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Abstract: The real systems are often complex, nonlinear, and noisy in various areas including 
mathematics, natural science, and social science. We present the symplectic entropy (SymEn) 
measure as well as an analysis method based on SymEn to estimate the nonlinearity of the complex 
system by analyzing the given time series. The SymEn estimation is a kind of entropy based on 
symplectic principal component analysis (SPCA) which represent organized but unpredictable 
behaviors of systems. The key to SPCA is to preserve the global submanifold geometrical properties 
of the systems through symplectic transform in the phase space, which is a kind of the measure-
preserving transforms. The capability of preserving the global geometrical characteristics makes the 
SymEn a test statistic to detect the nonlinear characteristics in several typical chaotic time series and 
the stochastic characteristic in the Gaussian white noise. The results are in agreement with findings 
in the approximate entropy (ApEn), the sample entropy (SampEn) and the fuzzy entropy (FuzzyEn). 
Moreover, the SymEn method is also used to analyze the nonlinearities of the real signals (including 
the EEG signals for ASD and healthy subjects, and the sound and vibration signals for the 
mechanical systems). The results indicate that the SymEn estimation can be taken as a measure for 
describing the nonlinear characteristics in the data collected from the natural complex systems. 

Keywords: symplectic geometry; symplectic principal component analysis; symplectic entropy; 
complex system. 

 

1. Introduction 

Complex systems have been widely studied in various fields such as mathematics, physics, 
engineering, economics, biomedical engineering, and so on. Due to the unknown structures of 
systems and the complicated and disorder forms of the measured time series, it has been always 
challenging to explore the nature characteristics of complex systems (such as the brain) [1–2]. The 
essential problem for a complex system is to differentiate between nonlinearity and linear stochastics 
because a complex system, especially with chaos, is often very similar to a random process. 
Symplectic geometry is a geometry in an even dimensional phase space with a closed nondegenerate 
skew-symmetric bilinear form. Due to the capability of measure-preserving of symplectic similar 
transform in phase space, symplectic geometry could preserve the system structure, even non-linear 
structure. The global submanifold geometrical properties in the system or the data from the system 
can keep unchanged through symplectic transforms in phase  
space [3–5]. The aim of this study is to employ the measure-preserving characteristics of symplectic 
geometry to propose an entropy measure for complex systems. The entropy as a statistic measure can 
distinguish complex systems from linear stochastic processes. Symplectic geometry has been used to 
study complex systems in the two areas: solving symplectic differential equations for various 
nonlinear dynamical systems [6–11] and analyzing a time series in phase space geometry for testing 
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the nature of complex systems [3–4, 12]. However, there has been little research on the entropy 
estimation in the symplectic theory. 

In fact, the studies and applications of symplectic geometry are mainly to solve symplectic 
differential systems in mathematics,  physics, theoretical and classical mechanics since Feng and his 
research group first developed symplectic approach to solve accurately some nonlinear dynamical 
systems constructed using Hamiltonian models [9]. The mathematical fundamentals of symplectic 
geometry are based on the symplectic space that is different from Euclidean space although the two 
spaces could deal with the Hamilton system. The symplectic similarities in the symplectic space can 
preserve the structures of the Hamiltonian matrices [13–15]. Some numerical algorithms based on 
symplectic geometry, such as symplectic Householder transformations, symplectic QR-like 
decomposition [16] or symplectic Gram-Schmidt algorithm [17], are proposed and modified to solve 
the eigenvalues of the Hamiltonian matrices, particularly for sparse and large structured matrices 
[18]. The symplectic eigensolutions are proposed to perform the energy band analysis for a periodical 
waveguide by introducing symplectic mathematics into the electro-moagnetic waveguide theory 
[19]. A novel method based on symplectic mathematics and finite element analysis is developed to 
deduce the dispersion relations for some typical cellular structures [20]. For some basic problems in 
solid mechanics and elasticity, many of the research works of symplectic elasticity are attributed to 
Zhong, Xu, Zhang, Yao, Leung and Lim and their co-workers [9, 20–22]. Subsequently, the symplectic 
analysis has been applied to solve other applied engineering problems, such as control problems [23], 
piezoelectric materials [24], bending problems of corner-supported rectangular thin plates [25–26] 
and so on. 

