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Abstract: Understory plants are important components of forest ecosystem productivity and 
diversity. Compared to biomass models of overstory canopy trees, few are available for 
understory saplings and shrubs and therefore their roles in estimation of forest carbon pools 
are often ignored. In this study, we harvested 24 understory species including 4 saplings, 9 
tree-like shrubs and 11 typical shrubs in coniferous and broadleaved mixed forest in 
northeastern China and developed the best fit allometric equations of above- and 
below-ground and total biomass by species-specific or multispecies using morphological 
measurements of basal diameter, height and crown area as independent variables. The result 
showed that single basal diameter, height or crown area had good explanatory power for 
both species-specific and multispecies (p<0.001). The best-fit models included only basal 
diameter in sapling and tree-like shrubs, and combinations of crown area, height, and basal 
diameter in typical shrubs. The logarithmic model was most desired among the 4 model 
forms of linear, quadratic, multiple linear and logarithmic, for species-specific and 
multispecies. The models we developed should help the estimation of forest ecosystem 
carbon stocks, especially for belowground component, and provide tools for quantification of 
individual species biomass of understory plants. 

Keywords: understory species; allometric biomass equation; species-specific and 
multispecies; temperate coniferous and broadleaved mixed forest; northeastern China 

 

1. Introduction  

Forests comprise the largest areas of terrestrial ecosystems and play an important role in 
maintaining an atmospheric CO2 balance [1]. Accurate estimation of biomass in forest 
ecosystems is useful for achieving sustainable forest management, assessing forest growth 
conditions, adjusting forest structures, estimating forest productivity, nutrient and energy 
flows as well as monitoring its carbon cycle [2-6]. Forests have gained wide attention in the 
past decades because of their enormous capacity for carbon storage in the global carbon pool 
[7-9]. Understory species in the forest, composed of saplings and shrubs, serve as important 
components of forest ecosystems [10], play important roles in forest structures and functions 
[11], maintain species diversity, promote forest regeneration and improve forest production 
[10,12-15]. Compared with the biomass of overstory trees species, the biomass of saplings and 
shrubs is often neglected because of a lack of measurement technique and the difficulty in 
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their assessment [16].  
Plant biomass can be determined through direct harvesting or estimated with allometric 

equations. Direct harvesting is more accurate, but is time-consuming and costly [16,17] and 
may not be practical or appropriate for understory plants. Comparatively, the use of 
allometric biomass is more practical and only requires the development of allometric biomass 
relationships of individual plants with their morphological variables, such as basal diameter, 
height or crown area [16,18-20]. A number of investigators have used allometric equations to 
develop species-specific or multispecies equations to measure biomass for forests [18,20-22], 
shrublands [17], alpine or subalpine ecosystems12,23 around the world. Currently, biomass 
equations for some shrub species have been developed for different ecosystems of the world 
[19,23,24]. However, biomass equations are scarce for understory species in closed forests [25], 
especially for temperate coniferous and broadleaved mixed forest ecosystem in northeastern 
China. We found that only a few species have been studied for biomass estimation [14,26,27]. 
Specially, there are several common shrub species in this ecosystem for which species-specific 
models have not yet been developed. As well, applicable multispecies models for this entire 
temperate forest area are lacking. Although Yang ea.al [26] and Li et.al [14] have developed 
several species-specific and multispecies biomass equations, these are not enough for a 
comprehensive estimation of forest biomass in this region of China . 

Model formulations and the choice of predictor variables that vary by species or study 
areas are two of the most important factors that must be considered when developed the 
allometric biomass equations [28]. Different models and variable types have been used to 
predict shrub or tree species biomass [20,29]. Generally, power models, linear models (single 
and multiple) and logarithmic models have often been used to develop biomass equations 
[14,17,24,29,30]. Particularly power models, transformed into logarithmic models, may be one 
of the most commonly applied of all models as can be found in numerous studies in different 
ecosystem worldwide [17,25,31-34]. A single independent variable, such as basal diameter, 
height, crown area or a combination of two variables has turned out to be the best fit to 
develop biomass equations for shrubs or sapling species [16,17,24,26,35].  

Belowground biomass plays a key role in supplying forest ecosystem services such as 
those related to primary production, carbon storage, soil conservation and nutrient 
cycling[36], but has received less attention compared to aboveground biomass[37]. This is due 
to the difficulty in sampling and estimating destructive and not-standardized methods, the 
high labor and time consumption and costs as well as considerable variation and uncertainty 
in root sampling, especially for small and fine roots. Belowground biomass accounts for about 
20-30% in tree species [38] and may be more for shrub or sapling species. It is therefore 
important that belowground biomass should be estimated for these species. Currently, almost 
all studies about establishing biomass equations for shrub or sapling species concentrated 
only on aboveground biomass [17,24,33,34,39]. Belowground biomass equations are few and 
far between [16,27]. Hence, we explored belowground biomass for twenty four understory 
species in temperate forests and developed equations for these species.  

 In this study, our primary aim was (1) to develop species-specific equations of 
above-and below-ground biomass as well as total biomass for twenty four understory species 
in the coniferous and broadleaved mixed forest in northeastern China; (2) to develop 
multispecies equations according to the classification of saplings, tree-like shrubs and typical 
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shrubs for these species and (3) to verify the prediction effectiveness of fitting the best fit 
model for multispecies. We wanted to provide a basic tool for accurately predicting 
understory species biomass and fill the information in the biomass study of understory 
species including tree saplings and shrubs. Also, we expect that more studies will be carried 
out for other species in other regions to supplement our pool of biomass models.  

