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Abstract. In the paper, the authors consider the generating functions of the Hermite polyno-

mials and their squares, present explicit formulas for higher order derivatives of the generating

functions of the Hermite polynomials and their squares, which can be viewed as ordinary differen-
tial equations or derivative polynomials, find differential equations that the generating functions

of the Hermite polynomials and their squares satisfy, and derive explicit formulas and recurrence

relations for the Hermite polynomials and their squares.

1. Introduction

It is well known that the Hermite polynomials Hn(x) can be generated by

e2xt−t
2

=
∞∑

n=0

Hn(x)
tn

n!
. (1)

The first six Hermite polynomials Hn(x) for 0 ≤ n ≤ 5 are

1, 2x, 2
(
2x2 − 1

)
, 4x

(
2x2 − 3

)
, 4

(
4x4 − 12x2 + 3

)
, 8x

(
4x4 − 20x2 + 15

)
.

In [3, p. 250], it was given that the squares H2
n(x) for n ≥ 0 of the Hermite polynomials Hn(x) can

be generated by

1√
1− t2

exp
2x2t

1 + t
=
∞∑

n=0

H2
n(x)

2n
tn

n!
. (2)
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2 F. QI AND B.-N. GUO

In [5], the equation (2) was reformulated as

1√
1− t2

exp
xt

1 + t
=

∞∑
n=0

H2
n

(√
x
) tn
n!
.

Indeed, this is a typo and the corrected one should be

1√
1− t2

exp
xt

1 + t
=

∞∑
n=0

H2
n

(√
x/2

)
2n

tn

n!
. (3)

After inductively arguing for nine pages, it was obtained in [5, Theorem 1] that the ordinary
differential equations

F (n)(t) =

[
n∑

i=0

2(n−i)∑
j=n−i

ai,j(n, x)

(1− t)i(1 + t)j

]
F (t)

for n ≥ 0 have the same solution

F (t) = F (t, x) =
1√

1− t2
exp

xt

1 + t
, (4)

where

a0,0(0, x) = 1, a1,0(1, x) =
1

2
, a0,1(1, x) = −1

2
,

a0,2(1, x) = x, a0,n(n, x) =

(
−1

2

)n

(2n− 1)!!,

and

ai,j(n, x) =

2n−j−2i∑
k=0

(
−1

2

)k
(2j − 1)!!

(2j − 2k − 1)!!

×
[

2i− 1

2
ai−1,j−k(n− k − 1, x) + xai,j−k−2(n− k − 1, x)

]
.

(5)

From [5, Theorem 1] mentioned above, Theorems 2 and 3 in [5], which can be corrected as

H2
k+n

(√
x/2

)
2k+n

=

n∑
i=0

2(n−i)∑
j=n−i

∑
p+q+r=k

(−1)q
(

k

p, q, r

)
(i+ p− 1)p(j + q − 1)qai,j(n, x)

H2
r

(√
x/2

)
2r

and

H2
n

(√
x/2

)
2n

=

n∑
i=0

2(n−i)∑
j=n−i

ai,j(n, x)

for k, n ≥ 0, were derived, where

(x)n =

{
x(x+ 1)(x+ 2) . . . (x+ n− 1), n ≥ 1

1, n = 0

denotes the rising factorial and (
n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!

is the multinomial coefficients.
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SOME PROPERTIES OF THE HERMITE POLYNOMIALS 3

It is clear that the quantities ai,j(n, x) in [5] were expressed by a recurrent relation and can not
be computed easily by hand and by computer softwares. We observe that, when k = 2n − j − 2i
and i+ j = n, the quantity ai,j−k−2(n− k − 1, x) in the recurrence relation (5) becomes

ai,j−k−2(n− k − 1, x) = ai,j−(2n−j−2i)−2(n− (2n− j − 2i)− 1, x)

= ai,2(i+j−n−1)(2i+ j − n− 1, x) = ai,−2(i− 1, x)

which implies that Theorem 1, consequently Theorems 2 and 3, in [5], are wrong.

