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Abstract: This paper addresses a new micromechanical model to predict biaxial tensile 

moduli of plain weave fabric (PWF) composites by considering the interaction between the 

orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell (UC) 

were idealized as the curved beams with a path depicted by using sinusoidal shape 

functions. The biaxial tensile moduli of PWF composites were derived by means of the 

minimum total complementary potential energy principle founded on micromechanics. The 

biaxial tensile tests were respectively conducted on the RTM-made EW220/5284 PWF 

composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. The 

predictions from the new model were compared with experimental data and good 

correlation was achieved between the predictions and actual experiments, demonstrating 

the practical and effective use of the proposed model. Using the new model, the biaxial 

tensile moduli of plain weave fabric (PWF) composites could be predicted based only on 

the properties of basic woven fabric. 
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NOMENCLATURE 

A        cross-section area of yarn, mm2 

A1        cross-section area of warp yarn, mm2 
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A2        cross-section area of weft yarn, mm2 

iC         transformation variable 

iD         transformation variable 

E         elastic modulus of yarn in longitudinal direction, MPa 

1E         warp elastic modulus of plain weave fabric composites under biaxial loadings, MPa 

2E         weft elastic modulus of plain weave fabric composites under biaxial loadings, MPa 

fE         elastic modulus of fibre, MPa 

mE         elastic modulus of resin, MPa 

1fE         warp elastic modulus of plain weave fabric under biaxial loadings, MPa 

2fE         weft elastic modulus of plain weave fabric under biaxial loadings, MPa 

F         internal force of yarn along axial direction, N 

h         thickness of yarn, mm 

1h         thickness of warp yarn, mm 

2h         thickness of warp yarn, mm 

H         thickness of ply, mm 

I         inertia moment of yarn along transverse direction, mm4 

1I         inertia moment of warp yarn along transverse direction, mm4 

2I         inertia moment of weft yarn along transverse direction, mm4 

L         quarter undulation length of yarn, mm 

1L         quarter undulation length of warp yarn, mm 

2L         quarter undulation length of weft yarn, mm 

M         internal bending moment, mmN ⋅  

1M         internal bending moment on warp yarn, mmN ⋅  
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2M         internal bending moment on weft yarns, mmN ⋅  

1P         external biaxial tensile force in warp direction, N 

2P         external biaxial tensile force in weft direction, N 

Q         internal interaction force at the centre of interlacing interface between warp yarn and 

weft yarn along through-thickness direction, N 

*
1U         complementary potential energy of warp yarn in the UC 

*
2U         complementary potential energy of weft yarn in the UC 

fV         fibre volume fraction in yarn 

1fV         fibre volume fraction in the UC 

2fV         yarn volume fraction in the UC 

w         width of yarn, mm 

1w         width of warp yarn, mm 

2w         width of weft yarn, mm 

*Π         total complementary potential energy of the UC 

λ         loading ratio of tensile force in warp direction to tensile force in weft direction 

θ         off-axial angle of yarn, rad 

1Pδ        relative shift of UC in the direction of external warp force 1P , mm 

2Pδ        relative shift of UC in the direction of external weft force 2P , mm 

FE        finite element 

UC        unit cell 

PWF       plain weave fabric 
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1 INTRODUCTION 

Textile composites are commonly used in engineering structures (especially in aerospace structures) 

owing to the superior specific stiffness and strength as well as excellent damage resistance and 

processing property[1-6]. Recently, with potential for the wider applications of plain weave fabric 

(PWF) composite structures, there is growing interest in assessing mechanical properties and failure 

mechanism for PWF composites using experimental, theoretical and numerical methods[7-13]. 

Koohbor et al.[14] conducted an experimental investigation to examine the multi-scale deformation 

and failure mechanisms of PWF composites under uniaxial tension using digital image correlation. 

The full-field displacement and strain localization were effectively captured and found that the 

mechanical response and failure modes of PWF composites distinctly depended on the off-axial 

degree of loading axis to principal axis. Koohbor et al.[15] further developed a systematic 

experimental-based method to determine the local deformation response and the length scales of the 

unit cell (UC) in PWF composites under on-axis and off-axis tensile loadings. It was found that the 

smallest UC sizes were depended on both strain and angle and the largest UC dimension was a 

unique, strain and orientation insensitive UC size for PWF composites. Boufaida et al.[16] 

experimentally investigated the damage development of PWF composites with ±45 off-axial degree 

subjected to uniaxial tensile loading using digital image correlation and X-ray microtomography. 