2. Material and methods 

2.1. Study area 

The study was carried out at the Jiaohe Experimental Forest (between 43°58′-44°05′N and 
127°44.1′-127°44.7′E) in Jilin Province, in northeastern China, at an average elevation of 450 m. 
The area has a continental monsoon climate with a mean annual temperate of 3.8 ℃ and 
mean annual precipitation of 695.9 mm concentrated in the summer (June-August)[31,40]. 
The soil is mainly a dark brown forest soil. The study area is covered by a natural stands of 
secondary coniferous and broadleaved mixed forest consists of Pinus koraiensis, Quercus 
mongolica, Tilia amurensis, Fraxinus mandshurica, Juglans mandshurica, Acer mandshuricum, Acer 
mono, Ulmus davidiana var. japonica, Betula platyphylla and other trees. The understory 
vegetation is a rich mixture of species, with a shrub layer dominated by Syringa reticulata var. 
amurensis, Acer barbinerve, Corylus mandshurica, Eleutherococcus senticosus, Philadelphus. schrenkii, 
Sorbaria sorbifolia, Ribes spp. and other species, while the herb layer is dominated by 
Aegopodium alpestre, Adiantum spp., Cardamine leucantha, Meehania fargesii, Pteridophyta, Carex 
spp., Brachybotrys paridiformis and Hylomecon japonica. 

 2.2. Species selection 

 We surveyed understory species based on fixed plots (total area of plots: 130 ha) that 
were established in 2009-2010 by Zhao and his team [41-43] from which we selected twenty 
shrub species and four tree species representing eleven families as our research objects (Table 
2). The twenty shrub species were divided, by morphology characteristics, to tree-like shrubs 
that have a single-stem and apparent trunk [10], and typical shrubs that are multi-stemmed, 
low-branching and not obvious in trunk [14]. Four tree species were small individual trees 
and defined as saplings. The names and types of sampled species are shown in Table 2. These 
are all broadleaved-deciduous and widely distributed in natural secondary coniferous and 
broadleaved mixed forests in northeastern China.  

2.3. Species sampling  

The number of plants selected for each species varied between 11 and 51 to cover ranges 
of their sizes in order to cover the widest possible range of plant sizes according to the data 
from our field plots. The species sampled were selected from the same forest style and we 
tried to keep the climatic and soil conditions as constant as possible[17]. The selected sample 
plants were measured and harvested in mid-August 2013 during the peak season of 
increasing biomass, when foliage biomass and canopy cover were relatively stable[11]. 

 Measurements of several morphological variables, usually used to develop equations 
for estimating shrub biomass, were obtained from every individual plant sampled before 
harvesting: basal diameter (D: stem diameter at 5 cm above ground, cm); total height (H: 
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distance from the ground to the highest crown point, cm); maximum crown diameter (CD1, 
cm) and its perpendicular diameter (CD2 cm) as well as the number of ramifications (NR) 
from the root collar for clustered shrub species. Assuming an elliptical crown shape, crown 
area (CA, m2) was calculated by crown diameters (CD1 and CD2) as follows: 

        1 2( 2) ( 2) /10000CA CD CDπ= × ×                                     (1) 

where, CD1 is the maximum crown diameter (cm) and CD2 its perpendicular diameter 
(cm); 10000 is the constant for transforming the units from cm2 to m2.  

  The individually sampled plants were cut down at ground level and the entire root 
system excavated, although at times, the fine roots could not be obtained in full. All plants 
were divided into stem, new-branches, older-branches, foliage and roots and their fresh 
weight (W, g) obtained in the field using a hanging scale (YP 30000, accuracy= 1 g when 
samples more than 100g or JT3101N, accuracy= 0.1 g when samples less than 100g). 
Subsamples of not less than 100 g of fresh weight from all components were selected from 
each sampling unit. When the dry mass amounted to less than 100 g, the entire component 
was used as the subsample. Then, all fresh component subsamples were weighed (using 
JT3101N, accuracy= 0.1 g), stored in envelop bags and brought to the laboratory, where the 
dry weight of each component subsample was obtained using an air-forced oven at 80℃ for 
48 hours or more until reaching constant weight[11]. For each species, the water content was 
calculated using the dry mass/ fresh mass for each component. Then the water content of each 
component per species multiplied by the fresh mass of the component weighed in the field 
obtained the dry weight [30] of foliage (WF), new-branches (WNB), old-branches (WOB), stems 
(WS) and roots (WR) of each species. We then obtained the biomass of the following 
components: branch dry weight (WB) = WNB + WOB; aboveground dry weight (AGB) 
=WF+WB+WS; total dry biomass (TB) =AGB + the belowground dry biomass (BGB=root 
biomass. We considered the entire root biomass as the belowground dry biomass.  

2.4. Data analysis  

  First, species-specific allometric equations were constructed between morphological 
variables and dry biomass components (aboveground biomass, belowground biomass and 
total biomass). Second, allometric equations were developed by species groups of saplings, 
tree-like shrubs and typical shrubs. Seventeen equations in four model styles were chosen to 
fit the models using D, H and CA as the variables for aboveground biomass, underground 
biomass and total biomass for all twenty-four species (Table 1). Equations 7-9 and 14-17 in 
Table 1 are transformations from the following power function:  

                           1 2 3
b c dy ax x x=                                   (2) 

 where, y is the component biomass, x1, x2 and x3 are the morphological variables of D, 
H and CA;  and a, b, c and d are constants to be calculated. 

 
 Table 1 Models for development of biomass allometric equations.            