In this paper, we will reconsider the generating functions e2tx−t
2

and F (t) = F (t, x) defined

in (4), present explicit formulas for the nth derivatives of the functions F (t) and e2tx−t
2

, which
can be viewed as ordinary differential equations or derivative polynomials [7], find more differential

equations that the functions F (t) and e2tx−t
2

satisfy, and derive explicit formulas and recurrence
relations for the Hermite polynomials Hn(x) and their squares H2

n(x).
The main results of this paper can be stated as the following theorems.

Theorem 1.1. For n ≥ 0, the nth derivative of the function F (t) = F (t, x) defined in (4) can be
computed by

dn F (t)

d tn
=

{
(−1)nn!

(1 + t)n

n∑
m=0

(−1)m

m!

1

(1 + t)m

(
n−m∑
k=0

(−1)k(1 + t)k

2k

(
n− k − 1

m− 1

)

×

[
1

tk

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)
t2`

(1− t2)`

])
xm

}
F (t),

(6)

where
(
0
0

)
= 1 and

(
p
q

)
= 0 for q > p ≥ 0.

Theorem 1.2. For n ≥ 0, the squares H2
n(x) of the Hermite polynomials Hn(x) can be computed

by

H2
n(x) = (−1)n2nn!

n∑
k=0

(−1)k
2k

k!

[
n−k∑
`=0

1 + (−1)`

2

(`− 1)!!

`!!

(
n− `− 1

k − 1

)]
x2k. (7)

Theorem 1.3. For n ≥ 0, the Hermite polynomials Hn(x) can be computed by

Hn(x) = (−1)n
n!

2n

n∑
k=0

(−1)k
22k

k!

(
k

n− k

)
x2k−n (8)

and the nth derivative of their generating function e2xt−t
2

can be computed by

dn e2xt−t
2

d tn
= e2xt−t

2 n!

2n

n∑
k=0

(−1)k
22k

k!

(
k

n− k

)
(t− x)2k−n.

Theorem 1.4. For n ≥ 0, the Hermite polynomials Hn(x) and their derivatives H ′n(x) satisfy
H ′0(x) = 0,

H ′n(x) = 2nHn−1(x), (9)

and
Hn(x) = 2xHn−1(x)−H ′n−1(x) (10)

for n ∈ N. Consequently,

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x) (11)

for n ≥ 2.
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Theorem 1.5. For n ≥ 0, the Hermite polynomials Hn(x) satisfy the recurrence relations

n∑
k=0

1 + (−1)n−k

2

2(n−k)/2

(n− k)!!k!
Hk(x) =

(2x)n

n!
(12)

and
n∑

k=0

(−1)n−k
(
n

k

)
(2x)n−kHk(x) =

1 + (−1)n

2
(−2)n/2

n!

n!!
. (13)

For n ≥ 0, the squares H2
n(x) of the Hermite polynomials Hn(x) satisfy the recurrence relations

n∑
k=0

1 + (−1)n−k

2

(n− k − 3)!!

(n− k)!!(2k)!!
H2

k(x) = (−1)n+1
n∑

`=0

(−1)`

`!

(
n− 1

`− 1

)(
2x2
)`

(14)

and
n∑

k=0

(−1)k

2kk!

[
n−k∑
`=0

2`

`!

(
n− k − 1

`− 1

)
x2`

]
H2

k(x) =
1 + (−1)n

2

(n− 1)!!

n!!
. (15)

2. Lemmas

In order to prove our main results, we need several lemmas below.

