECU, respectively. These 

numbers are significantly larger than those of KVCE and OK. Therefore, we focus on the 

comparison of results between KVCE and OK in this section. 

Fig. 6 presents the nephograms of estimation accuracy over China at four different 

Local Time (LT) epochs, morning (LT 08:00), noon (LT 14:00), afternoon (LT 18:00) and 

evening (LT 22:00) on DOY 305, with the subplots in the left and right columns of Fig. 6 

showing the IGPs RMS results of OK and KVCE, respectively. Due to the lack of IPPs at 

the boundary, the IGPs in low latitudes have no interpolation values in the blank area 

shown in Fig. 6, which will be called as invalid grids in the following.  

The accuracy of the estimation results depends on the quantity of the measurements 

and the degree of ionospheric activity. The more data available at a given location, the 

more accurate the resulting ionospheric map. In general, the accuracy in the central region 

is higher than that along the boundary. In other words, the RMS in the central region is 

smaller than that in the marginal regions. For the subplots in the left column of Fig. 6, the 

RMS at LT08:00 and LT22:00 is from 0 to 8 TECU, and the characteristics of IGPs RMS 

distribution are inconspicuous for the quiet ionospheric activities, when compared with 

the IPPs distribution. At LT 14:00 and LT 18:00, the RMS is within 2 to 20 TECU, and 

the magnitude of IGPs RMS depends on the density of the IPPs. The pattern of these maps 

is apparently the same as that of the IPPs distributions. This result indicates that the RMS 
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at noon and in the afternoon is larger than that in the morning and evening, and has evident 

variation along with the distribution of IPPs. The major reason for this phenomenon is the 

disturbed ionosphere condition in the daytime, especially at noon and in the afternoon. 

The KVCE RMS results, as shown in the right column of Fig.6, are within 6 TECU, which 

are better than those of OK interpolation. The abnormal phenomena appear at LT 14:00 

in the KVCE ionosphere map, which shows that the central area has a larger RMS than 

the boundary areas. A possible reason is likely due to the non-convergence of the VCE 

estimates. The accuracy obtained in the morning and at night is better than that at noon 

and in the afternoon. 

Figs. 7 and 8 plot the distribution of time series for the epoch mean RMS and daily 

mean RMS of both methods. Although the patterns of the mean RMS of KVCE and OK 

are similar, KVCE is clearly significantly better than OK, as can also be further confirmed 

from the statistics of the standard deviations plotted in Fig. 9. The daily mean RMS of 

KVCE is less than 1 TECU and that of OK is about 4 TECU. The former is about four 

times better than the latter in terms of RMS. The abnormal phenomena appear at LT14:00 

in the KVCE ionosphere map, which shows that the central area has a larger RMS than 

the boundary areas. Possible reason is likely due to the non-convergence of the VCE 

estimates. Furthermore, the accuracy estimated in the morning and at night is better than 

that at noon and in the afternoon.  
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Figure. 6 The grid sigma estimated by OK at different local time (left column) and 
KVCE (right column) on DOY305 
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Figure. 7 The mean grid sigma of KVCE (red dots) and OK (blue dots) in 2014.11 

 

Figure. 8 The daily mean grid sigma of KVCE and OK in 2014.11 

 

Figure. 9 The STD of grid sigma of KVCE and OK in 2014.11 
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7. Conclusions 

We have proposed a Kriging method with unknown variance components to 

interpolate ionospheric delays for use in real-time. As a result, we are able to correctly 

determine the weighting factors of measurement noises and random signals. The proposed 

new method has been applied to the GPS data collected in 2014 from the Crustal 

Movement Observation Network of China (CMONOC) and compared with other 

methods such as ordinary Kriging, polynomial interpolation, low-degree spherical 

harmonic function models, polynomial function models and spherical cap harmonic 

analysis models in terms of local interpolation, regional modeling and VTEC accuracy at 

ionospheric grid points.  

The local interpolation accuracy of our proposed method is 0.5-2.5 TECU with a mean 

value of 1.37 TECU, which is smaller than that of the ordinary Kriging and polynomial 

interpolation by about 1.2 TECU and 0.7 TECU, respectively. The regional modeling 

accuracy from KVCE ranges from 0.5 to 3 TECU with an overall mean value of 1.5 TECU, 

which is smaller than those from the function-based models by about 1 TECU. The 

estimation accuracy at ionospheric grid points from our new method remains within 6 

TECU, with a daily mean of 0.74 TECU and a standard deviation of 0.4 TECU. The 

results are better than those from the ordinary Kriging, which can even reach 20 TECU 

under intense solar activities. The comprehensive analysis results in terms of interpolation, 

modeling and estimation accuracy with ionospheric grid points have clearly shown that 

the proposed Kriging method with variance components has the best performance and 

can produce more rational, and accurate ionospheric TEC than all the other methods used 

for comparison in this paper.  
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