Code Model style  Equation  Code Model style  Equation  

Eq.1 Linear y=a+b1x1 Eq.10 Multiple linear y = a +bx1+cx2 
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Eq.2 Linear y= a +bx2 Eq.11 Multiple linear y = a +bx2+cx3 

Eq.3 Linear y= a +bx3 Eq.12 Multiple linear y = a +bx1+cx3 

Eq.4 Quadratic y = a +bx1+cx1 Eq.13 Multiple linear y = a +bx1+cx2+dx3 

Eq.5 Quadratic y = a +bx2+cx2 Eq.14 Logarithmic ln y =ln a +blnx1+clnx2 

Eq.6 Quadratic y = a +bx3+cx3 Eq.15 Logarithmic ln y =ln a +blnx2+clnx3 

Eq.7 Logarithmic ln y =ln a +blnx1 Eq.16 Logarithmic ln y =ln a +blnx1+clnx3 

Eq.8 Logarithmic ln y =ln a +blnx2 Eq.17 Logarithmic ln y =ln a +blnx1+clnx2+dlnx3 

Eq.9 Logarithmic ln y =ln a +blnx3 
 

y is the components biomass including aboveground biomass (AGB, g), belowground biomass (BGB, g) 

and total biomass (TB, g); x1, x2 and x3 are independent variables, i.e., basal diameter (D, cm), total height 

( H, cm) and crown area (CA, m2 ), respectively; a, b, c and d are constants to be calculated. 

 
Given that logarithmic transformations introduce a systematic bias[44] and tends to 

underestimate[17]. Thus, a correction factor (CF) should be introduced in order to account for 
the inherent bias caused by the log transformation. The final back-transformed model was of 
the form: 

                         1 2 3
b c dy CF ax x x= ×                               (3) 

where,                                  

                        
( )2 /2

  
SEE

CF e=                                        (4) 

CF is the correction factor and SEE the standard error of the estimate; other variables 
have the same meaning as in equation (2).                                                               

The best models developed for species-specific or multispecies were selected on the basis 
of their Akaike Information Criterion (AIC)[45,46] which describes the trade-off between bias 
and variance in model construction. Simultaneously, the coefficient of determination (R2), the 
fit index (FI), the standard error of the estimate (SEE) and the F value were used to evaluate 
the goodness of fit models. 

 These functions are defined as: 

            

2

1

1
ˆ2 ( ) )ln(

n

i i
i

yAIC k n y
n =

= + −
                                   (5) 

              

2 2 2

1 1

ˆ( ) 1 ( ) / ( )
n n

i i i
i i

FI R y y y y
= =

= − − − 
                            (6) 

               

2 2

1 1

2

1

ˆ( ( ) ( ) ) /

( ) / ( 1)

n n

i i i
i i

n

i
i

y y y y k
F

y y n k

= =

=

− − −
=

− − −

 


                                  (7) 

where, k is the number of parameters, n the number of sampled individuals, yi the 

observed value, ˆiy  the estimated value of the component biomass of sampling individual i 
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and y  the  observed mean value of biomass.  

 FI is similar to the coefficient of determination (R2) in linear regression models[47]. 
However, it is necessary to calculate FI because the R2 may not be directly comparable among 
log-transformed and untransformed independent variables.  

 We only developed models about TB, AGB and BGB as functions of D, H and CA for all 
species, while the other component biomass models such as WF, WNB, WOB, WS and WR are 
expected to be presented in subsequent studies. 

All analyses were executed with R software (version 3.2.3; R Development Core Team 
2014) using the nls package for model construction. The graphs were drawn using Sigmaplot 
10.0 (Systat Software, Inc 2006). 

3. Results  

Among the twenty four species of the understory, four belong to sapling style species 
(total 117 individual plants), nine are tree-like shrubs (total 305 individual plants) and eleven 
are typical shrubs (a total of 206 individual plants or a total of 446 plants including 
ramifications). For the sapling species, the largest D, H and CA appeared in Acer mono, with 
their corresponding AGB and TB showing the highest values, although the largest BGB value 
was found in Acer mandshuricum. Similarly, Syringa reticulata var. amurensis exhibited the 
largest D, H and CA among tree-like shrubs as well as the BGB, AGB and TB. Among the 
typical shrubs investigated, Acer barbinerve showed the largest values of BGB, AGB and TB 
per plant in correspondence with their D, H and CA, which were much greater than for other 
species. However, the number of ramifications of Ribes mandshuricum and Viburnum 
burejaeticum per plant were maximum (both 11) of all shrub-like species. Names, family, 
number of sampled species, the number of ramifications (only for typical shrubs), the range of 
values of biometric variables (D, H and CA) as well as the component biomass (BGB, AGB 
and TB) per species are shown in Table 2.  
Table.2 Range of sizes and biomass components by individual species.  

