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Abstract. The three dimensional conformable time fractional Kadomtsev-
Petviashvili and the conformable time fractional modified Kawahara equations

are solved by implementing the Kudryashov’s procedure. The corresponding

wave transformation reduces both equations to some ODEs. Balancing the
nonlinear and the highest order derivative terms gives the structure of the

solutions in the finite series form. The useful symbolic tools are used to solve

the resultant algebraic systems. The solutions are expressed in explicit forms.

1. Introduction

The Kadomtsev-Petviashvili (KP) equation (sometimes it is called as the two-
dimensional Korteweg- de Vries equation) appears in the earlier 70s to study the
stability of solitary waves in weakly dispersive media covering fluids or plasma[1].
It is an integrable equation owing to the fact that there exists a connection with a
linear spectral problem to a particular Schrödinger equation[2, 3]. Modulation equa-
tions of the two-dimensional KP are developed by examining Riemann invariants
problem[4]. The two- dimensional form of the KP equation passes the Painlevé(P-)
test for the integrability and has soliton-type solutions[5]. The evolution of wa-
ter wave packages traveling in one direction strongly despite the slowly modulated
amplitudes in both directions are studied in details by Ablowitz and Segur[6].

The three- dimensional form of the KP equation is a model to describe rapidly
propagating magnetosonic waves of small amplitudes in a low β-magnetized plasma
of super fluid helium[7]. The properties of soliton dynamics are also examined
deeply for slightly perturbations along z direction in the same study. Bouard and
Saut[8] perform a classification of the existence of the localized solitary-type waves
by the sign of the transverse dispersion term and by the nonlinearity. The soli-
tary waves of the three- dimensional KP equation both are in cylindrical form for
the transverse variables and decay with algebraically optimal rate[9]. Beside the
existence of the solitary wave solutions, the three- dimensional KP equation has
cnoidal wave solutions to be written as infinite sum of solitons[10] and traveling
wave solutions to be expressed in the form of hyperbolic, rational and trigonomet-
ric functions[11].
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The modified Kawahara (mKawahara) equation is a cubic non-linear equation with
a fifth-order derivative term. The quadratic nonlinear form of the equation is
suggested by Kawahara [12] with its steady solutions. Such solutions may exist due
to the sign of the dispersive term and these solutions can be in a oscillatory form
because of the dominant fifth-ordered term. The mKawahara equation has implicit
doubly periodic solutions and they can be determined by using the method of
auxiliary equation[13, 14]. Some soliton and periodic solutions are derived by using
a set of forecasting methods having some trigonometric and hyperbolic functions
inside[15]. The mKawahara equation has also non-constant meromorphic solutions
in explicit form[16]. The existence of traveling wave type solutions in hyperbolic or
trigonometric forms are discussed by Al-Ali[17]. Tanh and exp-function methods
are also capable to derive the exact solutions to the mKawahara equation[18].
So far, some methods belonging to different categories have been proposed for the
exact solutions of both integer or fractional ordered PDEs [19, 20, 21, 22]. In ths
study ,The main aim is to derive some exact solutions to the three-dimensional
conformable time fractional KP and the conformable time fractional mKawahara
equations. The solutions are obtained explicitly by using modified Kudryashov
method. The existence of the chain rule and other required properties in the defi-
nition of the conformable derivative enable some wave transformations to generate
the solutions.

2. Conformable Derivative and Some Significant Properties

Let α be ∈ (0, 1]. Then, the conformable derivative of f = f(τ) defined in the
positive half space τ > 0 is given as

Dα
τ (f(τ)) = lim

h→0

f(τ + hτ1−α)− f(τ)

h
, τ > 0, α ∈ (0, 1] (2.1)

for f : [0,∞) → R[23]. Even though it has just been defined, some significant
properties covering derivative of multiplication or division of two functions. The
following two theorems give a brief summary of those properties.

Theorem 1. The conformable derivative of order α ∈ (0, 1] for the α-differentiable
functions u = u(τ) and w = w(τ) for all positive τ satisfies

• Dα
τ (c1u+ c2w) = c1D

α
τ (u) + c2D

α
τ (w)

• Dα
τ (τp) = pτp−α,∀p ∈ R

• Dα
τ (u(τ)) = 0, when u(τ) = c3 is a constant function

• Dα
τ (uw) = uDα

τ (w) + wDα
τ (u)

• Dα
τ ( uw ) =

uDα
τ (w)− wDα

τ (u)

w2

• Dα
τ (u)(τ) = τ1−α dudτ

for all real c1, c2, c3[24, 25].