The experiments showed that the PWF composites exhibited linear viscoelastic behaviour until a 

given stress threshold above which the damage initiated and propagated in the materials.  

Because of the resource constraints, various analytical models have been presented to evaluate 

mechanical properties of PWF composites. Scida et al.[17] developed an analytical model to predict 

3D elastic and failure properties of PWF composites based on the classical thin laminate theory. 

Stiffness and strength were computed and compared with the experimental data and with the 
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predictions from other micromechanical models. Jiang et al.[18] presented a stress-strain averaging 

procedure for local/global analysis of PWF composites. The unit cell and subcells were used to 

obtain the constitutive equations and the effective stress-strain relations. The predictions were in a 

good agreement with FE results. Naik et al.[19] proposed an analytical model to predict the 

compressive behaviour of PWF composites under on-axis uniaxial loading based on curved elastic 

beams foundation. Effect of fabric geometry on the compressive behaviour of PWF composites was 

investigated. The predictions agreed well with experimental data. Wang et al.[20, 21] conducted  a 

theoretical investigation to characterize the influences of stochastic feature parameters of yarn on 

elastic properties of PWF composites. Volume averaging method was adopted to determine the 

elastic properties of PWF composites. It was found that the real stochastic physical phenomena of 

yarn can influence all of the elastic constants of PWF composites. In recent years, the FE method 

has been commonly used in assessing mechanical properties and failure mechanism of PWF 

composites. Karkkainen et al.[22] implemented a micromechanical analysis based on the FE analysis 

of the UC to investigate stress gradient effects and failure initiation of PWF composites and found 

that transverse failure of the yarn was the dominant mode of initial failure. Barbero et al.[23] 

developed FE models to determine mechanical properties of PWF composites. The geometric 

models needed for FE discretization of PWF composites were obtained from actual measurements 

of yarn geometry. Predictions had a good correlation with experiments. Bakar et al.[24] numerically 

determined geometric characteristics and elastic properties of PWF composites using FE models 

based on UC with periodic boundary conditions. An evolutionary algorithm was employed to 

optimize the elastic properties of PWF composites. However, in order to produce FE models, 

straight inclined segments or continuous mathematical functions have been used to depict in more 

detail the idealized PWF geometry including yarn path and cross-sectional shape. The one draw 
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back of FE models is their intensity and complexity. It is obvious that the analytical methods still 

have consistently received interests to evaluate mechanical properties of textile composites and 

there is a need for a more practical and expedient analytical model for structural applications.  

Although a large amount of research has been conducted on the mechanical properties and failure 

mechanism of PWF composites under uniaxial loading, the biaxial tensile moduli of PWF 

composites have been scarcely reported and the related mechanism has not been systematically 

studied. Hence, a need exists for fully understanding the effect of loading ratios on the mechanical 

properties of PWF composites under biaxial loadings; furthermore, a technique for assessing the 

biaxial tensile moduli of PWF composites in engineering design is desirable, which is the focus of 

this paper. 

 

2 GEOMETRICAL MODEL FOR PWF COMPOSITES 

The PWF composites are formed by orthogonal interlacing yarns in the directions of 0° and 90° 

(shown in Figure 1). The directions of 0° and 90° correspond to the warp and weft yarns in the PWF 

composites. The crimp or undulation of yarns due to the orthogonal interlacing between biaxial 

yarns has a significant influence on mechanical properties and strengths of PWF composites. The 

periodicity of the repeating pattern in PWFs can be characterized by the UC (unit cell). The UC in 

yarn interlacing pattern for the PWFs is indicated in Figure 1. In order to establish analytical models 

of the UC, fundamental assumptions made in this paper are as follows: 

(1) The cross-section of yarns is regarded as the combination of a flat rectangle and two semicircles 

with the width of w and the thickness of h (shown in Figure 2). 

(2) The yarns are idealized as the curved beams with an undulated neutral axis depicted by using a 

smooth and continuous sinusoidal curve function (shown in Figure 3). 
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Figure 4 illustrates the definitions of three directions of x y and z axis in local coordinate system. 

The coordinate axes x y and z respectively denote the longitudinal, transverse and through-thickness 

directions of the yarns to ensure the fibres with correct 3D orientation, i.e., to keep three directions 

of x, y and z axis in local coordinate system consistent with three normal stresses.  