Species Family Style  N NR D (cm) H (cm) CA(m2) BGB(g) AGB(g ) TB( g) 

Acer 
mandshuricum 

Aceraceae sapling 30 - 0.497-7.100 11-650 0.039-7.304 1.3-1737.5 4.6-5101.4 6.0-6838.9 

Acer mono Aceraceae sapling 32 - 0.528-7.481 65-650 0.079-18.064 4.6-1598.3 3.9-5655.1 9.0-7253.3 

Carpinus cordata Betulaceae sapling 28 - 0.490-5.531 35-630 0.071-7.791 3.5-997.8 4.5-3970.4 8.1-4968.2 

Ulmus laciniata  Ulmaceae sapling 27 - 0.256-5.769 45-585 0.118-12.566 1.3-816.5 1.3-4262.2 2.6-5078.7 

Corylus 
mandshurica 

Corylaceae tree-like 36 - 0.275-4.859 35-530 0.031-5.498 1.1-1003.0 1.0-2566.2 2.0-3569.2 

Eleutherococcus 
senticosus 

Araliaceae tree-like 26 - 0.293-1.457 32-220 0.070-0.440 0.9-50.1 1.7-76.5 2.6-126.5 

Euonymus alatus  Celastraceae tree-like 21 - 0.445-3.395 55-280 0.035-3.613 2.0-270.0 3.4-1009.6 5.8-1279.6 

Euonymus 
verrucosus  

Celastraceae tree-like 51 - 0.199-5.689 36-505 0.008-11.486 0.5-1040.1 1.4-2933.4 2.0-3973.5 

Prunus padus Rosaceae tree-like 39 - 0.543-5.883 85-605 0.059-6.350 5.0-2052.8 21.1-4720.1 26.1-6772.9

Rhamnus 
schneideri 

Rhamnaceae tree-like 26 - 0.710-4.935 85-360 0.061-4.909 6.3-736.7 19.0-3149.4 27.9-3886.1

Sorbaria sorbifolia Rosaceae tree-like 41 - 0.460-1.817 52-195 0.047-1.649 2.1-89.8 0.9-142.7 6.4-312.8 

Syringa reticulata 
var. amurensis 

Oleaceae tree-like 37 - 0.533-7.933 42-630 0.001-12.456 3.4-2646.7 4.1-8041.0 10.2-10687.7
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Viburnum sargenti Caprifoliaceae tree-like 28 - 0.357-3.720 46-390 0.021-6.432 2.8-705.0 12.6-1683.0 18.4-2189.9

Deutzia parviflora 
var. amurensis  

Saxifragaceae typical 15 1-5 0.284-1.835 37-200 0.059-2.238 2.4-143.9 4.9-284.9 7.2-415.9 

Lonicera 
chrysantha  

Caprifoliaceae typical 18 1-8 0.318-3.487 30-240 0.094-1.649 1.1-125.3 3.8-254.6 4.9-372.1 

Lonicera maackii Caprifoliaceae typical 16 1-6 0.767-9.514 80-280 0.330-5.718 8.0-822.2 35.9-2509.0 44.0-3167.8

Lonicera 
praeflorens 

Caprifoliaceae typical 24 1-4 0.322-5.672 70-255 0.090-2.270 3.7-341.5 4.2-1220.9 8.0-1470.1 

Philadelphus 
schrenkii  

Saxifragaceae typical 25 1-4 0.492-4.679 13-250 0.189-4.155 2.8-166.8 9.2-445.0 12.1-562.8 

Ribes komarovii Saxifragaceae typical 11 1-8 0.698-6.637 135-220 0.196-1.492 23.4-415.3 63.1-517.1 95.0-932.4 

Ribes 
mandshuricum 

Saxifragaceae typical 13 1-11 0.921-9.932 70-190 0.050-1.035 13.2-365.1 15.4-563.1 28.6-928.2 

Ribes 
maximoviczianum 

Saxifragaceae typical 22 1-5 0.383-2.767 67-160 0.008-1.225 1.1-58.8 4.0-143.3 5.2-202.1 

Spiraea fritschiana Rosaceae typical 27 1-10 0.505-5.893 60-160 0.045—1.035 1.9-110.0 3.1-222.3 5.0-332.4 

Viburnum 
burejaeticum 

Caprifoliaceae typical 12 1-11 0.585-9.328 80-280 0.063-2.827 3.8-265.1 10.7-505.4 14.7-663.0 

Acer barbinerve Aceraceae typical 23 1-6 0.387-18.782 65-810 0.024-19.635 2.6-4507.0 3.1-17042.7 5.7-21549.7

N-number of individual samples, NR-number of ramifications, D- basal diameter, H-total height, CA- 

crown area, BGB-belowground biomass (also root biomass), AGB-aboveground biomass, and TB- total 

biomass. 

3.1. Biomass models by species-specific 

  The optimal equations of AGB, BGB and TB by species, their corresponding 
parameters, goodness of fit statistics and correction factors are shown in Table 3. Most 
species-specific regression models relating components biomass with measured variables 
were statistically highly significant (p<0.001). However, the optimal models styles were not 
the same for all species (Table 3).  
Table 3. The best fit equations for AGB, BGB and TB of twenty four species. 

Species Components Equations lna a or a'1 b c d R2 FI SEE CF p F  

A. 
mandshuricum 

BGB Eq.7 3.348 28.4 2.416   0.934 0.954 0.470  1.117 <0.001 364.9

AGB Eq.7 4.495  89.6 2.498   0.945 0.916 0.439  1.101 <0.001 447.3

TB Eq.7 4.773  118.2 2.479   0.944 0.928 0.443  1.103 <0.001 434.2

A. mono 

BGB Eq.4  80.4 -102.8 40.7  0.982 0.982 61.170  <0.001 795.2

AGB Eq.14 -2.990  0.051 1.498 1.306  0.991 0.934 0.208  1.022 <0.001 1653

TB Eq.7 3.819  45.6 2.406   0.976 0.953 0.317  1.051 <0.001 1243

C. cordata 

BGB Eq.7 2.788  16.3 2.319   0.977 0.969 0.270  1.037 <0.001 1108

AGB Eq.7 3.492  33.7 2.712   0.988 0.981 0.230  1.027 <0.001 2082

TB Eq.7 3.908  49.8 2.595   0.989 0.981 0.206  1.022 <0.001 2369

U. laciniata  

BGB Eq.16 3.050  21.499 1.554 0.437  0.992 0.963 0.190  1.018 <0.001 1416

AGB Eq.16 3.752  42.6 2.103 0.382  0.997 0.976 0.132  1.009 <0.001 4219

TB Eq.16 4.202  66.8 1.889 0.430  0.997 0.974 0.131  1.009 <0.001 3865

C. mandshurica 
BGB Eq.16 4.115 61.2 1.202 0.538  0.923 0.963 0.495 1.130 <0.001 196.9

AGB Eq.7 3.617  37.2 2.669   0.985 0.983 0.246  1.031 <0.001 2290
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TB Eq.15 -2.163 0.110 1.467 0.640  0.981 0.984 0.267  1.036 <0.001 832.9