Recently, the symplectic geometry theory has been applied to analyze the time series from 
complex systems through the reconstructed phase space [4]. According to the Takens’ embedding 
theorem, the reconstructed phase space is equivalent (diffeomorphic) to the attractor of the original 
dynamical system generating the data so that it can reflect the dynamical characteristics of the 
dynamic system [27]. It is on this basis that our previous works extended the symplectic geometry 
theory into the analysis of the time series [28–29]. The dimension of a nonlinear dynamic system has 
been estimated based on symplectic geometry[4]. The symplectic principal component method has 
been developed to reduce noise in nonlinear systems [12,28]. Subsequently, some researchers has 
used and furtherly developed the applications of symplectic theory on the time series. The sprinter’s 
surface EMG signals have been evaluated based on symplectic geometry [29]. The determinism 
characteristics in a time series have been detected by using symplectic geometry method [30]. The 
symplectic geometry spectrum regression method has been proposed to predict noisy time series [3]. 
The above research works have shown that the symplectic principal component analysis(SPCA)-
based methodologies are superior to SVD-based methods for the complex systems. However, little 
work has been done to quantify how much the disorder, or randomness of a system from the point 
of view of the symplectic theory. 

According to Boltzmann’s definition, the interpretation of entropy is a measure of the number 
of possible microstates of a system. Entropy are used to describe and quantify how much the disorder, 
uncertainty, or randomness of a system, or the lack of information exist in a system. At present, many 
entropy estimation approaches, such as Shannon entropy, approximate entropy, sample entropy, 
fuzzy entropy etc., have been proposed and widely used to quantify the complexity of time series in 
various fields [31–36]. As a broad and general concept, shannon entropy has been widely used in 
information theory as well as thermodynamics since Claude Shannon devised in 1948 [37]. This paper 
presents a symplectic entropy(SymEn) approach based on SPCA and Shannon entropy. The SymEn 
approach measures the energy distribution of the dynamic system in the symplectic space. To test 
the utility of the SymEn approach, we choose several typical time series (including the noise data and 
three chaotic time series) and four kinds of engineering signals(the EEG signals from the brain 
systems for healthy, ASD subjects, and the sound and vibration signals from the mechanical systems). 
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2. Materials and Methods  

2.1. Symplectic Entropy 

Given N sampled time series Nxxx ,,, 21   coming from a system )(xf , an attractor Xm×d in 
phase space can be reconstructed by time delay coordinates method: 
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where d is embedding dimension, m = N − d + 1 is the number of dots in d-dimension reconstruction 
vector, T

iX , ( mi ,...,1= ), denotes a dot in the phase space. According to Takens’ embedding theorem, 
X reflects the characteristics of the system. Then, a Hamilton matrix M of the system )(xf  can be 
built from X: 
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where XXA T= . Meanwhile, any Hamilton matrix can keep unchanged at symplectic similar 
transform in symplectic geometry theory. The related proofs refer to the proofs of Appendix A section 
in the literature [4]. In symplectic geometry, the symplectic similar transform is regular transform. Its 
essence is dependent on a bilinear antisymmetric nonsingular cross product—symplectic cross 
product:  

[ ] Jyxyx ,, =  (3) 

where x and y are 2n-dimension vectors. 
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And there are also some properties as follows: 
Theorem 1. The product of sympletcic matrixes is also a symplectic matrix. 
Theorem 2. Suppose Household matrix H is: 
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so, H is symplectic unitary matrix. *ϖ  is ϖ  conjugate transposition. 
Theorem 3. Let nnCS 22 ×∈   as symplectic matrix, then S can be decomposed as QRS = , where Q is 
symplectic unitary matrix and R is upper triangle matrix.  

Here, the Household matrix H can be used as the matrix Q. Then, the Hamilton matrix M can be 
transformed into an upper Hessenberg matrix by the Household matrix H, 
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where B is upper Hessenberg matrix (bij=0, i>j+1). Meanwhile, H can be obtained from the matrix A[4]. The 
eigenvalues of the matrix B are given as { }dB μμμλ ,,,)( 21 = . The eigenvalues λ(A) of the matrix A are equal 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 November 2016                   doi:10.20944/preprints201611.0081.v1

http://dx.doi.org/10.20944/preprints201611.0081.v1


 

to those of the matrix B, i.e. )()( ABμ λλ == . The eigenvalues { }dμμμ ,,, 21 =μ  are sorted by descending 
order, that is, 

dkk μμμμμ ≥≥>>>>> +  121  (8) 

The μ values are called the symplectic principal components of A with relevant symplectic orthonormal 
bases. They reflect the distribution of the energy of the system in different symplectic directions. The probability 
of the energy distribution at each direction can be defined respectively as dppp ,,, 21   and the probability 
space of equation can be expressed as: 
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where d is the embedding dimension, 11 = =
d
i ip , 10 ≤≤ ip . It represents the uncertainty of the entropy in 

each direction. Then, an entropy can be defined as follows: 
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SymEn gives the statistical average and measures the degree of uncertainty of energy about the underlying 
probability distribution in different directions of a system, in terms of the Shannon entropy, called as Symplectic 
Entropy. 

