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Abstract: The experiences gathered during the past 30 years support the operational use of irrigation 
scheduling based on frequent multi-spectral image data. Currently, the operational use of dense 
time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical 
parameters feasible, capturing crop water use across the growing season, with suitable temporal 
and spatial resolutions. These achievements, and the availability of accurate forecasting of 
meteorological data, allow for precise predictions of crop water requirements with unprecedented 
spatial resolution. This information is greatly appreciated by the end users, i.e. professional farmers 
or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using 
the improvements achieved in web-GIS methodologies. This paper reviews the most operational 
and explored methods based on optical remote sensing for the assessment of crop water 
requirements, identifying strengths and weaknesses and proposing alternatives to advance towards 
full operational application of this methodology. In addition, we provide a general overview of the 
tools which facilitates co-creation and collaboration with stakeholders, paying special attention to 
these approaches based on web-GIS tools.  
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1. Introduction 

Pressure on water use is globally increasing and water demand for agriculture is the main driver 
for this pressure in many countries. The current demand of fresh water for agriculture in the world 
is unsustainable as recognized by FAO [1]. However, in spite of these increasing pressures, irrigation 
intensification is required to increase for food production for a growing population [2]. One of the 
possible ways to solve this dilemma could be the improvement of the efficiency in water use for 
irrigation to achieve a sustainable intensification of irrigated agriculture, in line with the definition of 
Garnett et al. [3] as "to produce more outputs with a more efficient use of all inputs (including 
knowledge and know-how) on a durable basis". 

In the scheme of crop management, a good first step towards the improvement of water use 
efficiency is the adequacy of the water applied to the actual crop requirements, pointing to the 
necessity of adequate estimates of the net irrigation water requirements (NIWR). NIWR is the water 
that must be supplied by irrigation to satisfy evapotranspiration, leaching, and miscellaneous water 
supply that is not provided by water stored in the soil and precipitation that enters the soil [4]. So, 
calculation of NIWR requires estimation of crop water requirements CWR and soil water balance 
where crop evapotranspiration (ETc) is the main component. A huge body of knowledge has been 
growing in recent decades to estimate ETc, CWR and NIWR. Manuals used worldwide to determine 
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CWR and NIWR, like FAO24 [5] and FAO56 [6], are milestones tracking this path, closely related 
with those that describe the relationships between yield and water, like FAO33 [7] and FAO66 [8]. 
Nevertheless, the complex interactions between root zone soil moisture flow, salinity build up, dry-
matter production, water quality degradation and opportunities to recycle water according to 
prevailing geo-hydrology and drainage conditions will require the use of more complex models 
describing the system with sufficient detail [9]. 

Most extension and irrigation advisory services at local and national scales were built on the 
wave of the "Green Revolution" to help farmers supply the right amount of water to the crops to 
improve the efficiency in the water use for irrigation. Nevertheless, better matching temporal and 
spatial water supply to the actual crop demand is a challenging key issue for sustainable 
intensification, in addition to nutrient supply and other agrochemical inputs. Despite its relevance 
and the efforts already achieved, water management still faces a development bottleneck—it requires 
precise information about the soil and plant conditions consistent across farms and from year to year. 
In addition, this information must be available at the right temporal and spatial scales that match 
rapidly-evolving capabilities to vary cultural procedures, irrigation and agrochemical inputs [10].  

Remote sensing imagery from cameras on board satellites, aerial platforms, airplanes, or similar 
systems has been recognized as an exceptional tool to produce spatial information about ETc. 
Nevertheless, the lack of availability of timely images at the required spatial resolution, to be able to 
capture the within-field variability of crop conditions over the growing cycle, has been hindering the 
use of remote sensing approaches in practical applications. In 1984, in a seminar essay on the potential 
use of remote sensing for making day-to-day farm management decisions, Ray Jackson [11] stressed 
the overall importance to the growers of (a) timeliness, (b) frequency and (c) spatial resolution of 
data. His observations have remained relevant; but the advances in communication technology and 
computing, together with a large change in NASA data policy by the US government, giving open 
and free access via the internet to the georeferenced Landsat images in near real-time, are removing 
these barriers. The adoption by the European Space Agency of the same data policy, giving free and 
open access via the internet to the 10-m imagery acquired by Sentinel-2 is revolutionizing the satellite-
based remote sensing system for spatial resolutions in the range 10–30 m. In addition, an increasing 
number of commercial sensors at very high spatial resolution 1–5 m, WorldView2, PLEIADES, DMC 
and DEIMOS, are ready to provide frequent land observations with increasing capabilities. 

Currently the operational use of dense time series of remote sensing (RS)-based multispectral 
imagery at high spatial resolution is able to monitor the crop biophysical parameters related with 
crop evapotranspiration and crop water use across the growing season, with suitable temporal and 
spatial resolutions. One most prominent and direct application of these approaches in agriculture is 
irrigation management. As described by Allen et al. [12] the benefits of these methodologies with 
respect to most classical information sources (field measurements or general knowledge) are the 
possibility to cover large areas, enabling sampling at high spatial resolutions and the zonation and/or 
integration over diverse areas. In addition, these procedures are generally more economical than 
point measurements. The literature is abundant in RS-based ET models or model-variants and 
validations of these models in different environments, surfaces and managements. Every model has 
strong scientific bases and are well calibrated for ET assessment at particular temporal and spatial 
scales. The experiences carried out within the PLEIADES project have confirmed that RS is a mature 
technology ready to be transferred to operational applications in irrigation management [137] and 
the technological transfer has already begun, where farmers find economical incentives to increase 
the irrigation efficiency [13]. Nevertheless, the translation of ET estimates into irrigation requirements 
and recommendation needs further development and it involves additional engineering methods 
and operative issues. In addition, the physical meaning of the results is different for the various ET 
models and these results have different applications in agriculture. Both aspects must be considered 
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prior to recommending the most adequate model for different purposes and, from our point of view, 
the scientific literature is scarce in reviews analyzing these aspects.  

In this framework of research and practical application, this paper reviews the basis of the most 
common methods based on RS for ET assessment with the focus on irrigation assessment in 
agriculture. We provide a comprehensive review of the basis of these models and their applicability, 
identifying the strengths and weaknesses and proposing alternatives to advance towards full 
operational application. Considering that these approaches are eminently applied, this paper also 
contains guidelines needed to provide a realistic estimation of remote sensing based CWR and NIWR 
in operative schemes and an extensive description of the most operational decision support systems 
based on this methodologies. 