Lemma 2.1 ([2, p. 134, Theorem A] and [2, p. 139, Theorem C]). For n ≥ k ≥ 0, the Bell polyno-
mials of the second kind, or say, partial Bell polynomials, denoted by Bn,k(x1, x2, . . . , xn−k+1), are
defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind
Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (16)

Lemma 2.2 ([2, p. 135]). For complex numbers a and b, we have

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1). (17)

Lemma 2.3 ([4, Theorem 4.1], [9, Eq. (2.8)], and [10, Section 3]). For 0 ≤ k ≤ n, the Bell
polynomials of the second kind Bn,k satisfy

Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n. (18)

Lemma 2.4 ([2, p. 135, Theorem B] and [6, Theorem 1.1]). For n ≥ k ≥ 0, we have

Bn,k(1!, 2!, . . . , (n− k + 1)!) =

(
n− 1

k − 1

)
n!

k!
. (19)
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Lemma 2.5. For n ≥ k ≥ 0, the Bell polynomials of the second kind

Bn,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (n− k + 1)![1− (−1)n−k+2]

)
satisfy

B2j+1,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (2j − k + 2)![1− (−1)2j−k+3]

)
= 0, 2j + 1 ≥ k, (20)

B2j,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (2j − k + 1)![1− (−1)2j−k+2]

)
= 0, 2j ≥ k > j ≥ 0, (21)

and

B2j,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (2j − k + 1)![1− (−1)2j−k+2]

)
=

2k(2j)!

k!

(
j − 1

k − 1

)
(22)

for j ≥ k ≥ 0. Equivalently and unifiedly,

Bn,k

(
1![1−(−1)2], 2![1−(−1)3], . . . , (n−k+1)![1−(−1)n−k+2]

)
= [1+(−1)n]

2k−1n!

k!

(n
2 − 1

k − 1

)
(23)

or

Bn,k

(
0, 2!, 0, 4!, 0, 6!, 0, 8!, 0, . . . ,

1− (−1)n−k+2

2
(n− k + 1)!

)
=

1 + (−1)n

2

n!

k!

(n
2 − 1

k − 1

)
, (24)

where (
α

k

)
=
〈α〉k
k!

=


1

k!

k−1∏
`=0

(α− `+ 1), k ∈ N

1, k = 0

for arbitrary a ∈ C and k ≥ 0 and 〈α〉k is called the falling factorial.

Proof. In [2, p. 133], it was listed that

1

k!

( ∞∑
m=1

xm
tm

m!

)k

=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!

for k ≥ 0. From this, it follows that
∞∑

n=k

Bn,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (n− k + 1)![1− (−1)n−k+2]

) tn
n!

=
1

k!

[ ∞∑
m=1

2 · (2m)!
t2m

(2m)!

]k
=

2k

k!

(
t2

1− t2

)k

=
2k

k!

(
1

1− t2
− 1

)k

=
2k

k!

k∑
`=0

(−1)k−`
(
k

`

)(
1

1− t2

)`

=
2k

k!

k∑
`=0

(−1)k−`
(
k

`

)
1

(1− t2)`
.

Further differentiating m ≥ k times and making use of (16), (17), and (18) yield

∞∑
n=m

Bn,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (n− k + 1)![1− (−1)n−k+2]

)
〈n〉m

tn−m

n!

=
2k

k!

k∑
`=0

(−1)k−`
(
k

`

)[
1

(1− t2)`

](m)
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=
2k

k!

k∑
`=0

(−1)k−`
(
k

`

) m∑
p=0

(
1

u`

)(p)

Bm,p(−2t,−2, 0, . . . , 0)

=
2k

k!

k∑
`=0

(−1)k−`
(
k

`

) m∑
p=0

(−1)p〈−`〉p
u`+p

(−2)pBm,p(t, 1, 0, . . . , 0)

=
2k

k!

k∑
`=0

(−1)k−`
(
k

`

) m∑
p=0

2p〈−`〉p
(1− t2)`+p

1

2m−p
m!

p!

(
p

m− p

)
t2p−m.

Taking t→ 0 gives

Bm,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (m− k + 1)![1− (−1)m−k+2]

)
=

2k

k!

k∑
`=0

(−1)k−`
(
k

`

)
lim
t→0

m∑
p=0

2p〈−`〉p
2m−p

m!

p!