2.2. Materials 

A complex system, especially with chaos, is often random-like. To detect nonlinearity of a time 
series is one of the inverse problems for a complex system, particularly for a chaotic dynamical 
system. Here, to assess the utility of the SymEn method as a measure for complex systems, the SymEn 
method is used to test the nonlinearity in the data from both synthetic and real experiments. In section 
2.2.1, we illustrate the four synthetic time series from the Gaussian white noise processing and three 
chaotic systems whose underlying dynamics are known. In section 2.2.2, we consider several real 
time series from practical systems. In section 2.2.3, we introduce the null hypothesis technique in 
order to test the difference between the raw data and its surrogate data based on the entropy 
measures including the SymEn, ApEn, SampEn and FuzzyEn entropy methods. 

2.2.1 Synthetic Time Series 

The In practical systems, noise is generally regarded as the Gaussian white noise having 
indenpendent and identical probability distribution. Its distribution probability of each direction is 
even in the dimension d (see Figure 1). The probability value is calculated by Equation 10. For the 
equiprobable distribution, the entropy should increase with the number of the embedding dimension 
d. Here, the Gaussian white noise with mean 0 and variance 1 is used to test if the SymEn estimate is 
suitable to evaluate the noise. In order to detect if the SymEn method could reflect nonlinear 
characteristics of a time series, the three typical chaotic systems are applied to generate the 
corresponding nonlinear time series. 
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Figure 1. The probability values of the Gaussian white noise in different direction in dimention  
d = 3:5:28. 

The three chaotic systems are given as follows:  
Lorenz chaotic system: 
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Rössler chaotic system: 
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Van der Pol chaotic system: 
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2.2.2 Real Time Series 

To further illustrate the application of the SymEn method to the real data sets, we employ several 
real data sets, including two bioelectric signals (the electroencephalogram (EEG) data from the 
children with ASD and healthy subjects), and two mechanical signals (the vibration signals of the air 
compressor and the engine sound signals). 

The brain system is extremely complicated. The EEG data are the electrical signal from the brain 
when the brain is at work. Therefore, the brain function analysis based on EEG have been of 
enormous interest. A number of researches have also studied the nonlinear behavior of the brain 
dynamics in the EEG analysis. However, the EEG signals are complicated and random-like. It has 
been challenging to detect the nonlinear properties of the EEG data [38]. Here, the EEG signals at the 
right (O2) are collected during the resting state with open eyes for the children with ASD and healthy 
subjects, respectively. The sampling conditions are detailed in previous papers [39–40]. 

In the mechanical engineering field, there are many complex mechanical systems, such as the air 
compressor and the car engine [41–42]. Here, the nonlinear characteristics in the abnormal vibration 
signals of the air compressor and the sound data of the fault diesel engines are detected by the SymEn 
method. For the air compressor, the vibration acceleration data are collected by the 25,600Hz 
sampling frequency. The length of the measured data is 32,768 points. For the diesel engine, the sound 
time series are given by the 48kHz sampling frequency. 
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2.2.3 Surrogate Data and Null Hypothesis 

Surrogate data has been widely employed to discriminate the nonlinear dynamics in real data 
and typical chaotic time series [36, 43–44]. The idea of surrogate data is to first specify a stochastic 
process with some linear properties which are consistent with the original data as a null hypothesis, 
then generate surrogate data sets according to this hypothesis, and calculate a test statistic for the 
original data and its surrogate data, respectively. If the statistic value of the original data is obviously 
different from those of its surrogate data, this null hypothesis is rejected and nonlinearity is detected. 
Here, we apply a linear autocorrelated Gaussian noise process as a null hypothesis. This null 
hypothesis can generate the surrogate data with the same mean, variance, and spectrum power as 
the original data. The algorithm of this null hypothesis has been detailed in our early work [44]. In 
this study, the SymEn measure is used as a test statistic, as well as the the ApEn, SampEn and 
FuzzyEn measures. In order to give the difference degree between the original data and its surrogate 
data, the z value is given: 