2. Remote Sensing-Based Estimates of Evapotranspiration 

Most of the methodologies for ET assessment based on RS data are based on the big leaf area 
model [14,15] and further developments of the Penman-Monteith equation. This schematization 
relies on the surface energy balance and the resistances approach for describing transport of water 
vapor, distinguishing between bulk surface and aerodynamic resistances [15]. The Penman-Monteith 
equation can be applied to estimate evapotranspiration once surface and aerodynamic resistances are 
properly determined for a crop cover of given characteristics, namely hemispherical surface albedo, 
Leaf Area Index (LAI) and height, as well as meteorological conditions and soil water status. In the 
context of irrigation scheduling, the Penman-Monteith equation has been implemented in the 
standard procedure for estimating crop water requirements, commonly known as the FAO-56 
method [6]. In this procedure, the concept of evapotranspiration under standard conditions is 
formalized, i.e. “from disease-free, well-fertilized crops, grown in large fields, under optimum soil water 
conditions and achieving full production under the given climatic conditions” [Part B, 5].This definition 
allows for considering a minimum value of the stomatal resistance driving the transpiration process, 
which essentially becomes a function of the crop development, through the above-mentioned 
characteristics. This approach, defined in [6] as the “direct calculation”, needs crop characteristics 
measured or estimated for each crop patch. Diversely, for a water stressed crop, the surface resistance 
increases according to the physiological response mechanisms which are characteristics of each 
species. The evapotranspiration under non-standard conditions hence requires additional data to solve 
the surface energy balance or to compute the soil water balance. 

The direct calculation has been used to improve the definition of reference ET, ETo, by 
considering a well-watered hypothetical grass surface having fixed crop height (0.12 m), albedo (0.23) 
and LAI (2.88). Then the FAO-56 promotes the concept of crop coefficients in the so-called “two-step” 
procedure [5,6,16], which is now widely used in irrigation practice. In this procedure, ET is estimated 
as a product of two factors [6]. The first factor is the evaporative power of the atmosphere, ETo. The 
second factor in the “two-step” approach is the crop coefficient, Kc, which includes three parameters: 
a transpiration coefficient or basal crop coefficient, Kcb, the evaporative component of the bare soil 
fraction, Ke, [17] and the water stress coefficient, Ks, which is related to the soil water content through 
the water balance in the root soil layer. In this framework, the Kcb is defined as the ratio between 
plant transpiration in the absence of water stress and reference ETo. In contrast with the strong 
temporal variability of ET values, the evolution of Kcb over the time can be represented by a smooth 
continuous function. Depending on the variable measured from satellites, three main RS approaches 
for ET estimation have been applied: a) based on surface energy balance (RSEB), b) reflectance-based 
crop coefficient (reflectance-based Kcb) and c) by directly applying remote sensing-based parameters 
into the Penman-Monteith equation (RS-PM). The Figure 1 shows a schematic representation of the 
framework for the integration of the different models for the assessment of CWR and NIWR.  
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Figure 1. Overview of the remote sensing-based approaches for estimates of ET and Net Irrigation 
Water Requirements. The spatial scale of these approaches is related with the pixel size of utilized 
image data. 

2.1. The Reflectance-Based Basal Crop Coefficient (Kcb) 

The initial research relating crop development and canopy reflectance was developed during 
the 1970s [18,19] and much of this work had its foundation in research developed during the 1960s, 
as compiled by Pinter et al. [20]. Some of these authors already postulated the possible use of these 
relationships for the estimation of crop transpiration and the desirable use of these approaches for 
irrigation assessment in operative scenarios [21]. Following the development of the “two-step” 
procedure, some pioneers provided empirical evidence about the direct relationship between the Kcb 
values with the VI derived from multispectral satellite images [22–24] (see Figure 2). 

Despite the empirical evidence, the physics underlying the Kcb-VI relationships was 
controversial. The arguments in favor of the causal Kcb-VI relationship include the direct relationship 
between Kcb and the fraction of photosynthetic active radiation absorbed by the canopy (fPAR) and 
the relationship of these parameters with the VIs. Some analytical approaches relating Kcb-VI and 
fPAR were proposed by several authors during the following decades [25–30]. 

The initial relationships already presented were developed in terms of empirical values of VI 
and tabulated or common values for herbaceous crops, such as wheat and corn. The development 
and popularization of different methods for the measurement of crop ET, such as lysimeters, eddy 
covariance and Bowen ratio techniques, provided a new source of data for the development of 
empirical Kcb-VI relationships and a large number of crops were added to the classical species. Some 
examples are the Kcb-VI relationships derived and evaluated for potato [31], cotton [32], sugar beets 
[33] and vegetable crops including garlic, bell pepper, broccoli, and lettuce [34]. The advantage of 
using Kcb-VI is recognized for almost every crop, but the benefit of these methods applied to fruit 
trees is of paramount importance. The differences in local practices (planting densities, plant 
architecture and the management of the crop understory) have a great effect on the actual value of 
the crop coefficient and studies have demonstrated the capability of the Kcb derived from VI to 
capture these variations. Along this line, successful developments have been made for pecan trees 
[35], vineyards [36,37], and apples [38], and several attempts have been made in natural vegetation 
[39,40]. 

In addition to the previous research, based on ground based measurements of ET, special 
attention should be paid to those relationships based on VI data and ET estimated based on thermal-
based remote sensing models [41–43]. These methods allow for a determination of latent heat fluxes, 
hence the actual ET of crops. When these methods are applied over irrigated areas (where in most 
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cases evapotranspiration can be considered under standard conditions) they result in a massive 
calibration of the single Kc-VIs relationships without the necessity of cumbersome and expensive 
field campaigns measuring ET.  

 
Figure 2. Comparison of the Kcb curves described by J.L. Wright in 1983 [17] for wheat and corn and 
the temporal evolution of NDVI for both crops in Albacete (Spain) during the 2016 growing season. 