Moreover, the definitions of many further properties of the conformable derivative
(2.1) are discussed in details in [26]. The Gronwall’s inequality, integration by parts,
Laplace transform, the conformable derivative of the composite function and more
are described in that study.

3. The Modified Kudryashov Method

Let P be
P (u, uατ , ux, uy, uz, u

α
ττ , uxx, ...) = 0 (3.1)
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where u = u(x, y, z, . . . , τ) and α ∈ (0, 1] be the fractional derivative order. The
transformation

u(x, y, z, . . . , τ) = u(ξ), ξ = x+ y + z + . . .− c

α
τα (3.2)

converts (3.1) to an ODE for new variable ξ

R(u, u′, u′′, . . .) = 0 (3.3)

where the prime (′) indicates the derivative operator d
dξ of u with respect to ξ[27].

Let

u(ξ) = a0 + a1U(ξ) + a2U
2(ξ) + . . . anU

n(ξ) (3.4)

be predicted solution of the equation (3.3) for a finite n with all ai, 0 ≤ i ≤ n are
constants satisfying an 6= 0. In fact, the n is determined by balancing nonlinear
term and the maximal derivative order. Furthermore, this finite series of U(ξ)
satisfies the first-order ODE

U
′
(ξ) = U(ξ)(U(ξ)− 1) lnA (3.5)

Accordingly, U(ξ) is of the form

U(ξ) =
1

1 + dAξ

where d and A are non-zero constants with the conditions A > 0 and A 6= 1. The
balance between the non-linear term and the term having the maximal order deriv-
ative in (3.3) enables to determine the positive integer n, if exists. Ultimately, since
a solution u(ξ) is sought for (3.3), it must satisfy (3.3). Thus, it is substituted into
(3.3) and the resultant equation is rearranged for the powers U(ξ). All the coeffi-
cients of the powers of U(ξ) including the remaining part including constants and
other parameters are equated to zero. Finally, a0, a1, a2, . . . an are obtained explic-
itly in terms of constants and coefficients used in the equation (3.1) or originated
from the (3.2).

4. The Conformable Time Fractional (3+1) -dimensional KP equation

Consider the (3+1)- dimensional KP equation of the form

(Dα
τ (u) + θuux + βuxxx)x − εuyy − δuzz = 0 (4.1)

where u = u(x, y, z, τ), θ, β, ε and δ are parameters. The transformation (3.2)
reduces the KP equation (4.1) to(

−cu
′
+ θuu

′
+ βu

′′′
)′

− (ε+ δ)u
′′

= 0 (4.2)

where
(

′
)

= d
dξ derivative operator. Integrating the last equation twice gives

−cu+
θ

2
u2 + βu

′′
− (ε+ δ)u = K1ξ +K2 (4.3)

where K1 and K2 are constants of integration. The balance between u2 and u
′′

occurs when n = 2. Assume that K1 is zero. Substitution of the predicted solution
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u(ξ) = a0 + a1U(ξ) + a2U
2(ξ) into (4.3) and assuming K1 = 0 gives(

1

2
θ a2

2 + 6β a2 (ln (A))
2

)
U4 (ξ)

+
(

2β a1 (ln (A))
2 − 10β a2 (ln (A))

2
+ θ a1a2

)
U3 (ξ)

+

(
1

2
θ a1

2 − δ a2 − ca2 − ε a2 + θ a0a2 − 3β a1 (ln (A))
2

+ 4β a2 (ln (A))
2

)
U2 (ξ)

+
(
−ca1 − δ a1 − ε a1 + β a1 (ln (A))

2
+ θ a0a1

)
U (ξ)

−K2 − ε a0 − δ a0 − ca0 +
1

2
θ a0

2 = 0

(4.4)
Thus, equating the coefficients of the powers of each U(ξ) and the remaining con-
stants to zero gives

U4 :
1

2
θ a2

2 + 6β a2 (ln (A))
2

= 0

U3 : 2β a1 (ln (A))
2 − 10β a2 (ln (A))

2
+ θ a1a2 = 0

U2 :
1

2
θ a1

2 − δ a2 − ca2 − ε a2 + θ a0a2 − 3β a1 (ln (A))
2

+ 4β a2 (ln (A))
2

= 0

U1 : −ca1 − δ a1 − ε a1 + β a1 (ln (A))
2

+ θ a0a1 = 0

U0 : −K2 − ε a0 − δ a0 − ca0 +
1

2
θ a0

2 = 0

(4.5)
The first solution set of the last system constituting five algebraic equations for
{a0, a1, a2, c} gives

a0 =
−β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 θK2

θ

a1 = 12
β (ln (A))