(
p

m− p

)
t2p−m

=


0, m = 2j + 1

2k

k!

k∑
`=0

(−1)k−`
(
k

`

)
〈−`〉j

(2j)!

j!
, m = 2j

=


0, m = 2j + 1

(−1)k
2k

k!
(2j)!

k∑
`=0

(−1)`
(
k

`

)(
`+ j − 1

j

)
, m = 2j

which is equivalent to (20) and

B2j,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (2j − k + 1)![1− (−1)2j−k+2]

)
= (−1)k

2k

k!
(2j)!

k∑
`=0

(−1)`
(
k

`

)(
`+ j − 1

j

)
= (−1)k

2k

k!
(2j)!(−1)k

(
j − 1

k − 1

)
=

2k(2j)!

k!

(
j − 1

k − 1

)
for j, k ≥ 0. The formulas (21) and (22) are thus proved.

It is straightforward to rewrite (20), (21), and (22) as either (23) or (24). The proof of Lemma 2.5
is complete. �

Remark 2.1. By the formula

Bn,k(x1 + y1, x2 + y2, . . . , xn−k+1 + yn−k+1)

=
∑

r+s=k

∑
`+m=n

(
n

`

)
B`,r(x1, x2, . . . , x`−r+1)Bm,s(y1, y2, . . . , ym−s+1)

in [1, Example 2.6], [2, p. 136, Eq. [3n]], and [8, Lemma 5] and by the formulas (17) and (19), it
follows that

Bn,k

(
1![1− (−1)2], 2![1− (−1)3], . . . , (n− k + 1)![1− (−1)n−k+2]

)
=
∑

r+s=k

∑
`+m=n

(
n

`

)
B`,r(1!, 2!, . . . , (`− r + 1)!)Bm,s(−1!, 2!, . . . , (−1)m−s+1(m− s+ 1)!)
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=
∑

r+s=k

∑
`+m=n

(
n

`

)(
`− 1

r − 1

)
`!

r!
(−1)mBm,s(1!, 2!, . . . , (m− s+ 1)!)

=
∑

r+s=k

∑
`+m=n

(−1)m
(
n

`

)(
`− 1

r − 1

)
`!

r!

(
m− 1

s− 1

)
m!

s!

=

k∑
r=0

n∑
`=0

(−1)n−`
(
n

`

)(
`− 1

r − 1

)(
n− `− 1

k − r − 1

)
`!(n− `)!
r!(k − r)!

=
n!

k!

k∑
r=0

n∑
`=0

(−1)n−`
(
k

r

)(
`− 1

r − 1

)(
n− `− 1

k − r − 1

)
which is not simpler than the nice expression (23).

3. Proofs of main results

Now we are in a position to prove our main results.

Proof of Theorem 1.1. By the formulas (16), (17), and (18), we obtain

dk

d tk

(
1√

1− t2

)
=

k∑
`=0

d`

du`

(
1√
u

)
Bk,`(−2t,−2, 0, . . . , 0)

=

k∑
`=0

〈
−1

2

〉
`

1

u`+1/2
(−2)`Bk,`(t, 1, 0, . . . , 0)

=

k∑
`=0

〈
−1

2

〉
`

1

(1− t2)`+1/2
(−2)`

1

2k−`
k!

`!

(
`

k − `

)
t2`−k

=

k∑
`=0

(2`− 1)!!

2`
1

(1− t2)`+1/2
2`

1

2k−`
k!

`!

(
`

k − `

)
t2`−k

=
1√

1− t2
k!

(2t)k

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)
t2`

(1− t2)`
,

(25)

where u = u(t) = 1− t2.
Similarly, by the formulas (16), (17), and (19), we acquire

dk

d tk

(
exp

xt

1 + t

)
=

k∑
`=0

x`exvBk,`

(
1!

(1 + t)2
,
−2!

(1 + t)3
, . . . ,

(−1)k−`(k − `+ 1)!