2.2. Remote sensing based Penman-Monteith direct approach–es (RS-PM) 

As mentioned before, the direct calculation of the Penman-Monteith equation can be used to 
estimate the maximum fluxes of evaporation from soil (E) and transpiration from plant leaves (T) 
once provided with the canopy parameters related with the surface properties [62]; essentially the 
surface and canopy resistances (rs and rc respectively) and the net radiation (Rn). These parameters 
are, in turn, related to three parameters derived from RS data: namely, the leaf area index (LAI), the 
crop height (hc), and the surface albedo (r). The variable rc is inversely related to the active LAI and, 
in turn, dependent on the maximum resistance of a single leaf. The active LAI is the index of the leaf 
area that actively contributes to the surface heat and vapor transfer [6]. It is generally the upper, sunlit 
portion of a dense canopy and can be approximated by 0.5×LAI [62]. The maximum resistance of a 
single leaf is crop-specific and differs among crop varieties and crop management [6], but a fixed 
value of 100 m/s can be considered in operative approaches [62]. The canopy architecture parameter 
used in the estimation of rc is the canopy height. Although the formulation can vary depending on 
meteorological conditions (stability) it is generally accepted that, in agricultural fields under well-
watered conditions, the stability correction is not needed. In addition, in most cases for irrigated 
environments the radiative component of the Penman-Monteith equation is dominant over the 
aerodynamic term; hence, a fixed value of crop height can be considered (i.e. 0.4 m for herbaceous 
crops, 1.2 m for tree crops) without significantly affecting the final accuracy. There is substantial 
literature on the estimation of the two most relevant canopy parameters, surface albedo and LAI from 
VIS-NIR observations, based either on empirical relationships with different VIs or physically-based 
methods, such as radiative transfer models [64,65]. This approach offers the advantage of a validation 
based on the estimated accuracy of albedo and LAI, the latter easily measurable in the field by means 
of portable optical analysers. A similar methodology is the base of the MOD16 global ET product 
[66,67] and further applications in natural vegetation and regional scales [68–71]. This method has 
been evaluated for ET estimates and irrigation management at the scale of irrigation schemes [72], in 
fruit threes [63,73,74] and is the basis of an irrigation advisory service operational in Italy, Austria, 
and Australia [75]. 

2.3. The Remote Sensing Surface Energy Balance 

The remote sensing surface energy balance approaches (RSEB) derive surface fluxes from the 
energy balance equation [79–82] by calculating the required variables from RS primary and 
secondary observables [83]. In particular, latent heat flux, λET, is estimated as the residual term of 
surface energy balance equation: 
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λET = Rn – G – H  (1) 

where λ indicates the latent heat of the vaporization of water (J kg-1), Rn is the net radiation flux (W 
m-2), G is the soil heat flux and H is the sensible heat flux. The main observables are the bi-
hemispherical surface reflectance, which determines Rn, and the radiometric surface temperature 
(TR), derived from thermal band imagery, and used to compute the sensible heat flux. The different 
schemes of RSEB models differ as to how the difference between TR and the aerodynamic 
temperature, To, is addressed. This difference is needed to compute the sensible heat. TR and To are 
clearly related [84], but this relationship is highly complex, since TR depends on the temperature of 
the different elements that occupy the radiometer view, while To depends on surface aerodynamic 
roughness, wind speed, and the coupling of soil and canopy elements to the atmosphere.  

The simplest RS-based SEB approaches use empirical/semi-empirical methods for adjusting TR 
to To, tuned to account for the spatial variability in the roughness lengths for heat and momentum 
transport [85–88]. Other approaches avoid the problem by computing the aerodynamic to air 
gradient, TA-To, needed to compute the latent heat flux. These methods are based on selecting pixels 
in the satellite image representing the extreme heat and water exchanging surfaces. Then they 
calculate the spatially-distributed sensible heat flux, assuming a linear relationship between TR and 
the near-surface air temperature gradient across the image [79,89–91]. Other TR-based approaches 
model the effects of partial vegetation cover on To using two-source model parameterizations [84,92], 
which partition surface fluxes between the soil and canopy components of the scene. This more 
physically-based approach does not require in situ calibration, although most implementations do 
require accurate radiometric temperature measurements. Anderson et al. [93] proposed an 
improvement of a two-source scheme by incorporating a simple description of planetary boundary 
layer dynamics. The resulting Atmosphere-Land Exchange Inverse (ALEXI) and an associated flux 
disaggregation technique (DisALEXI) is a multi-sensor thermal approach to ET mapping that reduces 
the need for ancillary data input and is able to deal with errors in TR remote estimation by using the 
rate of change in TR observations [94,95]. The partitioning of available energy through TR inherently 
accounts for the increase of plant temperature under water stress conditions [21,96] and successful 
model validation under water stress conditions has been regularly published [82,97,98]. A 
comparison between a two-source model and an internally calibrated model over herbaceous crops 
[99] showed a reasonable agreement with ground measurements. This approach is very attractive in 
calibration and validation of the other approaches presented here [100] and for applications such as 
water stress assessment. 

Water stress is an important indicator for the evaluation of adequate crop water management in 
precision agriculture. Stress indicators are useful to diagnose the causes of crop yield variability and 
develop management strategies [101] in water-limited environments. The most classical indicator of 
crop water stress that uses RS data without using direct measurements [83] is the crop water stress 
index (CWSI) based on the difference between air and canopy temperature [21,96]. Later 
development of the CWI considered the effect of partial canopy covers in the surface temperature, as 
is the case of the surface-air temperature and VI relationships [82], and further developments and 
simplifications [80,102]. The literature is profuse in the use of CWSI or similar indicators for the 
assessment of crop water status and irrigation scheduling [103–106]. These indices and other 
diagnostic tools, are indicators of the plant water status, revealing the effects of the water deficit, but 
they cannot predict the irrigation timing or amount needed to maintain the crop under optimum 
conditions. Other approaches to water stress, such as the hyperspectral indices, have gathered 
promising results in agriculture [107–110] in addition to other stress indicators based on multispectral 
satellite signal, such as the normalized difference water index (NDWI) [111], and are attractive for 
extensive applications in natural vegetation.  

2.3.1. Coupling Models 

The RS-SWB models provide continuous and predictive estimation of the soil water content, 
cumulative ET [113] and irrigation requirements. However, for an adequate estimation of these 
components the SWB model requires knowledge of the water inputs, precipitation, and irrigation, 
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and the soil hydraulic properties, i.e. actual and maximum amount of soil water storage in the root 
zone, if classical static volume balance approaches are used. Accurate values of maximum and actual 
water content are necessary in every SWB model, although both concepts could be represented with 
different notations [6,16,93,114]. The actual content can be estimated when the balance is maintained 
for long periods, departing from dates when the soil can be considered at full capacity, but the 
uncertainties about the spatial variability of the water inputs (mainly precipitation) and the 
inaccuracy in estimating other components result in significant bias at large spatial scales and for 
long periods. In addition, the practical operation of these models is also limited by the narrow 
knowledge about the soil properties, which define the water retention, field capacity, and wilting 
point, in addition to the actual root depths for most of the crops growing in heterogeneous areas. 