2

θ

a2 = −12
β (ln (A))

2

θ

c = −δ − ε+

√
β2 (ln (A))

4 − 2 θK2

(4.6)

where β2 (ln (A))
4− 2 θK2 ≥ 0 and θ 6= 0. The solution of the (4.3) takes the form

U(ξ) =
−β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 θK2

θ
+
β (ln (A))

2

θ

1

1 + dAξ

− 12
β (ln (A))

2

θ

1

(1 + dAξ)
2

(4.7)

Returning the original variables {x, y, z, τ} gives the solution for the conformable
time fractional KP equation (4.1) as
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u1(x, y, z, τ) =
−β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 θK2

θ

+
β (ln (A))

2

θ

1

1 + dA
x+y+z−

(−δ − ε+

√
β2 (ln (A))

4 − 2 θK2)τα

α

− 12
β (ln (A))

2

θ

11 + dA
x+y+z−

(−δ − ε+

√
β2 (ln (A))

4 − 2 θK2)τα

α


2

(4.8)
The second solution of the system (4.5) for {a0, a1, a2, c} gives

a0 = −
β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 θK2

θ

a1 = 12
β (ln (A))

2

θ

a2 = −12
β (ln (A))

2

θ

c = −δ − ε−
√
β2 (ln (A))

4 − 2 θK2

(4.9)

where β2 (ln (A))
4 − 2 θK2 ≥ 0 and θ 6= 0. Thus, the solution of the (4.3) is

determined as

U(ξ) = −
β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 θK2

θ
+ 12

β (ln (A))
2

θ

1

1 + dAξ

− 12
β (ln (A))

2

θ

1

(1 + dAξ)
2

(4.10)

Ultimately, the solution of (4.1) is written in original variables as
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u2(x, y, z, τ) = −
β (ln (A))

2
+

√
β2 (ln (A))

4 − 2 θK2

θ

+ 12
β (ln (A))

2

θ

1

1 + dA
x+y+z−

(−δ − ε−
√
β2 (ln (A))

4 − 2 θK2)τα

α

− 12
β (ln (A))

2

θ

11 + dA
x+y+z−

(−δ − ε−
√
β2 (ln (A))

4 − 2 θK2)τα

α


2

(4.11)

5. The Conformable Time Fractional mKawahara Equation

The conformable time fractional mKawahara equation

Dα
τ (u) + pu2ux + quxxx + ruxxxxx = 0 (5.1)

where u = u(x, τ) and p, q and r are constant parameters can be reduced to a
nonlinear ODE of the form

−cu
′
+ pu2u

′
+ qu

′′′
+ ru

′′′′′
= 0 (5.2)

by using the simplest form of the transformation (3.2) that is u(ξ) = u(x, τ), ξ =

x− c τ
α

α . Integrating the last equation once converts it to

−cu+
p

3
u3 + qu

′′
+ ru

′′′′
= K (5.3)

where K denotes the constant of integration. The balance between u3 and u
′′′′

determines the degree n of the solution as 2. Thus, the predicted solution is con-
structed in the form u(ξ) = a0 + a1U(ξ) + a2U

2(ξ) with the condition a2 6= 0.
Substituting this solution into the equation (5.3) results(

1/3 pa2
3 + 120 ra2 (ln (A))

4
)
U6 (ξ)

+
(
pa1a2

2 − 336 ra2 (ln (A))
4

+ 24 ra1 (ln (A))
4
)
U5 (ξ)

+
(
pa1

2a2 + 6 qa2 (ln (A))
2

+ 330 ra2 (ln (A))
4

+ pa0a2
2 − 60 ra1 (ln (A))

4
)
U4 (ξ)

+
(
−130 ra2 (ln (A))

4
+ 2 pa0a1a2 + 2 qa1 (ln (A))

2
+ 1/3 pa1

3 − 10 qa2 (ln (A))
2

+ 50 ra1 (ln (A))
4
)
U3 (ξ)

+
(
−15 ra1 (ln (A))

4 − ca2 + pa0a1
2 + 4 qa2 (ln (A))

2
+ 16 ra2 (ln (A))

4
+ pa0

2a2 − 3 qa1 (ln (A))
2
)
U2 (ξ)

+
(
ra1 (ln (A))

4 − ca1 + qa1 (ln (A))
2

+ pa0
2a1

)
U (ξ)

− ca0 + 1/3 pa0
3 −K = 0

(5.4)
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Equating the coefficients of each power U(ξ) gives

U6 : 1/3 pa2
3 + 120 ra2 (ln (A))

4
= 0

U5 : pa1a2
2 − 336 ra2 (ln (A))