s

sorig QQ
z

σ
−

=  
(145

) 

where Qorig is the test statistic value for the original data, sQ  is the mean of the statistic values for 
the surrogates. σs is the standard deviation (SD) of the statistic values for the surrogates. z > 1.96 
means that the null hypothesis can be rejected for two sided testing at 95% (α = 0.05) confidence level. 
For α = 0.05, the number of the surrogates is B = 2/α − 1 =3 9 [36,38,45]. For this, 39 sets of the surrogate 
data are generated for each analyzed data in this study. 

Besides, it is necessary to note that the analysis length of each analysis data is 1000 points in this 
study. 

3. Results 

3.1. Applicantion to Synthetic Time Series 

In this section, the proposed SymEn method is applied to analyze several synthetic time series 
(Gaussian white noise and three chaotic time series) in Section 2.2.1. Meanwhile, the reported results 
are compared with those given by the ApEn, SampEn and FuzzyEn methods. 

3.1.1. Tests on Gaussian White Noise Process 

For the noise data from the Gaussian white noise process, we note that its surrogates which are 
generated according to the null hypothesis of a linear autocorrelated Gaussian noise process should 
give negative results. In other words, the null hypothesis should not be rejected. Figure 2 gives the 
analysis of the noise time series and its surrogate data on the embedding dimension d = 2:25 for four 
entropy methods. The results show that for the different methods, the entropy values are different 
(see Figure 2). However, there is no difference between the noise and its surrogate data for the four 
entropy methods. These results indicate that the null hypothesis is accepted in 95% confidence level. 
In other words, the noise data is from the same dynamical process as its surrogates from the null 
hypothesis. Considering that the dynamical property of the noise is equiprobable distribution in 
different embedding dimension d (see Figure 1), its entropy values should increase with the number 
of the embedding dimension. The symplectic entropy method presents that the SymEn values of the 
noise and its surrogates increase with the increase of the embedding dimensions (see Figure 2a). But 
for the approximate entropy, the values decrease with the increase of the embedding dimensions (see 
Figure 2b). For the sample entropy, the values vary with the increase of the embedding dimensions, 
especially no values in the higher dimensions (see Figure 2c). For the fuzzy entropy, with the increase 
of the dimension, the values decrease a little in the lower dimensions and then increase rapidly in the 
higher dimensions (see Figure 2d).  
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(a) SymEn (b) ApEn (c) SampEn (d) FuzzyEn 

Figure 2. The characteristic test of the Gaussian white noise process: (a) the SymEn values of noise 
and its surrogate data; (b) the ApEn values of noise and its surrogate data; (c) the SampEn values of 
noise and its surrogate data; (d) the FuzzyEn values of noise and its surrogate data. 

3.1.2. Tests on Chaotic Dynamical Systems 

Three chaotic time series coming from three chaotic dynamical systems are analyzed by the 
SymEn, ApEn, SampEn and FuzzyEn method, respectively. Figure 3 gives the results of four entropy 
methods for these time series and their surrogate data. Figure 3i shows that the Lorenz time series is 
different from its surrogate data in the embedding dimension d = 2:25. The SymEn values of the 
original data increase and tend to be flat with the increase of the embedding dimension while those 
of its surrogate data only increase. The difference between the original data and its surrogates 
becomes widened with the increase of the dimension. Moreover, the results of the ApEn, SampEn 
and FuzzyEn methods are similar to that of the SymEn method although these values are dissimilar 
for different methods. That is, the entropy values of the raw data are also different from those of its 
surrogate data for the ApEn, SampEn and FuzzyEn methods. The results indicate that the null 
hypothesis is rejected in 95% level for four entropy methods. The Lorenz chaotic time series is not 
random signal generated from a linear autocorrelated Gaussian process. The dynamical properties of 
the Lorenz chaotic time series are not the same as the dynamic characteristics of the surrogate data. 
The raw data should contain some nonlinear components. Furthermore, the chaotic time series from 
Rössler and Van der Pol chaotic dynamical systems are analyzed by the SymEn, ApEn, SampEn and 
FuzzyEn methods (see Figure 3ii and 3iii). We can see that there is a significant difference between 
the entropy values of the raw Rössler and Van der Pol chaotic data and those of their surrogate data, 
respectively. The null hypothesis is rejected in 95% confidence level for the raw Rössler and Van der 
Pol chaotic data, respectively. The results indicate that there are the nonlinear characteristics in the 
the raw Rössler and Van der Pol chaotic data. By comparison with the ApEn, SampEn and FuzzyEn 
methods, the SymEn method is able to detect the nonlinearity of the chaotic time series whose the 
underlying dynamic property is known. 