(1 + t)k−`+2

)

=

k∑
`=0

x`ext/(1+t) (−1)k+`

(1 + t)k+`
Bk,`(1!, 2!, . . . , (k − `+ 1)!)

= ext/(1+t) (−1)kk!

(1 + t)k

k∑
`=0

(−1)`

`!

(
k − 1

`− 1

)
x`

(1 + t)`
,

(26)
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where v = v(t) = t
1+t . Making use of the above two results and employing the Leibniz rule yield

dn F (t)

d tn
=

n∑
k=0

(
n

k

)
dk

d tk

(
1√

1− t2

)
dn−k

d tn−k

(
exp

xt

1 + t

)

=

n∑
k=0

(
n

k

)
1√

1− t2
k!

(2t)k

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)
t2`

(1− t2)`

× ext/(1+t) (−1)n−k(n− k)!

(1 + t)n−k

n−k∑
`=0

(−1)`

`!

(
n− k − 1

`− 1

)
x`

(1 + t)`

=
ext/(1+t)

√
1− t2

(−1)nn!

(1 + t)n

n∑
k=0

(−1)k(1 + t)k

(2t)k

k∑
`=0

(2`− 1)!!2`

`!

×
(

`

k − `

)
t2`

(1− t2)`

n−k∑
m=0

(−1)m

m!

(
n− k − 1

m− 1

)
xm

(1 + t)m

= F (t)
(−1)nn!

(1 + t)n

n∑
k=0

(−1)k(1 + t)k

2ktk

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)

× t2`

(1− t2)`

n−k∑
m=0

(−1)m

m!

(
n− k − 1

m− 1

)
xm

(1 + t)m

= F (t)
(−1)nn!

(1 + t)n

n∑
m=0

(−1)m

m!

1

(1 + t)m

(
n−m∑
k=0

(−1)k(1 + t)k

2k

×
(
n− k − 1

m− 1

)[
1

tk

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)
t2`

(1− t2)`

])
xm.

The formula (6) is thus proved. The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. Since[
t2`

(1− t2)`

](k)
=

[(
1

2(t+ 1)
− 1

2(t− 1)
− 1

)`](k)
=

k∑
p=0

(
w`
)(p)

Bk,p

(
−1!

2

[
1

(t+ 1)2
− 1

(t− 1)2

]
,

2!

2

[
1

(t+ 1)3
− 1

(t− 1)3

]
,

. . . , (−1)k−p+1 (k − p+ 1)!

2

[
1

(t+ 1)k−p+2
− 1

(t− 1)k−p+2

])
=

k∑
p=0

〈`〉pw`−p (−1)k

2p
Bk,p

(
1!

[
1

(t+ 1)2
− 1

(t− 1)2

]
, 2!

[
1

(t+ 1)3
− 1

(t− 1)3

]
,

. . . , (k − p+ 1)!

[
1

(t+ 1)k−p+2
− 1

(t− 1)k−p+2

])
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=

k∑
p=0

〈`〉p
(

t2

1− t2

)`−p
(−1)k

2p
Bk,p

(
1!

[
1

(t+ 1)2
− 1

(t− 1)2

]
,

2!

[
1

(t+ 1)3
− 1

(t− 1)3

]
, . . . , (k − p+ 1)!

[
1

(t+ 1)k−p+2
− 1

(t− 1)k−p+2

])
→ 〈`〉`

(−1)k

2`
Bk,`

(
1![1− (−1)2], 2![1− (−1)3], . . . , (k − `+ 1)![1− (−1)k−`+2]

)
= (−1)k

`!

2`
Bk,`

(
1![1− (−1)2], 2![1− (−1)3], . . . , (k − `+ 1)![1− (−1)k−`+2]

)
as t → 0, where w = w(t) = t2

1−t2 = 1
2(t+1) −

1
2(t−1) − 1, employing the L’Hôspital rule and the

formula (23) leads to

lim
t→0

[
1

tk

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)
t2`

(1− t2)`

]
=

1

k!