4
+ 24 ra1 (ln (A))

4
= 0

U4 : pa1
2a2 + 6 qa2 (ln (A))

2
+ 330 ra2 (ln (A))

4
+ pa0a2

2 − 60 ra1 (ln (A))
4

= 0

U3 : −130 ra2 (ln (A))
4

+ 2 pa0a1a2 + 2 qa1 (ln (A))
2

+ 1/3 pa1
3 − 10 qa2 (ln (A))

2
+ 50 ra1 (ln (A))

4
= 0

U2 : −15 ra1 (ln (A))
4 − ca2 + pa0a1

2 + 4 qa2 (ln (A))
2

+ 16 ra2 (ln (A))
4

+ pa0
2a2 − 3 qa1 (ln (A))

2
= 0

U1 : ra1 (ln (A))
4 − ca1 + qa1 (ln (A))

2
+ pa0

2a1 = 0

U0 : −ca0 + 1/3 pa0
3 −K = 0

(5.5)
The solution of this algebraic system for {a0, a1, a2, c,K} gives

a0 =
1

10r

√
−10

r

p

(
q + 5 r (ln (A))

2
)

a1 = −6

√
−10

r

p
(ln (A))

2

a2 = 6

√
−10

r

p
(ln (A))

2

c = − 1

10r

(
15 r2 (ln (A))

4
+ q2

)
K =

1

150r2

(
−15 qr2 (ln (A))

4
+ 50 r3 (ln (A))

6
+ q3

)√
−10

r

p

(5.6)

with the condition rp < 0. Thus, the solution of (5.2) can be written as

U(ξ) =
1

10r

√
−10

r

p

(
q + 5 r (ln (A))

2
)
− 6

√
−10

r

p
(ln (A))

2 1

1 + dAξ

+ 6

√
−10

r

p
(ln (A))

2 1

(1 + dAξ)
2

(5.7)

Returning the original variables x and τ gives the solution of (5.1) as

u3(x, τ) =
1

10r

√
−10

r

p

(
q + 5 r (ln (A))

2
)
− 6

√
−10

r

p
(ln (A))

2 1

1 + dA
x+ 1

10r (15 r2(ln(A))4+q2)
tα

α

+ 6

√
−10

r

p
(ln (A))

2 11 + dA
x+ 1

10r (15 r2(ln(A))4+q2)
tα

α

2

(5.8)
for pr < 0.
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A second solution to (5.5) for {a0, a1, a2, c,K} is of the form

a0 = − 1

10r

√
−10

r

p

(
q + 5 r (ln (A))

2
)

a1 = 6

√
−10

r

p
(ln (A))

2

a2 = −6

√
−10

r

p
(ln (A))

2

c = − 1

10r

(
15 r2 (ln (A))

4
+ q2

)
K = − 1

150r2

(
−15 qr2 (ln (A))

4
+ 50 r3 (ln (A))

6
+ q3

)√
−10

r

p

(5.9)

and generates the solution to (5.2) as

U(ξ) = − 1

10r

√
−10

r

p

(
q + 5 r (ln (A))

2
)

+ 6

√
−10

r

p
(ln (A))

2 1

1 + dAξ

− 6

√
−10

r

p
(ln (A))

2 1

(1 + dAξ)
2

(5.10)

Similarly, the solution to the conformable time fractional mKawahara equation (5.1)
is obtained as

u4(x, τ) = − 1

10r

√
−10

r

p

(
q + 5 r (ln (A))

2
)

+ 6

√
−10

r

p
(ln (A))

2 1

1 + dA
x+( 1

10r 15 r2(ln(A))4+q2)
τα

α

− 6

√
−10

r

p
(ln (A))

2 11 + dA
x+( 1

10r 15 r2(ln(A))4+q2)
τα

α

2

(5.11)
where pr is negative.

6. Conclusion

The modified form of the Kudryashov method is implemented for the exact solu-
tions of the conformable time fractional (3 + 1)- dimensional KP and the modified
Kawahara equations. The corresponding wave transformations reduce the number
of independent variables to one. Thus, both equations are converted some nonlinear
ODEs. Balancing the highest ordered derivative term and the nonlinear term leads
to determine the degree of the solution in the form of finite series. Substituting
the predicted solution into the resultant ODE and equating all coefficients of the
powers of the predicted solution gives an algebraic system of equations. Thus, the
coefficients of the predicted solution are determined in explicit form by computer
aided algebra.

In the study, a couple of explicit solutions to each conformable fractional (3+1)
KP and the modified Kawahara equations are determined in the rational form
containing exponential function by the modified Kudryashov method.
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