E. enticosus 

BGB Eq.7 2.687  14.7 1.919   0.848 0.626 0.398  1.082 <0.001 133.9

AGB Eq.8 -5.771  0.003 1.874   0.889 0.773 0.372  1.072 <0.001 192.9

TB Eq.7 3.720  41.3 2.067   0.880 0.731 0.373  1.072 <0.001 176.7

E. alatus  

BGB Eq.7 2.522 12.5 2.337   0.909 0.878 0.565 1.173 <0.001 189.4

AGB Eq.4  113.5 -260.9 152.7  0.993 0.993 20.5   <0.001 1223

TB Eq.16 4.089 59.7 2.124 0.260  0.980 0.981 0.229 1.027 <0.001 437.2

E. verrucosus  

BGB Eq.7 2.789  16.3 2.401   0.971 0.992 0.345  1.061 <0.001 2930

AGB Eq.7 3.614 37.1 2.508   0.985 0.995 0.257  1.033 <0.001 3198

TB Eq.7 4.008 55.1 2.451   0.988 0.997 0.222 1.025 <0.001 4071

P. padus 

BGB Eq.7 2.859  17.4 2.815   0.961 0.958 0.380  1.075 <0.001 899.9

AGB Eq.7 3.904  49.6 2.471   0.981 0.975 0.228  1.026 <0.001 1916

TB Eq.7 4.234  69.0 2.559   0.982 0.992 0.229  1.027 <0.001 2047

R. schneideri 

BGB Eq.7 2.694  14.8 2.293   0.951 0.846 0.320  1.052 <0.001 469.5

AGB Eq.16 4.231  68.8 1.876 0.381  0.974 0.901 0.260  1.034 <0.001 426.4

TB Eq.16 4.509  90.9 1.865 0.360  0.981 0.923 0.219  1.024 <0.001 580.8

S. reticulata var. 
amurensis 

BGB Eq.7 2.884  17.9 2.435   0.971 0.967 0.347  1.062 <0.001 1155

AGB Eq.16 3.720  41.3 2.383 0.162  0.976 0.920 0.356  1.065 <0.001 689.1

TB Eq.7 3.941  51.5 2.611   0.981 0.935 0.301  1.046 <0.001 1770

S. sorbifolia 

BGB Eq.4  32.115 -80.4 62.4  0.936 0.936 5.846   <0.001 279.5

AGB Eq.7 3.755  42.7 3.002   0.987 0.961 0.128  1.008 <0.001 2906

TB Eq.7 4.104  60.6 2.816   0.985 0.986 0.128  1.008 <0.001 2544

Viburnum 
sargenti 

BGB Eq.7 4.114 61.2 1.949   0.701 0.744 0.860 1.447 <0.001 61.0

AGB Eq.8 -6.037 2.4E-03 2.229   0.910 0.851 0.391 1.079 <0.001 264.3

TB Eq.8 -5.858 2.9E-03 2.258   0.908 0.887 0.403 1.085 <0.001 255.1

A. barbinerve 

BGB Eq.5  116.2 -2.189 0.009  0.993 0.993 83.280  <0.001 1406

AGB Eq.5  948.0 -12.475 0.040  0.994 0.994 288.600  <0.001 1633

TB Eq.5  1064.0 -14.660 0.049  0.995 0.995 331.700  <0.001 1986

D. parviflora 
var. amurensis  

BGB Eq.8 -6.798  1.1E-03 2.188   0.692 0.786 0.614  1.207 <0.001 56.3

AGB Eq.16 4.158  64.0 1.712 0.296  0.958 0.940 0.253  1.033 <0.001 271.5

TB Eq.11  -63.9 149.8 78.6  0.917 0.917 32.930  <0.001 132.3

L. chrysantha  

BGB Eq.7 2.888  18.0 1.624   0.903 0.821 0.413  1.089 <0.001 148.1

AGB Eq.7 3.655  38.6 1.846   0.930 0.625 0.391  1.080 <0.001 213.1

TB Eq.7 4.055  57.7 1.767   0.937 0.705 0.355  1.065 <0.001 237.6

L. maackii 

BGB Eq.7 2.885  17.9 1.598   0.824 0.656 0.607  1.203 <0.001 65.7

AGB Eq.16 4.739  114.3 0.806 0.932  0.968 0.914 0.247  1.031 <0.001 195.6

TB Eq.16 4.913  136.0 0.907 0.842  0.958 0.904 0.287  1.042 <0.001 148.2

L. praeflorens BGB Eq.16 3.740  42.1 0.695 0.909  0.852 0.591 0.608  1.203 <0.001 60.5
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AGB Eq.16 4.748  115.3 1.047 0.874  0.974 0.753 0.280  1.040 <0.001 390.2