From Assumption (1) and Figure 2, the area and inertia moments of idealized cross-section of 

biaxial yarns are respectively 

  ( )
2

4
π= + −hA h w h                               (1) 

( )4 31 1
64 12

I h h w hπ= + −                            (2) 

From Assumption (2) and Figure 4, the undulated neutral axis of biaxial yarns can be expressed by a 

sinusoidal function. 

sin
2 2

= h πxz
L

                                   (3) 

where h  is the thickness of yarn and L  is the quarter undulation length of yarn. 

From Figure 4 and Equation (3), for a differential segment dx  on a warp or weft yarn, the tangent 

of off-axial angle can be obtained as follows. 

tan cos
4 2

θ = =dz πh πx
dx L L

                             (4) 

The yarn volume fraction in the UC can be shown as 

( ) 1 2

2 2
1 1 2

2 1 2 1 20 0
1 1 2 2

4 2 1 cos 2 1 cos
4 2 4 2

L L

f
πh πx πh πxV L L H A dx A dx

L L L L
−
     = + + +        
        (5) 

where H  is the ply thickness of the PWF composites. 

Thus, the fibre volume fraction in the yarn becomes 

1 2/f f fV V V=                               (6) 

where 1fV  is the fibre volume fraction in the UC. 
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3 ANALYTICAL SOLUTION FOR BIAXIAL TENSILE MODULI  

For biaxial tensile loadings (shown in Figures 3 and 4), the loading ratio of the warp tensile force to 

the weft tensile force is defined as 

1

2

λ = P
P

                                     (7) 

where 1P  and 2P  are respectively the warp and weft tensile forces 

The internal force and bending moment on any cross-section in the warp and weft yarns are 

respectively 

( ) 1 cos sin
2
QF x P θ θ= +                               (8) 

( ) 1 1 2
QM x M Pz x= + −                               (9) 

( ) 2 cos sin
2
QF x P θ θ= +                              (10) 

( ) 2 2 2
QM x M P z x= + −                               (11) 

It is clear that there are three undetermined force and moments of 1M , 2M  and Q  in Equations 

(8) to (11). Using the principle of minimum total complementary potential energy, it is possible to 

determine these undetermined force and moments. The complementary potential energies in warp 

and weft yarns in the UC are respectively 

( ) ( )1 1

2 2
2 21 1

1 0 0
1 1 1 1 1 1

1 11 cos 1 cos
4 2 4 2

   
= + + +   

   
 

L L* πh πhπx πxU M x dx F x dx
EI L L EA L L

         (12) 

( ) ( )2 2

2 2
2 22 2

2 0 0
2 2 2 2 2 2

1 11 cos 1 cos
4 2 4 2

   
= + + +   

   
 

L L* πh πhπx πxU M x dx F x dx
EI L L EA L L

       (13) 

where 1I  and 2I  are respectively the inertia moment of warp and weft yarns along transverse 

direction. A1 and A2 are respectively the cross-section area of warp and weft yarns. E  is the elastic 

modulus of yarn in longitudinal direction, and can be deduced as follows. 

( )1= + −f f m fE E V E V                                (14) 

Substituting Equations (8) and (9) into Equation (12), and again substituting Equations (10) and (11) 
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into Equation (13), it can be shown that 

( ) ( ) ( )2 2 2
1 1 1 2 7 1 3 8 4 1 1 5 9 1 6 1= + + + + + + + +*U C M C C P C C Q C M P C C PQ C M Q         (15) 

  

 ( ) ( ) ( )2 2 2
2 10 2 11 16 2 12 17 13 2 2 14 18 2 15 2= + + + + + + + +*U C M C C P C C Q C M P C C P Q C M Q      (16) 

where iC  ( )1 2 3 18i , ,= ……  are the transformation variables, and are defined in Appendix A. 