(a) SymEn values (b) ApEn values (c) SampEn values (d) FuzzyEn values 

(i) Lorenz chaotic dynamical system 
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(e) SymEn values (f) ApEn values (g) SampEn values (h) FuzzyEn values 

(ii) Rössler chaotic dynamical system 

(i) SymEn values (j) ApEn values (k) SampEn values (l) FuzzyEn values 

(iii) Van de Pol chaotic dynamical system 

Figure 3. Comparison of nonlinear tests on four entropy methods for three chaotic dynamical systems. 

3.2. Applicantion to Real Time Series 

To further test the application of the SymEn method to the real data, some results are reported 
on experimental time series from several sources. We just attempt to illustrate the SymEn can be 
regarded as a measure to reflect the dynamic characteristics of time series from real complex systems 
by comparison with the ApEn, SampEn and FuzzyEn methods.  

3.2.1. The EEG for ASD and Healthy Subjects 

The EEG signal has been used widely to investigate the electrical brain activity. Although a lot 
of nonlinear measures have been employed to deal with the EEG signals, such as ApEn and SampEn 
[32,46], the research papers have mostly focused on the classification analysis of EEG signals. But, it 
is lack to explore the nonlinearity in the EEG data. In particular, few studies detect the nonlinearity 
of the raw EEG data of ASD. For the children with ASD, some nonlinear measures have applied to 
directly analyze the corresponding EEG data in the resting in order to explore the brain mechanics of 
ASD [40]. In this paper, we perform nonlinearity tests based on the SymEn measure on the EEG 
signals (O2) of ASD and healthy subject, respectively. Figure 4 shows the raw EEG data for ASD 
subject in resting with open eyes along with the SymEn functions of the raw EEG data and its 
surrogates. The SymEn values of the raw EEG are distinctly different from those of its surrogates, 
particularly in the higher dimensions (see Figure 4b,c). The test of the raw EEG data can reject the 
null hypothesis of a linear stochastic process with 95% level (z > 1.96). Meanwhile, the results of the 
ApEn, SampEn, and FuzzyEn methods are also shown in Figure 4. For the ApEn method, there is 
some difference between the raw data and its surrogate data in the low dimensions (see Figure 4d). 
The discrepancies also exist in the SampEn values of the raw data and its surrogate data in some 
embedding dimensions (see Figure 4e). The result of the FuzzyEn method is similar to that of the 
SampEn method (see Figure 4f). However, the differences between the raw data and its surrogates 
for the ApEn, SampEn and FuzzyEn methods are not more obvious than that for the SymEn method, 
particularly in the higher embedding dimensions. 
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(a) (b) (c) 

(d) ApEn values (e) SampEn values 

(f) FuzzyEn values 

 

Figure 4. The nonlinearity test on the EEG signal of ASD subject based on the SymEn method by 
comparison with the ApEn, SampEn and FuzzyEn methods: (a) The raw EEG data in the right O2; (b) 
The SymEn functions of the raw data and its surrogates in the embedding dimension d = 2:25; (c) The 
SymEn values in d = 25 for the raw data and its surrogates, *for the raw data; (d) The ApEn values of 
the raw data and its surrogates in the embedding dimension d = 2:25; (e) The SampEn values of the 
raw data and its surrogates in the embedding dimension d = 2:25 ; (f) The FuzzyEn values of the raw 
data and its surrogates in the embedding dimension d = 2:25. 

For the healthy subject, the results are similar to those of the ASD subject. Figure 5 presents the 
raw EEG signal as well as the SymEn, ApEn, SampEn and FuzzyEn measures of the raw data and its 
surrogates. It can be observed that the SymEn values of the raw data do not belong to the distribution 
of the SymEn functions of the surrogates (see Figure 5b). Particularly in the dimension d = 25 (z > 
1.96), the test of the raw data rejects hypothesis of belonging to the the same distribution as all of the 
39 surrogates (see Figure 5b,c). The result indicates that the raw EEG data contains the nonlinear 
dynamical properties. The raw EEG data should come from a nonlinear dynamical system. But, the 
results for the ApEn, SampEn and FuzzyEn methods are not better than that of the SymEn method 
(see Figure 5b,d–f).  