Within the six approaches classified by Wang-Erlandsson et al. [115], for the estimation of root 
zone water storage capacity, RS-based studies are generally based on field observations and look up 
tables [116–119]. Nevertheless, some recent studies propose the optimization-calibration and inverse 
modelling approaches with diverse purposes. Some approaches assimilate into the soil water balance 
models either water stress estimates based on canopy temperature [120,121] or ET estimates based 
on SEB models [93,113,116,122] in order to calibrate the fraction of water depleted derived from the 
water balance model. In slightly different approach, some authors propose the integration of actual 
ET values in order to calibrate the soil water balance model in terms of the root zone storage capacity 
[115,123–125]. The rationale of these approaches is that any empirical approach to the plant water 
stress, or alternative formulations as those based on the canopy temperature, must be equivalent to 
the soil water stress, a stress index based on the parametrization of the soil properties [122]. Both 
approaches to water stress result in similar values only if the SWB model is properly initialized and 
maintained. Therefore, those variables with large uncertainties as is the case of the fraction of water 
depleted or the root zone storage capacity can be calibrated. 

However, the lack of information about the actual irrigation scheduling adopted by the farmers 
is the critical limitation when applying soil water balance models. Irrigation criteria adopted by 
farmers depend on several factors related to operation and management of irrigation conveyance and 
distribution systems and to farmers’ perception about the best time and duration of irrigation 
applications. This issue might be addressed by using deterministic or stochastic approaches to 
parametrize farmers’ behavior [126]. Still, remote sensing is very valuable in this context since the 
knowledge of the actual development of crops is one of the most important variables in the 
description of this process.  

3. Operational Use of Remote Sensing for Irrigation Water Management 

3.1. Monitoring the Crop Development at the Right Spatial and Temporal Scale 

Monitoring crop development and crop ET over the growing season for the purpose of irrigation 
management requires dense time series of multispectral imagery at spatial resolution high enough to 
resolve within-field variability and delivered in real-time. The spatial and temporal resolution of the 
resulting maps of ET and NIWR depend on the pixel size of the input imagery. In addition, and given 
that crop evolves rapidly in most cases, single satellite sensors or platforms cannot adequately 
capture these changes due to their limited temporal resolution and the impact of cloudiness in the 
optical and thermal satellite images. Virtual constellations of planned and existing satellites help to 
overcome this limitation by combining all available observations to mitigate limitations of any one 
particular sensor [127]. For models based on reflectance-based VI and further secondary variables, 
which rely on VIS-NIR imagery, the pixel size ranges usually between 5 and 30 m using most of 
commercial (World View, Rapid Eye, DMC, and Deimos) and free images from the sensors on L8 and 
Sentinel2a currently in orbit. Accordingly, the virtual constellation of L8 and Sentinel-2a currently 
provides, at no cost, a time resolution of around one image per week, which can be considered as a 
minimum for the adequate monitoring of crop development. The time series of both sensors are 
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accessible through USGS (http://glovis.usgs.gov/) and Copernicus (https://cophub.copernicus.eu/) 
sites. In addition, some companies, like Amazon S3 (https://aws.amazon.com/es/public-data-
sets/landsat/) and Google Earth Engine (https://earthengine.google.com/), are offering catalogs of 
satellite imagery from both sensors at the planetary scale, and additional cloud computing 
capabilities. The use of multi-sensor virtual constellations is the only way to ensure the frequent 
availability of cloud-free images. Yet, the actual number of images effectively usable in an area or 
period can be seriously impacted by the clouds, even considering multiple platforms. Some 
initiatives, like the upcoming launch of Sentinel-2b, foreseen for 2017 
(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2), will increase the 
availability of pixel-cloud-free imagery. Currently, as presented in the next section, the demand for 
irrigation recommendations and the implementation of operational services appears in areas 
characterized mostly by low precipitation and high atmospheric demand, which are only minimally 
affected by clouds. However, the implementation of these methods in areas of significant cloudiness 
must also be considered. 

ET products based on RSEB can have medium spatial resolution for the most operational 
satellites. The pixel size ranges from 100 m for thermal sensor on board L8 to 1000 m for MODIS-
AQUA, MODIS-TERRA and Sentinel-3; additional data sources and downscaling algorithms and 
interpolation methods can be used to improve the temporal and spatial resolution. From the point of 
view of crop management, the strength of these models is the assessment of surface ET also under 
water stress conditions and further indicators of water stress and irrigation performance. 
Nevertheless, the spatial resolution provided by the most operational platforms is not appropriate 
for small agricultural fields [12] since the pixels may overlay broad mixtures of crops and densities 
so that surface temperature signals are mixed and the ET retrievals are difficult to interpret. 
Therefore, from an operative point of view for irrigation management the procedures based on 
satellite canopy temperatures seems to be complementary with that previously described, providing 
an independent quality control in the suitable areas. Efforts are ongoing to implement disaggregation 
techniques to increase effective spatial resolution from satellite thermal imagery, reaching spatial 
resolutions comparable to the most common multispectral images [128]. In addition, the spatial 
resolution can be improved up to 2–5m from aerial images, and growing advances on the use of 
airborne thermal cameras shows very promising perspectives to produce temperature maps at very 
high spatial resolution [108,129]. 

3.2. RS-Based Irrigation Scheduling: Implementation 

As presented and discussed in the previous sections, time series of current multispectral imagery 
that provides canopy reflectance can be directly converted, either through Kcb-VI relationships, or 
using more complex models, into maps of Kcb, or related variables describing the potential crop 
water use. Gap filling techniques between images close in time allow the production of daily maps 
of the variables of interest, LAI, hc or, directly, Kcb, taking advantage of smooth-continuous curves 
described by these parameters and so avoiding the pernicious effects of cloudiness. The product of 
these Kcb maps and reference evapotranspiration, or the solution of the PM equation using RS inputs, 
directly provide the daily potential transpiration on a pixel by pixel basis. In addition, the interest of 
these methods goes beyond the perspective of irrigation management. Although it is not discussed 
in this paper, the output of this remote sensing-based soil water balance paves the way for water 
accounting at the pixel scale for water governance and environmental purposes, and promising 
perspectives are open to use this methodology together with ground flowmeters to enforce legal rules 
about monitoring permitted abstraction volumes to use for irrigation [130]. 

For the adequate determination of NIWR, both VI-based Kcb RS-PM models require the 
assessment of soil water content. For these reason, some of these approaches have been integrated 
into a classical soil water balance, like that described in FAO56 [6], demonstrating good performance 
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for the assessment of irrigation water requirements [117,131]. The literature is prolific in soil water 
balance models, with different degree of realism and complexity, but the approaches based on remote 
sensing data are generally based on relatively simple models [116] because these approaches have a 
clear inclination for the operational applications at large scales. For these scales the detailed 
information about the soil properties is scarce [93]. According to the FAO56 procedures it is possible 
to calculate these RS-based NIWR irrigation water requirements also under water stress, as is used 
either in controlled deficit irrigation or in supplemental irrigation. Knowledge of the desired water 
stress degree is required and further calibration of the methodology and the evaluation of irrigation 
management using diagnostic tools is always recommended. 