Total complementary potential energy in the UC is deduced as 

( ) ( ) ( )
( ) ( )

* * 2 2 2 2 2
1 2 1 1 10 2 2 7 1 11 16 2 3 8 12 17

4 1 1 13 2 2 5 9 1 14 18 2 6 1 15 2

= + = + + + + + + + + +

+ + + + + + + +

*Π U U C M C M C C P C C P C C C C Q

C M P C M P C C PQ C C P Q C M Q C M Q
    (17) 

Minimizing the total complementary potential energy principle in the UC leads to 

( ) ( ) ( )

1 1 6 4 1

10 2 15 13 2

6 1 15 2 3 8 12 17 5 9 1 14 18 2

2
2

2

 + = −
 + = −
 + + + + + = − + − +

C M C Q C P
C M C Q C P

C M C M C C C C Q C C P C C P
       (18) 

Substituting Equation (7) into Equation (18) attains 

( ) ( ) ( )

1 1 6 4 1

13
10 2 15 1

6 1 15 2 3 8 12 17 5 9 14 18 1

2

2

12

λ

λ


 + = −

 + = −

  + + + + + = − + + +   

C M C Q C P
CC M C Q P

C M C M C C C C Q C C C C P

       (19) 

Solving Equation (19) by using Cramer's rule yields 

1 1 1=M D P                                  (20) 

2 2 1=M D P                                  (21) 

3 1=Q D P                                   (22) 

where iD  ( )321 ,,i =  are the transformation variables, and are defined in Appendix B. 

Again, according to the principle of minimum potential energy principle, the shifts 
1Pδ  and 

2Pδ  of 

the UC in the direction of external warp and weft tensile forces are respectively deduced as 

( ) ( )
1 2 7 1 4 1 5 9

1

2δ ∂= = + + + +
∂

*

P
Π C C P C M C C Q
P

                (23) 
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( ) ( )
2 11 16 2 13 2 14 18

2

2δ ∂= = + + + +
∂

*

P
Π C C P C M C C Q
P

              (24) 

Substituting Equations (20) to (22) into Equations (23) and (24), it is possible to show 

( ) ( )
1 2 7 4 1 5 9 3 12δ = + + + +  P C C C D C C D P                    (25) 

( ) ( )
2 11 16 13 2 14 18 3 1

2δ
λ
 = + + + +  

P C C C D C C D P                 (26) 

Therefore, the warp and weft biaxial elastic moduli of PWFs are respectively 

( ) ( ) ( ) ( )
1

11 1 1
1 2 7 4 1 5 9 3

2 1 2 2 1 2

2f
P

PL LE C C C D C C D
L h h L h hδ

−
= = + + + +  + +

         (27) 

( ) ( ) ( ) ( )
2

1
2 2 2

2 11 16 13 2 14 18 3
1 1 2 1 1 2

2
f

P

P L LE C C C D C C D
L h h L h hδ λ λ

−
 = = + + + + + +  

      (28) 

In lights of the well-known rule of mixtures from the moduli of PWFs and resin, the biaxial elastic 

moduli of PWF composites in warp and weft directions are obtained respectively 

( )1 1 2 21f f m fE E V E V= + −                              (29) 

( )2 2 2 21f f m fE E V E V= + −                              (30) 

Notably, if 0λ =  (i.e. 1 0P = ) or λ = ∞  (i.e. 2 0P = ), then the solutions in Equations (29) and 

(30), are degraded into the uniaxial tensile moduli of PWF composites. 

 

4 COMPARISONS BETWEEN PREDICTIONS AND EXPERIMENTS 

4.1 Biaxial tensile tests 

The test specimens were made of 2D orthogonal glass fibre/epoxy resin reinforced composites (i.e. 

EW220/5284 PWF composites). EW220 is a glass fibre PWF and 5284 is an epoxy resin. The fabric 

specifications and mechanical properties of textile composites are listed in Table 1. Figure 5 details 

the geometry and dimensions of cross-type specimen for biaxial tensile test. In order to 

conveniently measure load-strain curve under biaxial tensile loading, the diamond-shaped thinner 
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area was fabricated on the central tested region of the cross-type specimen using the RTM technique. 

The fiber volume fraction of all specimens is 55%. The ply thickness of EW220/5284 PWF 

composites is 0.167 mm. 

As shown in Figure 6, a lever-type device was used for biaxial tensile test to obtain the biaxial 

tensile forces on the arms of specimen at a given loading ratio, by adjusting the lever lengths. 

Biaxial tensile tests were conducted on a QBS-100 servo-hydraulic machine in dry state at room 

temperature at five biaxial loading ratios of 0, 1, 2, 3 and ∞  (shown in Figure 7), and at least three 

specimens were utilized for each biaxial loading ratio test. Strain gauges were employed to measure 

biaxial tensile deformation on centrally diamond-shaped thinner area of the specimen. Load versus 

strain curves of specimens under biaxial tensile loadings were recorded. Afterwards, the FE analysis 

was adopted to model the biaxial tensile stresses on centrally diamond-shaped thinner area of the 

specimen under biaxial tensile loadings in the previously tests. Thus, the stress versus strain curves 

at different loading ratios were obtained (shown in Figure 8). From Figure 8, the biaxial tensile 

moduli can be estimated (listed in Table 2). From Table 2, it is clear that under biaxial tensile 

loadings, the warp and weft moduli increase with the increasing loading ratio. 