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)
lim
t→0

[
t2`

(1− t2)`

](k)

=
(−1)k

k!

k∑
`=0

(2`− 1)!!

(
`

k − `

)
Bk,`

(
1![1− (−1)2], 2![1− (−1)3], . . . , (k − `+ 1)![1− (−1)k−`+2]

)
=

(−1)k

k!

k∑
`=0

(2`− 1)!!

(
`

k − `

)
[1 + (−1)k]

2`−1k!

`!

(k
2 − 1

`− 1

)

= (−1)k[1 + (−1)k]

k∑
`=0

2`−1(2`− 1)!!

`!

(
`

k − `

)(k
2 − 1

`− 1

)

=
1 + (−1)k

2

k∑
`=0

22`(2`− 1)!!

(2`)!!

(
`

k − `

)(k
2 − 1

`− 1

)
=

1 + (−1)k

2

2k(k − 1)!!

k!!
. (27)

Therefore, taking the limit t→ on both sides of (6) yields

lim
t→0

dn F (t)

d tn
= (−1)nn!

n∑
m=0

(−1)m

m!

n−m∑
k=0

(−1)k

2k

(
n− k − 1

m− 1

)

× lim
t→0

[
1

tk

k∑
`=0

(2`− 1)!!2`

`!

(
`

k − `

)
t2`

(1− t2)`

]
xm

= (−1)nn!

n∑
m=0

(−1)m

m!

n−m∑
k=0

(−1)k

2k

(
n− k − 1

m− 1

)
1 + (−1)k

2

2k(k − 1)!!

k!!
xm

= (−1)nn!

n∑
m=0

(−1)m

m!

[
n−m∑
k=0

(
n− k − 1

m− 1

)
1 + (−1)k

2

(k − 1)!!

k!!

]
xm

which means by (3) that

H2
n

(√
x/2

)
2n

= (−1)nn!

n∑
m=0

(−1)m

m!

[
n−m∑
k=0

1 + (−1)k

2

(k − 1)!!

k!!

(
n− k − 1

m− 1

)]
xm, n ≥ 0.

This can be rearranged as (7). The proof of Theorem 1.2 is complete. �

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2016                   doi:10.20944/preprints201611.0145.v1

http://dx.doi.org/10.20944/preprints201611.0145.v1


10 F. QI AND B.-N. GUO

Proof of Theorem 1.3. By the formulas (16), (17), and (18), we obtain

dn e2xt−t
2

d tn
=

n∑
k=0

(eu)(k)Bn,k(2x− 2t,−2, 0, . . . , 0)

=

n∑
k=0

e2xt−t
2

(−2)kBn,k(t− x, 1, 0, . . . , 0)

= e2xt−t
2

n∑
k=0

(−2)k
1

2n−k
n!

k!

(
k

n− k

)
(t− x)2k−n

=
n!

2n
e2xt−t

2

(t− x)n

n∑
k=0

(−1)k
22k

k!

(
k

n− k

)
(t− x)2k,

where u = u(t) = 2xt− t2. Hence, we acquire

Hn(x) = lim
t→0

dn e2xt−t
2

d tn

=
n!

2n
lim
t→0

e2xt−t
2

(t− x)n

n∑
k=0

(−1)k
22k

k!

(
k

n− k

)
(t− x)2k

=
n!

2n
1

(−x)n

n∑
k=0

(−1)k
22k

k!

(
k

n− k

)
(−x)2k

= (−1)n
n!

2n

n∑
k=0

(−1)k
22k

k!

(
k

n− k

)
x2k−n.

The formula (8) follows. This formula can also be derived similarly by considering

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

or Hn(x) = ex
2/2

(
x− d

dx

)n

e−x
2/2.