In these models soil evaporation is calculated by separately applying a soil water balance in the 
soil top layer as proposed by Allen et al. [6] and further modifications [49]. This approach requires 
the knowledge of the irrigation timing and amount, which is generally known in irrigation 
assessment scenarios. Alternatively, some authors working at large scales, with scarce field data, 
proposed the concept of synthetic crop coefficient [47] accounting for mean soil evaporation derived 
from canopy cover estimates. Microwave remote sensing could provide insight on the bare soil 
evaporation, although the scales of observation for the current sensors SMAP and SMOS (20 km) 
[132,133] is too coarse for the agriculture scale of interest.  

Some initiatives implementing satellite-based Irrigation Advisory services have been developed 
in Southern Italy, with IRRISAT (http://www.irrisat.it), in Lower Austria, with EO4Water 
(http://eo4water.com), and in Southern Australia, with IRRiEYE (http://www.irrieye.com). These 
systems are based on the RS-PM method [75]. Thus, the calculation of crop ET and suggested 
irrigation depth (pixel and plot scale) are based on the LAI calculation from surface reflectance values 
and meteorological data. EO data from the virtual constellation of Landsat 8, Sentinel-2, and DEIMOS 
are used to derive crop parameters (LAI and surface albedo) on a weekly basis. Information is 
released to end-users by using a webGIS tool, developed in an open-source software environment 
and implemented in three different areas. The structure of the webGIS has been slightly adapted to 
each area for considering the requirements of the local users. The IRRISAT approach has proven that 
economic benefits generated by such advisory services are able to fully repay the initial investments, 
creating advantages for the environment and opportunities for all of the users of water resources. 
Accordingly, IRRISAT has been deemed a “best practice” for agricultural applications by EURISY 
(http://www.eurisy.org/good-practice-campania-encouraging-the-sustainable-use-of-irrigation-
water-in-the-region_85) and by the International Selection Committee of the call for “Best Sustainable 
Practices on Food Security” for EXPO 2015 in Milan (Italy). In the specific context of Consorzio of 
Sannio Alifano, Campania Region, the overall results in terms of cost-benefit analysis, obtained 
comparing the 2012 irrigation season (pre-IRRISAT) and 2013 (post-IRRISAT), demonstrate water 
savings of about 18%, while a survey on a sample of monitored farms highlights peaks saving of 
about 25-30% without loss of production. 

An approach using satellite data, mobile phones, and webGIS tools for information delivery is 
the IrriSatSMSsystem developed in Australia by CSIRO. The system is based on the NDVI-Kcb 
relationship [57] and was originally applied for vineyards in the Murrumbidgee Irrigation Area, but 
the current geographic area covers the entire Australian continent. The IrriSatSMS system aims to 
simplify input data collection requirements and reduce both costs and complexity of information 
output [134]. The core of the system was initially a server that acts as a data collection portal for 
various data feeds and a processing engine to convert these data into usable irrigation management 
information. The most recent version makes use of the Google Earth Engine for the image processing 
and algorithm implementation. Originally the system relied mainly on a Short Messaging Service 
(SMS) interface to communicate with irrigators directly on their mobile phones and later 
development included a web-interface (https://irrisat-cloud.appspot.com/). The web interface is 
easily accessible, the target fields can be defined (actually draw) by the user and the information 
contained in the system is well presented and easily reached. Some information about the crop type, 
management, growing cycle, and soil properties is required in order to complete the water balance. 

In the framework of the NASA Terrestrial Observation and Prediction System (TOPS) [135], an 
application for near real-time mapping of crop canopy conditions and associated CWR at the 
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resolution of individual fields has been developed. The TOPS Satellite Irrigation Management 
Support (TOPS-SIMS) integrates satellite observations from Landsat and MODIS with ETo from 
meteorological information and ancillary data on crop type and site-specific conditions. The initial 
implementation provides a capability for mapping fractional cover, associated basal crop coefficients, 
and evapotranspiration over 3.7 million ha of farmland in California’s Central Valley. A generalized 
NDVI-Kcb relationship is used for near real time mapping Kcb and ETc. Refinements introducing 
crop-specific NDVI-Kcb relationships are introduced a posteriori when this knowledge is available 
[59]. A web-based user interface provides access to visualizations of TOPS-SIMS (http://ec2-54-197-
48-121.compute-1.amazonaws.com/dgw/sims/). The variable and date visualized can be selected and 
the data associated to the plot analyzed can be downloaded in numerical and graphical formats. 

In Southern Spain, a first experience was developed in 2005, by using time series of Landsat5 
images to obtain Kcb curves based on NDVI temporal evolution and displaying them on SPIDER 
(http://maps.spiderwebgis.org/webgis), a web-GIS based on open-source software developed by the 
University of Castilla-La Mancha. SPIDER has evolved from a 2005 prototype and it is currently 
providing time series of Sentinel-2a and Landsat-8 imagery and derived products for the whole 
Iberian Peninsula, covering Spain and Portugal (around 600,000 km2). SPIDER is able to display time 
series of raster and vector maps, adding the capability to also display time trajectories of pixel-based 
values for the periods defined by the user. The main layers displayed by the systems are ETo maps, 
color composition RGB, NDVI, Kcb and CWR values, 24 hours after image delivery in the web-portals 
of L8 and S2a by USGS and Copernicus, respectively. The image processing is off-line and a 
normalization process allows the operation of multiple image sources as a multi-sensor virtual 
constellation. A mobile app version of SPIDER webGIS (Agrisat App) was released in 2016 and is 
available in the most common digital distribution platforms for mobile devices. 

 

Figure 3. Scheme of the modular system based on the integration of Remote Sensing and weather 
observations into a webGIS, to provide users irrigation scheduling, matching the water supply to crop 
water demands. 