TB Eq.16 5.095  163.2 0.946 0.886  0.965 0.768 0.312  1.050 <0.001 287 

P. schrenkii  

BGB Eq.9 4.009 55.1 0.727   0.399 0.354 0.703 1.280 <0.001 14.6

AGB Eq.9 4.719 112.1 0.948   0.623 0.576 0.581 1.184 <0.001 36.3

TB Eq.9 5.107 165.1 0.954   0.651 0.560 0.550 1.163 <0.001 41.1

R. komarovii 

BGB Eq.7 3.602  36.7 1.252   0.974 0.980 0.157  1.012 <0.001 339.7

AGB Eq.7 4.163  65.3 2.646   0.970 0.980 0.173  1.015 <0.001 575.9

TB Eq.7 4.819  123.9 0.941   0.818 0.868 0.342  1.060 <0.001 40.5

R. 
mandshuricum 

BGB Eq.9 5.395  220.4 0.992   0.948 0.828 0.265  1.036 <0.001 202.2

AGB Eq.7 3.354  28.6 1.299   0.739 0.943 0.630  1.219 <0.001 31.1

TB Eq.7 3.955  52.2 1.291   0.844 0.956 0.452  1.108 <0.001 59.7

R. 
maximoviczianu

m 

BGB Eq.7 3.154  23.4 2.165   0.675 0.464 0.457  1.110 <0.001 64.3

AGB Eq.11  -20.3 57.6 28.1  0.910 0.910 4.5   <0.001 151.4

TB Eq.11  -26.1 82.2 26.7  0.921 0.921 5.3   <0.001 174.6

S. fritschiana 

BGB Eq.17 -9.757  5.8E-05 1.274  2.211 -1.038 0.750 0.888 0.439  1.101 <0.001 23.1

AGB Eq.17 -8.237  2.4E-04 1.166 2.212 -0.587 0.923 0.987 0.252  1.032 <0.001 92.0

TB Eq.17 -8.188  2.8E-08 1.181 2.223 -0.718 0.907 0.971 0.267  1.036 <0.001 74.4

V. burejaeticum 

BGB Eq.10  -54.8 26.7 0.383  0.979 0.979 12.8   <0.001 183 

AGB Eq.10  -124.2 48.4 1.006  0.970 0.970 110.1   <0.001 131.2

TB Eq.12  -174.2 1.566 189.3  0.967 0.967 41.5   <0.001 118.8

1 a' is only associated with logarithmic models and calculated as a'=exp (lna). Otherwise, the a was used. 
Among species-specific optimal equations for AGB, BGB and TB, the models of the style 

of Eq.7 were the most commonly used from all alternative equations, i.e., 32 equations among 
72 equations, accounting for almost for 45% of all equations. Next in line was Eq.16, with 14 
equations accounting for almost 20% of all equations. As well, equations.4-5 and 8-15 were 
used, with 26 accounting for slightly more than 35%. It is to be noted that of these optimal 
models more than 75% (56 of 72) belong to a logarithmic style model. D was the best predictor 
variable for component biomass among species-specific equations and occurred in 58 optimal 
equations. CA was the second best predictor variable, used in 21 optimal l equations, while, H 
was the least often used. The R2 of all optimal equations varied between 0.675 for BGB in R. 
maximoviczianum and 0.997 for AGB and TB in U. laciniata. FI values, calculated based on 
predicted and observed values, varied from 0.464 for BGB in R. maximoviczianum to 0.996 for 
TB in E. verrucosus.  

For most species, the R2 values of the best fitted models for AGB and TB exceeded 0.9; the 
exceptions were E. enticosus, P. schrenkii, R. komarovii and R. mandshuricum). The lowest R2 
value scored was for AGB in R. mandshuricum (R2=0.739). R2 values of BGB, which ranged 
between 0.675 (R. maximoviczianum) and 0.992 (U. laciniata), were relatively smaller than those 
of AGB and TB in most species with the exception of R. komarovii, R. mandshuricum and V. 
burejaeticum (Table 3).  
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 3.2. Biomass equations by multispecies for three groups  

 As single independent variables D, H and CA were all highly significant for AGB, BGB 
and TB for three multispecies groups of saplings, tree-like shrubs and typical shrubs 
( p<0.001). However, the explanatory capabilities of these three variables varied for different 
components and groups (Fig.1). Among the three groups models of multispecies considered, 
the sapling multispecies (Fig. 1a, b and c) and tree-like shrub multispecies (Fig.1d, e and f) 
had higher explanatory capabilities than the typical shrubs (Fig. 1g, h and i) for the three 
independent variables, with the sapling multispecies slightly higher than for the tree-like 
shrub multispecies. For the biomass components of each group multispecies, the explanatory 
capabilities for AGB and TB of three variables were similar and higher than for BGB. Of the 
three independent variables involved, D had usually the highest explanatory capabilities for 
all components and groups of multispecies, followed by the H and the lowest in CA (Fig. 1). 

 

Figure 1. Belowground biomass (BGB, g), aboveground biomass (AGB, g) and total biomass (TB, g)  as 

functions of basal diameter D (cm), total height H (cm) or crown area CA (m2) of saplings (a, b and c), 

tree-like shrubs  (d, e and f) and typical shrubs (g, h and i)  in the understory. The total number of 

sampled plants was the same for three biomass components, 117 for saplings, 305 for tree-like shrubs, 

and 206 for typical shrubs. The various symbols and colors represent different biomass components, a 

black solid circle represents for BGB, a white hollow circle for AGB and a black inverted triangle for TB. 
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Goodness fit (R2 and p-value) of the regression models are provided for BGB (dotted line), AGB (medium 

dash line) and TB (solid line) for the three single independent variables, i.e., D, H and CA. 