4.2 Comparisons and discussion 

In order to validate new analytical models presented in this paper, it is necessary to compare the 

predictions using the new models with the experiments. From the fabric specifications and 

mechanical properties listed in Table 1, by using Equations (29) and (30), the biaxial tensile moduli 

of PWF composites are predicted (shown in Table 2). From Table 2, it is evident that maximum 

relative deviations of predictions for warp and weft biaxial tensile moduli from experiments are 

respectively 6.33% and 8.22%, with an acceptable scatter. Also, the predictions of biaxial tensile 

moduli increase with the increasing loading ratio, namely, the proposed model has adequately and 
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logically depicted the physical characteristics and the phenomenological quantitative laws in the 

variation of biaxial tensile moduli with changing loading ratios. Importantly, biaxial tensile moduli 

of PWF composites could be predicted using these models without any additional fabric level 

experimental investigation, i.e. only the input of basic properties of woven fabric yarns is needed to 

predict biaxial tensile moduli of PWF composites. As a result, it is argued that the new models 

presented in this paper are a valid and rational basis for biaxial tensile moduli of PWF composites.  

 

5 CONCLUSIONS 

The focus of this paper has been to present a novel micromechanical curved beam model for 

predicting the biaxial tensile moduli of PWF composites by accounting for the interaction between 

orthogonal interlacing yarns. New analytical solution of the model was derived to calculate biaxial 

tensile moduli of PWF composites by means of the minimum total complementary potential energy 

principle founded on micromechanics. The applicability of the models for predicting biaxial tensile 

moduli of PWF composites from fabric specifications and mechanical properties of constituents has 

been proved successfully. Reasonable correlation was achieved between the predictions and actual 

experimental results.  
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Figure 1  Unit cell of PWFs  
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Figure 2  Local coordinate systems and idealized geometric configuration of yarns 

 

Figure 3  PWFs under biaxial tensile loadings 
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Figure 4  Internal forces and bending moments on warp and weft yarns in biaxial tensile state 

 

Figure 5  Geometry and dimensions of the biaxial tensile specimen 
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Figure 6  Biaxial tensile test device 

 

Figure 7  Biaxial tensile test of PWF composites 
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(a) Stress versus strain curves in warp direction at loading ratio 1λ =  

 

(b) Stress versus strain curves in warp direction at loading ratio 2λ =  
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(c) Stress versus strain curves in warp direction at loading ratio 3λ =  

 

(d) Stress versus strain curves in weft direction at loading ratio 1λ =  
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(e) Stress versus strain curves in weft direction at loading ratio 1/ 2λ =  

 

(f) Stress versus strain curves in weft direction at loading ratio 1/ 3λ =  

Figure 8  Experimental stress versus strain curves from biaxial tensile test of PWF composites 
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Table 1  Fabric specifications and mechanical properties of EW220/5284 PWF composites 

1h  (mm) 0.080 2w  (mm) 1.2 

2h  (mm) 0.067 H  (mm) 0.167 

1L  (mm) 0.714 fE  (GPa) 73.0 

2L  (mm) 0.556 mE  (GPa) 3.4 

1w  (mm) 1.0 1fV  0.55 

 

Table 2  Biaxial tensile moduli of EW220/5284 PWF composites 

Specimen No. 
Warp moduli (GPa) Weft moduli (GPa) 

1λ =  2λ =  3λ =  λ = ∞  1λ =  1/ 2λ =  1/ 3λ =  0λ =  

1 19.22 21.55 18.96 18.37 18.22 16.11 15.41 14.12 

2 21.00 19.39 19.61 20.23 16.20 15.17 15.86 13.62 

3 23.53 20.70 20.04 19.24 17.41 16.72 16.11 14.70 

Mean values of 

Experiments 
21.25 20.55 19.54 19.28 17.28 16.00 15.79 14.14 

Predictions 20.31 19.25 18.92 18.30 15.86 14.83 14.52 13.94 

Relative deviation 4.42% 6.33% 3.17% 5.08% 8.22% 7.31% 8.04% 1.41% 
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