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SOME INEQUALITIES BOUNDING CERTAIN RATIOS OF THE
(p, k)-GAMMA FUNCTION

KWARA NANTOMAH

ABSTRACT. In this paper, we establish some inequalities bounding the ratio
Iy r(2)/Tpr(y), where I') (.) is the (p, k)-analogue of the Gamma function.
Consequently, some previous results are recovered from the obtained results.

1. INTRODUCTION

Inequalities that provide bounds for the ratio I'(z)/I'(y), where x and y are num-
bers of some special form, have been studied intensively by several researchers
across the globe. A detailed account on inequalities of this nature can be found
in the survey article by Qi [10]. In this study, the focus shall be on the type
originating from certain problems of traffic flow.

In 1978, Lew, Frauenthal and Keyfitz [5] by studying certain problems of traffic
flow established the double-inequality

2F<n+%>§F(%)F(n+1)§2nf(n+%), neN (1)

which can be rearranged as

2 I(n+1) 2"
ﬁgmgﬁ, n € N. (2)

Then in 2006, Sandor [11] by using the inequality

1-s
x ['(z+s)
_ < ——2 <1 € (0,1 >0 3
(5) ='ii)sn s ®)
due Wendel [12], extended and refined the inequality (2) by proving the result
['(z+1) 1

<) 4= 4
VISR SV @

forz>0.

Also, in the paper [0], the authors established the g-analogue of (4) as
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for ¢ € (0,1) and = > 0.

Furthermore, in the paper [7], the authors established the (g, k)-analogue of (4)
as

_ L I k 1=3%
[a]g T < Toulo k) 1) < {er —]
Los (7 +3) 2

for ¢ € (0,1), k > 0 and = > 0.

The main objective of this paper is to establish similar inequalities for the (p, k)-
analogue of the Gamma function.

2. PRELIMINARIES

The classical Euler’s Gamma function, I'(z) is usually defined for z > 0 by

T

F — tx—]_ —t dt — 1 n.
(v) /0 e n1—>ngox(;c—|—1)(a:—|—2)...(x—l—n)

Closely related to the Gamma function is the Digamma function, (x) which is
defined for z > 0 as ¥(z) = L InT'(z) = %

Euler gave another definition of the Gamma function called the p-analogue, which
is defined for p € N and = > 0 as (see [1, p. 270])

B plp”
Fyl) = z(x+1)...(x+p)

with the p-analogue of the Digamma function defined as ¢,(z) = < InT,(z).

T

Also, Diaz and Pariguan [2] defined the k-analogues of the Gamma and Digamma
functions as

o0 tk
Fi(z) = / t"temw dt and Yp(x) = %ln k()
0

for k>0 and z € C\kZ".

Then in a recent paper [8], the authors introduced a (p, k)-analogue of the Gamma
function defined for p € N, k > 0 and z € R as

P L tk P
r = t* 1—— dt
(@) /0 ( pk‘)

x

(p+ 1)k (pk)
z(z+k)(x +2k)...(x + pk)
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satisfying the properties

pkx
rrphr g ) )

1
P* e ir (), acRY

Fp,k(ﬂi + k’) =

[pi(ak) =
Lpr(k) =1

The (p, k)-analogue of the Digamma function is defined for x > 0 as

d S|
Ypr(z) = o InT,x(z) = —In(pk) — Z .
1 0 1 _ g klpt1)t
= k — 7"t
(ph) - / <
Also, the (p, k)-analogue of the Polygamma functions are defined as

"L (=)™t

(m) ;T
wp,k( ) d$m¢pk( ) nz% (nk—i—a:)m“

[ 11— e~ kp+1)t .
= (- | t"e " dt
e ()

where m € N, and w;?;(x) = Ypi(2).

wl»—*

o

The functions I', x(x) and ¢, (x) satisfy the following commutative diagrams.

p—00 p—0o0

[pr(z) — () Ypi(r) — Yi()

k—>1j lk—ﬂ kall lk—)l

Ip(z) 555 L) Up(2) 555 ¥ ()

We now present the main findings of the paper in the following section.

3. MAIN RESULTS
Lemma 3.1. Let p € N, k> 0 and s € (0,1). Then the inequality

pkx 1=s
(x+pl~c+k> < Fp’k(l’ -+ SI{J)

1-s — L S S 1 (6)
k(x+sk T
<:5§-s$c—:;3k—f)—k> (m—f—ppk-i-k) Lpr(z)

holds for x > 0.

Proof. We employ the Holder’s inequality for integrals, which is stated for any
integrable functions f,¢: (0,a) — R as

/Oalf(t)gw "= [/oa‘f(ma dt] é anlg(t)lﬁ dt} %
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where a > 1 such that i + % = 1. We proceed as follows. Let

p(1—s) pSs
o=k B=L JO)=tE (1= )T g = el (1 5)7
Then,

P tk ps %
L (o))
0 pk |
p ) tk p 1-s D et tk P s
= T 1——) dt /tm B (1——) dt]
e ) ol e

= [Lpa(@)]' " [Tyl +K))"