3.3. Predicting CWR a Week Ahead 

Providing advice in operative scenarios, one week ahead seems to be a reasonable anticipation, 
providing enough time and ensuring the accuracy of the CWR forecast. The relevance of this 
predictive product was already highlighted by [4] and clearly recognized by the traditional irrigation 
advisory services, but the remote sensing community was primarily interested on the accuracy of RS-
based ET estimates. The prediction of CWR one week ahead requires the extrapolation of the Kc-Kcb 
data and weather forecasts for ETo prediction. CWR forecast is a logical step in the reflectance-based 
Kcb models [34,59], although some of the operational systems, like TOPS-SIMS still do not 
incorporate this product. A prediction of CWR is fully operative in IrriSatSMS and is under 
development for the IRRISAT, EO4Water and IRRiEYE systems based on LAI-VI relationships (De 
Michele, personal communication). A commercial development of the CWR prediction based on Kcb-
VI relationships has been developed in Spain (http://www.agrisat.es). The initial approach is based 
on a generalized Kcb-VI relationship following previous approaches discussed in this paper [57,59].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 November 2016                   doi:10.20944/preprints201611.0095.v1

http://dx.doi.org/10.20944/preprints201611.0095.v1


 

Considering that ETo can be calculated from common meteorological data, ET can be calculated 
from short term numeric weather forecast. Two complementary methods with different spatial scope 
and accuracy have been introduced. The first one is to use the full power of numeric weather forecast 
to determine the variables required to compute ETo according the FAO56 formulation. The second 
one is based in daily temperature forecasting by using it as the input into Hargreaves and Samani 
equation to calculate ETo [6]. The latter method should be restricted to areas where the Hargreaves 
and Samani equation works well (no windy area, no coastal areas) and where no forecasting of other 
meteorological variables than temperature are available. An inter-comparison analysis has been 
recently published considering ensemble forecast models up to five days and a spatial resolution of 
7 km [138]; this study, based on COSMO-LEPS data (provided by the European Consortium for local–
scale modelling, COSMO) has evidenced the robustness and reliability of ETo forecasts with the PM 
equation. 

Computing ETo according FAO56 from weekly numeric weather forecast is the preferred option. 
Maps of weekly predicted ETo are routinely provided by the Spanish Meteorological Agency, 
AEMET (Agencia Estatal de Meteorología). The prediction is based on the High Resolution Limited 
Area Model (HIRLAM) and the European Center for Medium range Weather Forecasting (ECWMF) 
models. The spatial scope of this product is the Iberian Peninsula, as presented in Figure 4, and the 
spatial resolution of the raster map is a pixel size of 5 km. The ETo predictions are routinely compared 
with the weekly measured ETo maps provided by the same agency and ETo values obtained from 
ground stations (www.siar.es). Finally, the adequate estimation of CWR requires the extrapolation of 
reflectance-based Kcb, or related variables, like LAI and hc for RS-PM methods. This extrapolation 
takes advantage of the smooth shape of the Kcb curves derived from time trajectories of NDVI (see 
Figure 2). Therefore, the time trajectory of the Kcb, and LAI or related parameters, are suitable to be 
extrapolated using previous dates for short periods, as is the case of one week.  

 

Figure 4. Weekly reference evapotranspiration ETo forecasting provided by AEMET displayed by the 
system SPIDER webGIS. 
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4. Discussion 

4.1. Strength and Weakness of the RS-based Models for Irrigation Assessment 

The great strength of the reflectance-based models from the point of view of crop irrigation 
management is the capability to estimate the potential crop transpiration, based on the temporal 
evolution of the RS-based Kcb and the ETo values. This ability of VI enables description of the 
photosynthetic magnitude of the canopy [44–46]. The theoretical and empirical bases support that 
reflectance-based basal crop coefficients represent the “potential” or maximum ratio between 
transpiration and ETo for the canopy, as it happens for an unstressed canopy following the definition 
of the Kcb concept. The advantages of VI-based Kcb estimation for irrigation assessment are clear as 
proposed by Allen et al. [12] in a review about the methods used for ET estimation: a) probably the 
simplest method to introduce the RS data in the operational application of the Penman-Monteith 
formulation for ET assessment known as the “two-step” methodology, which enables quick analyses 
that can be made by mid-level technicians; b) large areas can be covered; and c) very high spatial 
resolution if aerial imagery is used. As indicated by the same authors, the main weakness of the 
methods based on the Kcb-VIs for crop ET assessment are: a) the estimation of the evaporation 
component (from soil) is less certain than the transpiration component because of the lack of a direct 
relationship with vegetation amount; b) the relationships tend to overestimate transpiration under 
conditions of acute water shortage and c) the relationships may vary with the type of vegetation; 
stomatal control (and thus Kcb-VI relationships) can vary among types of vegetation. 

The variation in the Kcb-VI relationships can be perceived in the compilation of equations based 
on the most used multispectral vegetation indices, NDVI and SAVI, presented in the Table 1. The 
relationships shown in Table 1 revealed a similarity for those relationships that reach the maximum 
NDVI or SAVI values, typically around 0.9 for NDVI and 0.7 for SAVI, resulting in a mean Kcb value 
of 1.14 and standard deviation (SD) equal to 0.08. The main differences appear for bare soil, being the 
corresponding NDVI value around 0.15 and SAVI value around 0.1. Some relationships consider a 
minimum Kcb equal to 0 for bare soil [29,30,33,47], arguing that no transpiration occurs for bare soil 
conditions. Other Kcb-VI relationships are established in terms of a Kcb values greater than 0 for bare 
soil conditions [22,34,36,48]. This has been recurrently analyzed in the literature, as early as Wright 
[17] and Allen et al. [6]. Torres and Calera [49] demonstrated empirically that this residual Kcb can 
be expected for bare soil conditions and should be attributed to the evaporation component rather 
than plant transpiration [47]. The discussion about the most adequate minimum Kcb in reproducing 
the crop ETc is still open and further detailed analysis will be necessary for providing a practical 
solution. 

Differences in the VIs measured with different instruments, and the difficulty to measure canopy 
transpiration, in addition to the effects of the crop physiology and structure in the ET process could 
be in the basis of the mentioned discrepancies. The effect of the measurement instruments depends 
on the sensor´s spectral and radiometric resolutions [50], differences in the acquisition angle [51,52], 
atmospheric correction, sensor degradation, and the correctness of the calibration process [53]. These 
sources of uncertainty can be minimized by applying cross-calibration approaches and ensuring the 
compatibility of the data-sources [50]. Additional differences might be attributed to the well-
documented variances in the stomatal response for the different species [54,55] in contrast to the 
insensibility to these changes of the VI used for the assessment of Kcb. 

Some Kcb-VI relationships exhibit very good agreement for different crops. Odi-Lara et al. [38] 
and Campos et al. [56] found that the relationship described by Campos et al. [36] in row vineyards 
was adequate for ET assessment in apple trees and Mediterranean holm oak savanna. Hornbuckle 
[57] concluded that several relationships, developed for multiple different crops [58] are valid for the 
assessment of vineyard ET in Australia. Melton et al. [59] proposed the use of a generalized 
relationship for real time and operational purposes, and apply crop-specific relationships a posteriori, 
when information about crop architecture is available.  
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Table 1. Compilation of Kcb-VI relationships found in the literature.  