The proof of Theorem 1.3 is complete. �

Proof of Theorem 1.4. Differentiating with respect to x on both sides of (1) yields

2te2xt−t
2

=

∞∑
n=0

H ′n(x)
tn

n!
,

2t

∞∑
n=0

Hn(x)
tn

n!
=

∞∑
n=0

H ′n(x)
tn

n!
,

∞∑
n=0

2Hn(x)
tn+1

n!
=

∞∑
n=0

H ′n(x)
tn

n!
,

∞∑
n=1

2Hn−1(x)
tn

(n− 1)!
=

∞∑
n=0

H ′n(x)
tn

n!
.

Hence, it follows that H ′0(x) = 0 and the formula (9) is valid.
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Differentiating with respect to x on both sides of (2) gives

4xt

1 + t

1√
1− t2

exp
2x2t

1 + t
=

∞∑
n=0

2Hn(x)H ′n(x)

2n
tn

n!
,

2xt

1 + t

∞∑
n=0

H2
n(x)

2n
tn

n!
=

∞∑
n=0

Hn(x)H ′n(x)

2n
tn

n!
,

2xt

∞∑
n=0

H2
n(x)

2n
tn

n!
= (1 + t)

∞∑
n=0

Hn(x)H ′n(x)

2n
tn

n!
,

∞∑
n=0

2xH2
n(x)

2n
tn+1

n!
=

∞∑
n=0

Hn(x)H ′n(x)

2n
tn

n!
+

∞∑
n=0

Hn(x)H ′n(x)

2n
tn+1

n!
,

∞∑
n=1

2xH2
n−1(x)

2n−1
tn

(n− 1)!
=

∞∑
n=0

Hn(x)H ′n(x)

2n
tn

n!
+

∞∑
n=1

Hn−1(x)H ′n−1(x)

2n−1
tn

(n− 1)!
.

This means that H ′0(x) = 0 and

2xH2
n−1(x)

2n−1
tn

(n− 1)!
=
Hn(x)H ′n(x)

2n
tn

n!
+
Hn−1(x)H ′n−1(x)

2n−1
tn

(n− 1)!

for n ∈ N, which can be simplified as

Hn(x)H ′n(x) = 2nHn−1(x)
[
2xHn−1(x)−H ′n−1(x)

]
Combining this with (9) derives the formula (10).

Substituting (9) into (10) results in (11) readily. The proof of Theorem 1.4 is complete. �

Proof of Theorem 1.5. It is easy to see that et
2

e2xt−t
2

= e2xt. Differentiating with respect to t on
both sides of this equation and utilizing (16), (17), and (18) give

n∑
k=0

(
n

k

)
dn−k et

2

d tn−k
dk e2xt−t

2

d tk
= (2x)ne2xt,

n∑
k=0

(
n

k

) n−k∑
`=0

et
2

Bn−k,`(2t, 2, 0, . . . , 0)
dk e2xt−t

2

d tk
= (2x)ne2xt,

et
2

n∑
k=0

(
n

k

) n−k∑
`=0

2`
1

2n−k−`
(n− k)!

`!

(
`

n− k − `

)
t2`−n+k dk e2xt−t

2

d tk
= (2x)ne2xt,

et
2

n∑
k=0

(
n

k

)
(n− k)!

2n−k

n−k∑
`=0

22`

`!

(
`

n− k − `

)
t2`−n+k dk e2xt−t

2

d tk
= (2x)ne2xt.

Further taking the limit t→ 0 yields
n∑

k=0

(
n

k

)
(n− k)!

2n−k
1 + (−1)n−k

2

23(n−k)/2

(n− k)!!
lim
t→0

dk e2xt−t
2

d tk
= (2x)n,

n!

n∑
k=0

1 + (−1)n−k

2

2(n−k)/2

(n− k)!!k!
Hk(x) = (2x)n.

The recurrence relation (12) is thus proved.
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Similarly, from e−2xte2xt−t
2

= e−t
2

, it follows that

n∑
k=0

(
n

k

)
(−2x)n−ke−2xt

dk e2xt−t
2

d tk
=

n∑
k=0

e−t
2

Bn,k(−2t,−2, 0, . . . , 0),

n∑
k=0

(
n

k

)
(−2x)n−ke−2xt

dk e2xt−t
2

d tk
=

n∑
k=0

e−t
2

(−2)k
1

2n−k
n!

k!