 We developed multispecies regression models of BGB, AGB and TB for three different 
groups of understory species, i.e., saplings, tree-like shrubs and typical shrub and selected the 
best fitting multispecies models based on AIC and RMSE for BGB, AGB and TB of the three 
groups of multispecies, with their goodness fit and statistical descriptors shown in Table 4. 
These models are all of a logarithmic form, using multiple-variables, except for the 
multispecies model of BGB for saplings. Similarly as in the best fitting species-specific models, 
D was the most commonly used variable for all optimum multispecies models (all models 
used this variable) (Table 4). These optimum models displayed high explanatory capability 
(all R2 > 0.8) with p values < 0.001. Although the best-fit typical shrub models had more plant 
size variables (all three variables) than sapling or tree-like shrub models, their explanatory 
capabilities were lower. Biomass variability among individual plants was greater in typical 
shrubs than in saplings and tree-like shrubs.  
Table 4. The best fit equations for biomass components of AGB, BGB and TB by three species groups of 

understory plants. 

 
The comparison between observed and predicted values (calculated from the optimum 

models and shown in Table 3) of AGB, BGB and TB for the three species groups of 
multispecies are displayed in Figure 2. As close as possible, the slopes of our linear regression 
models were approximately 1, implying that the predicted and observed values were very 
similar. The slopes of all regression models ranged between 0.9594 and 1.0080. Among the 
three species groups, the models for saplings and typical shrubs were better than those for 
tree-like shrubs in terms of slopes and error bias of regression model between observed and 
predicted values. For sapling multispecies models, the slopes of BGB, AGB and TB were 
0.9999, 1.0003 and 1.0028, respectively, indeed very close to 1. Next were the typical shrub 
multispecies models, with slopes for BGB, AGB and TB of 1.0075, 1.0080 and 0.9990. Then, the 
slopes of tree-like shrubs multispecies models were 0.9695 for BGB, 0.9601 for AGB and 0.9594 
for TB, respectively (Fig. 2).  

Species group Component  Best fit model  R2 FI SEE CF  p F 

Sapling 

BGB lnBGB=2.752+2.259lnD 0.969 0.948 0.322 1.053 <0.001 3390 

AGB lnAGB=3.626+2.258lnD+0.242lnCA 0.986 0.914 0.253 1.033 <0.001 3787 

TB lnTB=1.610+2.1221lnD+0.470lnH 0.985 0.956 0.251 1.032 <0.001 3508 

Tree-like 

shrub 

BGB lnBGB=-2.347+1.458lnD+1.121lnH 0.914 0.933 0.574 1.179 <0.001 1599 

AGB lnAGB=-1.952+1.532lnD+1.194lnH 0.938 0.931 0.507 1.137 <0.001 2292 

TB lnTB=-1.437+1.489lnD+1.175lnH 0.942 0.951 0.479 1.121 <0.001 2451 

Typical shrub 

BGB lnBGB=-1.549+0.8361lnD+1.004lnH+0.23lnCA 0.812 0.938 0.676 1.257 <0.001 472.5 

AGB lnAGB=-2.240+0.787lnD+1.312lnH+0.33lnCA 0.925 0.970 0.463 1.113 <0.001 916.2 

TB lnTB=-1.524+0.778lnD+1.249lnH+0.3lnCA 0.910 0.978 0.485 1.125 <0.001 752.5 
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Figure 2. Ability of the best fit models to predict BGB, AGB and TB for species groups of saplings, 

tree-like shrubs and typical shrubs. Solid circles denote the BGB of the natural logarithmic 

transformation of three groups for multispecies; hollow circles represent for AGB and the hollow 

inverted triangles for TB. The black lines are simple regression models showing predicted values as 

functions of the observed values in a natural logarithm transformation. The coefficients of determination 

(R2), p-values and the number of samples for each regression equation are shown in each sub-figure. 

4. Discussion 

  The model forms and prediction variables for developing biomass equations were derived 
from various investigations [6,17,34,39,47,48]. In our study, we choose three variables (basal 
diameter, total height and crown area) and four models (linear, quadratic, multiple and 
logarithmic regression) to develop species-specific and multispecies equations for BGB, AGB 
and TB. . The independent variables D, H and CA have often been used to develop regression 
models for estimating biomass for shrub and sapling species [17,32,33,48]. In our study, the 
result showed that each of the three independent variables D, H and CA have a high 
explanatory ability for assessing AGB, BGB and TB in all species, entirely in agreement with 
similar variable-biomass relationships found for understory species in other studies 
[14,27,32]. 
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Stem basal diameter may be the best predictor variable to develop optimum biomass 
models for various understory species, specially for saplings or tree-like shrubs species, as 
shown in Tables 3 and 4. Occasionally crown area had to be considered for shrub-like species, 
specially for low-growth shrubs with multiple stem growth form, where it is difficult to 
measure each stem basal diameter individually[10,24,49]. Halpern et al. [49] found that basal 
diameter had the weakest prediction capability and the highest errors when used as the 
independent variable to estimate the biomass of small multiple–stem shrubs. In the semi-arid 
Chaco forest, Conti et al. [17]used crown area as well as crown-shaped variables to develop 
their species-specific and multispecies shrub models which proved to be the best, but 
suggested that the use of such models should be combined with total height and crown area 
(crown volume, CV=H×CA) as a single variable to predict aboveground dry biomass of 
shrub species. In this study, we also found that crown area was usually found in combination 
with height or basal diameter for optimum typical shrub species-specific models, but hardly 
ever used alone. The addition of height or basal diameter in models developed for shrub-like 
species was suitable because crown area mainly explained variation associated with 
horizontal growth, but not associated with any variation [10,49].   