Crop Equation Reference 
Corn Kcb=1.36×NDVI–0.06 [22] 

Wheat Kcb=1.46×NDVI–0.26 [29] 

Cotton Kcb=1.49×NDVI–0.12 [32] 

Wheat Kcb=1.93×NDVI^3–2.57×NDVI^2+1.63×NDVI–0.18 [60] 

Wheat Kcb=1.64×NDVI–0.12 [30] 

Row vineyard Kcb=1.44×NDVI–0.1 [36] 

Garlic Kcb=-1.56×NDVI^2+2.66×NDVI–0.08 [34] 

Bell pepper Kcb=-0.12×NDVI^2+1.45×NDVI–0.06 [34] 
Broccoli Kcb=-1.48×NDVI^2+2.64×NDVI–0.17 [34] 
Lettuce Kcb=-0.11×NDVI^2+1.39×NDVI+0.01 [34] 
Corn Kcb=1.77×SAVI+0.02 [61] 

Potato Kcb=1.36×SAVI+0.06 [31] 

Sugar beet Kcb=1.74×SAVI–0.16 [33] 

Row vineyard Kcb=1.79×SAVI–0.08 [36] 

Cotton Kcb=1.74×SAVI–0.16 [47] 

Garlic Kcb=1.82×SAVI–0.16 [47] 
Olive Kcb=1.59×SAVI–0.14 [47] 
Mandarin Kcb=0.99×SAVI–0.09 [47] 
Peach Kcb=1.29×SAVI–0.12 [47] 
Apple trees Kcb=1.82±0.19×SAVI–0.07±0.06 [38] 

 
The RS-PM methods are also in surface reflectance, thus the strength and weakness are similar 

to the reflectance-based Kcb models. The RS-PM approach solves the problem of the estimation of 
the resistances in the Penman-Monteith formulation for the conditions of a well-watered canopy. The 
parameters used in the respective solutions are strongly related with RS data and the key parameters, 
LAI, albedo and hc, and these variables describe smooth-continuous functions that can be easily 
interpolated over time. The weaknesses are in the crop-specific LAI-VIs and hc-VIs relationships, the 
impossibility to reflect the effect of the water stress in the ET process and the role of the soil 
evaporation. In a complete analysis of the LAI-VIs, Anderson et al. [76] concluded that the LAI-VIs 
relationships were relatively stable for two different crops (corn and soybean) using determinate VIs. 
Similarly, Vuolo et al. [77] concluded that the models and calibration parameters used to estimate 
LAI from VIs can be transferred across different environments, management practices, and for 
multiple crops, including alfalfa, corn, sugar beet, and vineyards. In addition, according to the 
sensitivity analysis published by Consoli et al. [63] and D’Urso [62], the deviation of ET values by 
considering a constant value of hc, over a wide range of leaf area indices, is lower than 10%. 
Furthermore, the availability of sensors with improved spectral and spatial resolution such as MSI 
on board the Sentinel-2 satellite allows the application of inversion methods to canopy radiation 
transfer models to estimate crop biophysical parameters with greater reliability compared to other 
methods. These methods take into account the bidirectional reflectance distribution effects of the 
canopy as well as the actual illumination-viewing geometry of the sensors. Artificial Neural 
Networks have proven to be effective in terms of accuracy and computational time [78] and tools are 
available in freely available packages, such as SNAP, developed by the ESA to estimate LAI, 
fractional vegetation cover, and other parameters from Sentinel-2 data 
(https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2). Experimental studies have shown 
the accuracy of this approach for LAI or ET estimation in different environments and crops. 
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The weakness of RSEB approaches is the representativeness of the ET estimates over time 
because they provide an instantaneous estimation of the ET at the image acquisition time. This 
instantaneous value must be extrapolated to daily amounts on a physical basis, such as the 
conservation of the energy partitioning [99] or the stability of the crop coefficient [89]. The time gaps 
between estimates of ET for all satellite systems may bias daily-to-seasonal estimates. As pointed out 
by Allen et al. [89] the effects of precipitation or irrigation events occurring between satellite 
overpasses may be missed, resulting in underestimation of seasonal ET with respect to the actual 
value. In addition, processing of images impacted from recent precipitation events could lead an 
overestimation of the seasonal values of ET if these images are used in the interpolation. In the 
framework of NIWR estimates, another operative issue is the adequate interpretation of ET data 
obtained under water stress conditions. According to the definitions provided in the introduction, 
NIWR is the amount of water that should be applied in order to maintain the crop transpiring at its 
potential rate. Acquiring ET data under water stress conditions could lead to an underestimation of 
NIWR if the actual values are not compared with the potential (and eventually desired) ET rates for 
the analyzed canopies. In addition to these weaknesses, the limited availability of thermal 
observations in terms of spatial and temporal resolution hampers the development of operational 
applications of surface energy balance from remote sensing. 

In general terms, the main difference between RSEB models with respect to RS-PM and 
reflectance based Kcb approaches is the assessment of water stress, but the three approaches should 
result in similar values when applied under non-water limited conditions. In this line, Singh and 
Irmak [43] found that a Kc-NDVI relationship derived from the SEBAL model is able to reproduce 
the actual ET measured with a Bowen ratio station. Tasumi et al. [41] concluded that the ET estimates 
from a Kc-NDVI relationships correspond well with the results of METRIC applied for multiple crops 
in an irrigated area in Idaho. Rafn et al. [42] demonstrated that the results of three Kc-NDVI 
relationships, derived from empirical or analytical approaches, are within the range of ±10% of the 
ET estimate based on the METRIC model. Rubio et al. [100] published a direct comparison of two 
RSEB models, the RS-PM approach and the reflectance-based Kcb. These authors concluded that the 
RS-PM and reflectance-based Kcb models are in agreement with each other , although these authors 
did avoid the direct comparison of both approaches with RSEB models because of their different 
nature. Similarly, D´Urso et al. [112] obtained a comparable accuracy when the reflectance-based Kcb 
and the RS-PM models are applied to herbaceous crops, like corn, alfalfa, and wheat. Gonzalez-Dugo 
et al. [99] compared three RSEB models and the reflectance-based Kcb approach for the assessment 
of ET in irrigated herbaceous crops. These authors obtained similar accuracy for every model, but the 
2-sources RSEB and the reflectance-based Kcb were the approaches with lower RMSE. In the view of 
the results, we can conclude that all models were valid for the assessment of the ET of irrigated 
herbaceous crops. Although each model has been evaluated in other crops, as is the case of 
horticultural and fruit threes, we did not find comparative studies running different models on the 
same conditions. Future studies comparing different approaches for these crops and in operative 
schemes will provide further insights on model performance. 