That is,
Ly (@ + sk) < [Cpu(@)]' " [Cpp(a + k)] (7)
Substituting (5) into inequality (7) yields;
pkx B
r h<|——| T . 8
palatsh) < (25 ) ) ®)
Replacing s by 1 — s in inequality (8) gives
T (w4 — sh) < [ —PF° r () (9)
Pk “\z+pk+k PR
Further, upon substituting for by x + sk, we obtain
pk(z + sk) s
r k) < r k). 10
pil(® + )_<m+8k+pk+k pi( + k) (10)

Now combining (8) and (10) gives

Fp k($ + k) pkx s
: <TI Hh<|———— ) T
( pk(z+sk) )13 — p,k(l’ + S ) — T ‘f‘pk _|_ k‘ p,k(l')
x+sk+pk+k

which by (5) can be written as
pkx
r+pk+k

pk(z+sk)
o+ sk+pk+k

pkx B
i Tpale) < Tyt sb) < (2 ) T, ()
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Finally, (11) can be rearranged as

pkx 1=s
z+pk+k < Lpx(z + sk)
1-s — s
pk(z+sk) pkx
(J}+sk+pk+k> <x+pk+k) Lpr()

concluding the proof.

<1

Theorem 3.2. Let p e N, k> 0 and s € (0,1). Then the inequality
pkx s < Lpr(z+ k) < pk(z + sk) e (12)
x+pk+k Ik +sk) = \z+sk+pk+k
holds for x > 0.

Proof. The inequality (6) implies

kx
(zfpk—f—k) < Dok (z + sk) < ( pkx )S

pk(z+sk) I=s = prk(l') X + pl{) + k
a+sk+pk+k
which by inversion yields
. < ph(z+sk) )“’
pk‘.’E S Fp,k (.T) S x+sk+pk+k ‘ (13)
x+pk+k Lpk (z+ sk) ( pha >
z+pk+k

Then, substituting the identity (5) into (13) completes the proof.

Remark 3.3. Let £k =1 and p — oo in (12). Then, we obtain
1'1_8 < (.CL' + 1)
T(z+s) —

which is an improvement of the Gautschi’s inequality [3, eqn. (7)].

<(z+s)° (14)

Corollary 3.4. Let p € N and k > 0. Then the inequality
1 _ 1
( pkx )1% _ Lpr(z + k) < ( pk:(:v—i—%) )1 2k (15)
z+pk+k T Tpk(z4+3) T \e+pk+k+d
holds for x > 0.

Proof. This follows from Theorem 3.2 by letting s = i
Remark 3.5. As a consequence of inequality (6), we obtain

r
lim zk@: j— s+)
T—r00 T
(m—i—ppk—l—k) vak('r)
Remark 3.6. Let «, 3 € (0,1). Then by (16), we obtain

I < pkx )ﬁ_o‘ Lpp(z + ak)
x+pk+k Lpx(x + Bk)

=1, se(0,1). (16)

T—00
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Remark 3.7. We note that the limits (16) and (17) are the (p, k)-analogues of
the classical Wendel’s asymptotic relation given by [12]

i L)
z—oo x5['(x)
Remark 3.8. By letting p — oo as k — 1 in (6), we obtain (3).
Remark 3.9. By letting p — oo in (15), we obtain
1
T k 1\ %
< k(x——'—l) < (:1: + _) (18)

which gives a k-analogue of (4).

?r""

xi2

Remark 3.10. By letting £ — 1 in (15), we obtain

(x pa >§rp(x+1)< <p(:v+%)) (19)

+p+1) " T(z+L) ~V\z+p+3

which gives a p-analogue of (4).

Remark 3.11. By letting p — oo as k — 1 in (15), we obtain (4).

Theorem 3.12. Let p € N and k > 0. Then, the inequality
@Y k(y) M < e@=Y)¥p k() (20)
Lpr(y)
holds for x >y > 0.

Proof. Let H be defined for p € N, k > 0 and ¢t > 0 by H(¢t) = InT', x(¢). Further,
let (y,z) be fixed. Then, by the classical mean value theorem, there exists a
A € (y,x) such that

_ Inl,x(x) —InT, . (y)
r—Y

H'(X) = Upr(A).

Thus,

1 |
Upr(A) = In -2 .
pk( ) r—=1y Fp,k(ﬁU)
)

1 Fp,k(x)
Upe(y) < —— y In To(y) < Py ()
That is @
Fp,k i _ "
(@ = y)pr(y) <In Trly) (7 — y)bp ().

Then, by taking exponents, we obtain the result (20).
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Corollary 3.13. Let p € N and k > s > 0. Then, the inequality

e(kfs)d)p,k(x‘ks) < M < e(kfs)wp,k(m+k) (21)
Fp,k(«r + S)

holds for x > 0.

Proof. This follows from Theorem 3.12 upon replacing = and y respectively by
x4+ k and z + s.

Remark 3.14. In particular, if s = 1, then inequality (21) becomes

e(k*%)T/)p,k(m+%) < M < e(k*%)wp,k(ﬂk) (22)
Fnk(ﬁC + 5)
Remark 3.15. The inequality (20) provides a (p, k)-analogue of the result
e < L@ e (23)
['(y)

for x > y > 0, which was established in [9, Corollary 2] .

Remark 3.16. Inequality (21) provides a generalization of [/, Theorem 3.1].

4. CONCLUSION

We have established some inequalities bounding the ratio I', x(x) /T, x(y), where
[, x(.) is the (p, k)-analogue of the Gamma function. From the established results,
we recover some known results in the literature.
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