 Other studies have shown that crown volume (CV) and D2H maybe the suitable variables 
in addition to basal diameter, height and crown area [14,17,23,24,27,47,50]. For example, 
Paton et al. [23] developed log-log regression models for 22 shrub species in Monfragüe 
Natural Park in southwestern Spain, in which 12 species were fitted with CV as the 
independent variable in all optimum models. Fan et al. [27] studied fourteen saplings in the 
Changbai Mountain region of northeastern China, showing that an entire plant biomass can 
be modeled accurately with power models based on basal diameter or the product of the 
square of basal diameter and total height. Liu et al. [24] developed four allometric biomass 
equations for alpine shrub species in the Heihe River Basin of northwestern China and also 
showed that the optimum models of Salix cupularis and Caragana jubata were constructed, 
again using the product of the square of basal diameter and height. In our study, crown 
volume and the product of the square of basal diameter and height were not used for 
modeling, but may be applicable for some other species in any future studies. However, these 
variables may not be preferred when a single variable model can estimate biomass well 
enough given a combination of two variables that are difficult to measure in practice [17]. It 
may be an interesting investigation to develop biomass models with CV or D2H as 
independent variables for those species were two or more than two variables are called for.  

In most cases, multiple-variable models are shown to have better explanatory ability than 
single-variable models (see Tables S1, S2 and S3). However, the more variables included in 
models, the more difficult and laborious the effort would be to deal with in practice. This 
seems to imply that more attention should be paid to the range of each variable, that more 
field measurements should be made and that more deviation might be expected. Models with 
fewer variables are more convenient and preferred and therefore, we suggest that one should 
opt for models with few variables when adding a variable that does not improve goodness of 
fit significantly. So, the selection of best biomass models should be based on not only over-all 
model fitting, but also applicability of models. Appropriate models can be selected from 
Tables S1, S2 and S3 based on the purpose for which it is needed. 

 The results from our optimum models developed for AGB, BGB and TB for the twenty 
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four understory species show that power models, transformed by natural logarithms, were 
more often employed than other models for both species-specific plant communities and 
multispecies communities (Tables 3 and 4). The goodness of fit of the logarithmic models in 
these species should be no questioned, given that the validity of these models has been 
further confirmed in a number of other studies for various of woody plant species around the 
world [17,25,31,32,40,51,52].  

In general, species-specific models show greater accuracy in estimating biomass 
components than multispecies models for a given individual species, especially for root 
biomass (BGB) as shown in our study and for foliage and branches (not shown) , as confirmed 
in a few studies [10,14,53]. However, for a particular species for which no specific regression 
model has been developed, it may be possible to select a model from a species of similar 
morphological characteristics or a multispecies model from an appropriate species group 
[19,54].  

Few belowground biomass equations are available for understory species [55,56] because 
of the difficulty of measuring root biomass [57]. In our study, we explored the belowground 
biomass of 24 understory species in northeastern China and developed their optimum 
equations. Between above- and below-ground biomass, the predicting power of the 
belowground biomass models was inferior to that of the aboveground models. This may have 
been caused by the fact that some serious uncertainties were introduced in the harvesting 
process [21], such as the roots of other plants may have been included in the sample or a few 
root samples could not be collected or were lost, especially small roots. It is important to 
ensure that root systems are harvested completely, accurately and competently as possible in 
field sampling for measuring an entire biomass.  

In this study, we developed biomass models of understory plants by species-specific or 
multispecies for coniferous and broadleaved mixed forest, northeastern China. The optimum 
models of both species-specific and multispecies, provided in our study, can estimate below- 
and above-ground and total biomass quite accurately for our study region. Given the limits in 
the number and ranges of variables sampled and our restricted study region, it is not clear 
that whether these models can be used in other forest types or other regions. We will verify 
the applicability of these models and supplement more data for other forest types and other 
regions in any future investigations. Our work helps the estimation of forest ecosystem 
carbon stocks, especially for belowground component, and provides tools for quantification 
of individual species biomass of understory plants. Due to various research purposes or the 
limitations in measuring variables, our optimum models (shown in Tables 3 or 4) are not 
always and everywhere appropriate to use. We provide some alternative models in our 
supporting documents in Tables S1, S2 and S3. We furthermore urge that special attention 
should be paid to the range of each variable when these models are used. When a variable is 
beyond our range, we suggest that this should be taken into consideration and models 
revised before their use. 

5. Conclusions  

This work harvested 24 understory species including 4 saplings, 9 tree-like shrubs and 
11 typical shrubs in coniferous and broadleaved forest in northeastern China and developed 
the best fit allometric equations of above- and below-ground biomass and total biomass by 
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species-specific and multispecies. The single basal diameter, height or crown area had good 
explanatory power for species-specific and multispecies. The logarithmic model was most 
desired for both components biomass. These best fit models has been developed in this study 
were all estimation above-and belowground and total biomass well. These models should 
contribute to estimating the forest ecosystem biomass and carbon stocks or sink as well as 
providing tools for quantification of individual biomass for understory species.  

Supplementary Materials: The following are available online at www.mdpi.com/***, Table S1: The 
alternative biomass equations of specie-specific and multispecies biomass equations of understory 
saplings，Table S2: The alternative biomass equations of specie-specific and multispecies biomass 
equations of understory tree-like shrubs，Table S3: The alternative biomass equations of specie-specific 
and multispecies biomass equations of understory typical shrubs. 
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