 

4.2. Comparison of the decision support systems based on web-GIS technology 

The development of operational systems for the assessment of water management confirm the 
maturity and the applicability of the methodologies revised in this paper. The advantages and 
improvements over traditional irrigation advisory services based on field work and Kc-tabulated 
values, refer to the capability of the satellite-based system to reflect the actual conditions of the 
canopy, covering large areas and increasing efficiency of field work. Further experiences about the 
transferability of these methods are developed in the framework of EU-funded projects as SIRIUS 
(http://sirius-gmes.es) and FATIMA (http://fatima-h2020.eu). In the frame of SIRIUS, the groups 
involved provided information related with the CWR and NIRW in several pilot areas (from the 
Americas to Asia) and for a wide range of end-users and stakeholders, from farmers to water 
authorities. The information currently provided to the end-users in the frame of FATIMA varies from 
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NIWR maps to spatially distributed fertilization requirements adapted to the actual crop 
development and potential productivity. 

The experience obtained in these projects indicate that additional conclusions can be extracted if 
the methodology is analysed from the perspective of the end user (V. Bodas, personal 
communication). Easy access to timely information is crucial. Direct access by farmers in real-time to 
the images in the way of the usual RGB colour combination is very useful. These RGB/NDVI images 
enable farmers to gain confidence in identifying some details in the images they have observed 
directly in their fields, such as sprinkler failure and non-uniformity water distribution effects, among 
others. These conclusions are shared by the different web-GIS analyzed, and the basic information 
provided by each system is similar: vegetation indices, color composites, and core biophysical 
parameters derived from satellite data and related with the water use, like crop coefficients. All of 
the systems take into account the necessity of the spatio-temporal analysis, and the user can visualize 
the images and query the information for different dates or time periods. An interesting option in all 
systems is the capability to display the location of the user or device in the maps. This geolocation, 
with the reference of the most recent satellite images, can be used to identify areas of interest in the 
field, like zones with unusual crop development. An additional point of general agreement is that 
weekly is the best compromise of timing for using and receiving the information about plant status 
and CWR. However, the information about CWR or NIWR must be provided with sufficient 
anticipation, because of the time required to modify the irrigation scheduling, adapted to the power 
supply rates, water availability, irrigation system, precipitation probability and farmer´s availability. 

Usually the farmers are willing to adopt these techniques are familiar with point ground moisture 
sensors in such a way that they are able to check with their own knowledge the reliability of RS 
recommendations, comparing them with other sources of water requirement estimation. This 
necessity is considered in most of the systems although the information provided and the procedures 
varies between the systems. IrriSatSMS has powerful processing capabilities because it is able to 
calculate, on-the-fly, a soil water balance for the user-drawn polygon. The system is able to estimate 
and update the actual NIWR and soil water content based on the information provided by the end 
user. The information about NIWR and other components of the satellite-based soil water balance 
can be displayed in other web-GIS tools, like SPIDER or IRRISAT, but must be processed off-line. An 
example of the implementation of an RS-based soil water balance for the whole Iberian Peninsula at 
the pixel scale in irrigated areas can be seen in the SPIDER group named SPIDER-CENTER 
(http://maps.spiderwebgis.org/login/?custom=spider-center). This project is funded by the Spanish 
Ministry of Agriculture (for further information and accessibility the reader is referred to 
http://www.magrama.gob.es/es/desarrollo-rural/temas/centro-nacional-tecnologia-regadios/nuevas-
aplicaciones-tecnologicas/). 

An additional difference between the various systems is the accessibility to pixel- or plot-based 
information. IRRISAT, EO4Water and IRRiEYE provide information at the pixel and plot scale. 
IrriSatSMS emphasizes on the plot scale. SPIDER and TOP-SIMS allow the direct comparison of 
multiple pixels or small grids. SPIDER provides a dynamic multi-chart with the temporal evolution 
of the selected parameters for different locations. This capability opens the possibility to show and 
compare the spatial distribution of the CWR or related variables and may be of interest for the 
analysis of crop uniformity. Although irrigation and other tasks are currently planned and performed 
for the whole plot, new machinery for variable rate irrigation is becoming available. The accurate 
generation of spatial irrigation recommendation, as is the case of NIWR maps at the pixel scale based 
on RS, is essential for implementation and evaluation of the technologies [136]. 

Table 2. Relevant aspects of the web-GIS based decision support systems analyzed in the text.  

 Irrisat TOP-SIMS IrriSat-SMS SPIDER

Accessibility User and 
password Open Accessible with 

Gmail account 
User and 
password 

Base maps Google Satellite / 
Open street maps 

Google Satellite / 
Google Terrain 

Google Satellite / 
Google Terrain 

Google maps / 
Open street map 
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Processing 
time 

24 h after 
delivery - 

Automatic after 
delivery 

24 h after 
delivery 

RS-based 
approach RS-PM Kcb-VI Kcb-VI Kcb-VI 

Most 
elaborated 

product 

Maps of irrigated 
areas, LAI, CWR 

Maps of Kcb and 
crop transpiration 

Water balance 
components 

Maps of Kcb, ETo 
and CWR 

Coverage 

Campania Region 
(Italy); 
Bookpournong 
(Australia) 

California 
Global, ETo 
available for the 
East of Australia 

Pilot areas, 
400.000 Km2 for 
the largest 
project. 

Period 
covered 2007-2016 2010-2012 2014-2016 2013-2016 

Dedicated 
App No No No Yes 

 

5. Conclusions and Perspectives 
The experiences gathered during the past 30 years support the operational use of irrigation 

scheduling based on spectral inputs. Currently, the operational use of dense time series of 
multispectral imagery at high spatial resolution allows monitoring of crop biophysical parameters 
related with crop water use during the growing season with an unprecedent temporal and spatial 
resolution. This information is needed and highly appreciated by the end users, such as professional 
farmers or decision-makers, but several steps are necessary prior to introducing this information into 
the day-to-day routine of farming irrigation. The information about crop water requirements must 
be provided with sufficient anticipation, and one week ahead seems to be a reasonable lead time. In 
addition, the end users require access to this information and to the time series of images in an easy-
to-use way and in near real-time. This information can be provided in an easy-to-use way and in near 
real-time by using the improvements achieved in web-GIS methodologies and further developments, 
like mobile apps. The achievement in crop ET assessment, the accessibility to satellite images, and the 
availability of accurate forecasting of meteorological data allow for precise predictions of crop water 
requirements.  
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