(a) (b) (c) 
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(d) ApEn values (e) SampEn values (f) FuzzyEn values 

Figure 5. The nonlinearity test on the EEG signal of healthy subject: (a) The raw EEG data in the right 
O2; (b) In the range of 2 to 25 dimension, the SymEn functions of the raw data and its surrogates; (c) 
The SymEn measures in d = 25 for the raw data and its surrogates; (d) the ApEn values of the raw 
data and its surrogates in d = 2:25; (e) the SampEn values of the raw data and its surrogates in d = 
2:25; (f) the FuzzyEn values of the raw data and its surrogates in d = 2:25. 

3.2.2. The Time Series for Diesel Engine and Air Compressor 

The mechanical systems are also a kind of complex systems, such as diesel engines and air 
compressors. In engine systems, acoustic signals are often applied to detect the mechanical faults 
because they can provide significant dynamic information on the engines [42]. Many acoustic 
methods are employed to deal with engine faults, such as acoustic emission analysis [47]. However, 
the fault diagnosis based on acoustic signals is often easily affected by background noise [42]. Few 
studies employ nonlinear analysis methods to explore the characteristics of the abnormal sound in 
diesel engines. In this paper, we first apply the proposed SymEn function to test the nonlinearity of 
the abnormal sound of the diesel engine. Figure 6 presents one episode of the original sound data in 
the fault diesel engine and its SymEn values with those of its surrogates. Our SymEn-based tests 
applied to the sound data reject the null hypothesis with 95% confidence over 39 surrogates. In 
dimension d = 25, the SymEn value of the original data is obviously different from those of its 
surrogates with the difference degree z = 16.99 (z > 1.96). The results show that the dynamical 
characteristics of the raw sound data are not linear. The raw data should come from a nonlinear 
system. Meanwhile, the ApEn, SampEn and FuzzyEn methods are also employed to analyze the 
sound data (see Figure 6d–f). In general, the results are worse than that of the SymEn method, 
although the ApEn values show some difference between the raw data and its surrogate in d = 3,4. 

Finally, we exmine the vibration acceleration data in the air compressor and its surrogates. Air 
compressors are extensively employed mechanical systems. The working state of the air compressor 
becomes unstable due to the interaction of pistons, the pressure instability of the compressed air 
outputted from the air compressor in volatile gas-consumption situations. Besides, the environment 
noise has often a strong impact on the vibration measurement. Hence, the measured vibration signals 
often show the complex dynamics behaviors. This paper considers the vibration acceleration 
collected at the fault state of the air compressor. Figure 7 gives the original series and its SymEn 
function as well as those of its surrogate data. The SymEn of the raw data is obviously distinguishable 
from those of its surrogates. The null hypothesis is rejected at 95% significance level, especially in d 
= 25 (z > 1.96). The raw data is not from a linear process in the null hypothesis. The result indicates 
that the raw data is nonlinear. Besides, the ApEn, SampEn and FuzzyEn methods are also used to 
analyze the raw vibration data (see Figure 7d–f). The results of the ApEn, SampEn and FuzzyEn are 
worse than those of the SymEn method. 
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(a) (b) (c) 

(d) ApEn values (e) SampEn values (f) FuzzyEn values 

Figure 6. The test on the abnormal sound in the diesel engine: (a) The raw 1000-point sound time 
series; (b) The SymEn functions of the raw data and its surrogates in d = 2:25; (c) In d = 25, the SymEn 
measures of the raw data and its surrogates, * for the raw data, histogram for its surrogates; (d) the 
ApEn values of the raw data and its surrogates in d = 2:25; (e) the SampEn values of the raw data and 
its surrogates in d = 2:25; (f) the FuzzyEn values of the raw data and its surrogates in  
d = 2:25. 

(a) (b) (c) 

(d) ApEn values (e) SampEn values (f) FuzzyEn values 

Figure 7. The test on the acceleration time series in the vibration of the air compressor: (a) The raw 
acceleration signal; (b) The SymEn measures in d = 2:25 for the raw data and its surrogates; (c) The 
SymEn measure(*) of the raw data in d = 25 and the histogram of the SymEn values for its surrogates; 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 November 2016                   doi:10.20944/preprints201611.0081.v1

http://dx.doi.org/10.20944/preprints201611.0081.v1


 

(d) the ApEn values of the raw data and its surrogates in d = 2:25; (e) the SampEn values of the raw 
data and its surrogates in d = 2:25; (f) the FuzzyEn values of the raw data and its surrogates in d = 
2:25. 