(
k

n− k

)
t2k−n,

and, as t→ 0,

n∑
k=0

(
n

k

)
(−2x)n−kHk(x) = lim

t→0

1

2n

n∑
k=0

(−1)k
23kn!

(2k)!!

(
k

n− k

)
t2k−n.

The recurrence relation (13) is thus proved.
Similarly, since √

1− t2 1√
1− t2

exp
2x2t

1 + t
= exp

2x2t

1 + t

and

exp
−2x2t

1 + t

1√
1− t2

exp
2x2t

1 + t
=

1√
1− t2

,

by (25), (26), (18), the formula(√
1− t2

)(k)
=

k∑
`=0

〈
1

2

〉
`

u1/2−`Bk,`(−2t,−2, 0, . . . , 0)

=

k∑
`=0

(−1)`−1(2`− 3)!!

2`
(
1− t2

)1/2−`
(−2)`Bk,`(t, 1, 0, . . . , 0)

= −
k∑

`=0

(2`− 3)!!
(
1− t2

)1/2−` 1

2k−`
k!

`!

(
`

k − `

)
t2`−k

= − k!

2k
(1− t2)1/2

tk

k∑
`=0

(2`− 3)!!
2`

`!

(
`

k − `

)
t2`

(1− t2)`
,

and by the Leibniz rule for differentiation, it follows that

n∑
k=0

(
n

k

)(√
1− t2

)(n−k)( 1√
1− t2

exp
2x2t

1 + t

)(k)

=

(
exp

2x2t

1 + t

)(n)

,

−
n∑

k=0

(
n

k

)
(n− k)!

2n−k
(1− t2)1/2

tn−k

n−k∑
`=0

(2`− 3)!!
2`

`!

(
`

n− k − `

)
t2`

(1− t2)`

(
1√

1− t2
exp

2x2t

1 + t

)(k)

= e2x
2t/(1+t) (−1)nn!

(1 + t)n

n∑
`=0

(−1)`

`!

(
n− 1

`− 1

)
(2x2)`

(1 + t)`

and
n∑

k=0

(
n

k

)(
exp
−2x2t

1 + t

)(n−k)(
1√

1− t2
exp

2x2t

1 + t

)(k)

=

(
1√

1− t2

)(n)

,
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n∑
k=0

(
n

k

)
e−2x

2t/(1+t) (−1)n−k(n− k)!

(1 + t)n−k

n−k∑
`=0

(−1)`

`!

(
n− k − 1

`− 1

)
(−2x2)`

(1 + t)`

(
1√

1− t2
exp

2x2t

1 + t

)(k)

=
1√

1− t2
n!

(2t)n

n∑
`=0

(2`− 1)!!2`

`!

(
`

n− `

)
t2`

(1− t2)`
.

Further taking the limit t→ 0 results in

−
n∑

k=0

(
n

k

)
(n− k)!

2n−k
lim
t→0

[
1

tn−k

n−k∑
`=0

(2`− 3)!!
2`

`!

(
`

n− k − `

)
t2`

(1− t2)`

]
H2

k(x)

2k

= (−1)nn!

n∑
`=0

(−1)`

`!

(
n− 1

`− 1

)(
2x2
)`

(28)

and

n∑
k=0

(
n

k

)
(−1)n−k(n− k)!

n−k∑
`=0

(−1)`

`!

(
n− k − 1

`− 1

)(
−2x2

)`H2
k(x)

2k

= n! lim
t→0

[
1

(2t)n

n∑
`=0

(2`− 1)!!2`

`!

(
`

n− `

)
t2`

(1− t2)`

]
. (29)

Substituting (27) into (28) and (29) acquires the recurrence relations (14) and (15). The proof of
Theorem 1.5 is complete. �
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