From the above analysis, the results have shown that the proposed SymEn function could be a 
suitable measure for nonlinearity tests, not only on synthetic data, but also on the limited samples of 
noisy measurements from real world systems. 

4. Discussion 

We propose the SymEn function method and test four types of synthetic time series. And for the 
Gaussian white noise, its distribution is equiprobable. The probability distribution in the SymEn 
function is equal for the noise (see Figure 1). The SymEn method reflects the distribution of the noise 
data efficaciously. For the typical chaotic time series, the SymEn function method gives the 
differences between the raw chaotic data and its surrogate data (see Figure 3). According to the null 
hypothesis, the test on chaotic time series with the SymEn function favors the rejection of the null 
hypothesis. The results are consistent with those of the ApEn, SampEn and FuzzyEn functions. As 
can be seen, the SymEn measure generally perform properly for the wider range of the embedding 
dimensions. The ApEn and SampEn measures turn out to be unable to discriminate a chaotic system 
from its surrogate data sets in higher embedding dimensions. The FuzzyEn function is better than 
them but worse than the SymEn. 

For the nonlinearity test of the EEG signals, previous studies had found that the nonlinear results 
were varied for the different methods and the EEG at the different brain areas [43,48]. Theiler et al. 
[43] found that the EEG data at the left central(C3) could reject the null hypothesis of a linear 
stochastic process whereas other any EEG data (O1) could not. Kugiumtzis also pointed out that 
cross-examing the results with other methods seemed to be necessary [48]. To examine the 
practicability of the SymEn function method, the difference degree z values (referring to Equation 15) 
are further given in Figure 8 for the four entropy methods to test the EEG signals of the ASD and 
healthy subjects. For the suitable range of the embedding dimension (such as d = 5), the tests on the 
EEG signals are consistent for the four entropy methods (see Figure 8). For the ApEn, SampEn and 
FuzzyEn, variations of the difference degrees are shown with the different embedding dimensions. 
But, the SymEn method performs better than the other three methods. For the embedding dimension 
d = 2:25, all the z values of the SymEn function are larger than 1.96. The rejection can be obtained at 
the wide range of the embedding dimension for the SymEn method. The EEG data can come from a 
nonlinear brain system. The results are consistent with those in the previous literatures [43,48]. 

(a) ASD subject (b) Healthy subject 

Figure 8. The difference degree z values of the entropy values in the Figure 4 and Figure 5 for four 
entropy methods. 

For the sound and vibration signals, we further to exhibit the the difference degree z values of 
the discrimination between the original data and its surrogate data in Figure 9. The ApEn, SampEn 
and FuzzyEn methods do not achieve all of the difference degrees are larger than 1.96 for all  
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d = 2:25. But for some embedding dimensions, such as d = 3 or 4, the four methods give consistent 
discriminations for the sound and vibration signals(see Figure 9a,b). The results suggest the rejection 
of the null hypothesis. And for the SymEn method, the performance of the test on the different 
embedding dimensions is uniform in d = 2:25. The results indicate that the SymEn method are better 
than the ApEn, SampEn and FuzzyEn methods. 

(a) Air compressor (b) Diesel engine 

Figure 9. The difference degree z values of the entropy values in Figure 6 and Figure 7 for the four 
entropy methods. 

5. Conclusions  

In this paper, the symplectic entropy (SymEn) measure has been proposed to measure the 
disorder of the system. Its algorithm is a logarithmic measure of the average amount of energy about 
the underlying probability distribution in different directions of a system, like the Shannon entropy. 
The higher the disorder of the system is, the higher the entropy. For a Gaussion white noise process, 
the SymEn method reflect this point because the SymEn values become larger with the increase of 
the embedding dimension. Meanwhile, we study the effectiveness and practicability of the SymEn 
method experimentally by testing the nonlinearity of the synthetic chaotic data and real time series. 
In comparison with the ApEn, SampEn and FuzzyEn entropy measures, the results show that the 
performance of the proposed SymEn method is superior to them. The SymEn method can reflect the 
characteritics of the systems and can be used to detect if there are the nonlinear components in the 
real data from a complex system. 
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