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Abstract: Scene classification plays an important role in the intelligent processing of High-

Resolution Satellite (HRS) remotely sensed image. In HRS image classification, multiple features, 

e.g. shape, color, and texture features, are employed to represent scenes from different perspectives. 

Accordingly, effective integration of multiple features always results in better performance 

compared to methods based on a single feature in the interpretation of HRS image. In this paper, 

we introduce a multi-task joint sparse and low-rank representation model to combine the strength 

of multiple features for HRS image interpretation. Specifically, a multi-task learning formulation is 

applied to simultaneously consider sparse and low -rank structure across multiple tasks. The 

proposed model is optimized as a non-smooth convex optimization problem using an accelerated 

proximal gradient method. Experiments on two public scene classification datasets demonstrate 

that the proposed method achieves remarkable performance and improves upon the state-of-art 

methods in respective applications. 

Keywords: multi-task learning; feature fusion; sparse representation; low -rank representation; 

scene classification 

 

1. Introduction 

With the rapid development of remote sensing techniques over recent years, High-Resolution 

Satellite (HRS) images are becoming increasingly available thus enabling us to study earth 

observations in greater detail. However, despite enhanced resolution, these details often suffer from 

the spectral uncertainty problem stemming from an increase of the intra-class variance and decrease 

of the inter-class variance [1], and the curse of dimensionality problem resulting from the small ratio 

between the number of training samples and features [2]. Taking into account these characteristics, 

HRS image classification methods have evolved from pixel-oriented methods to object-oriented 

methods and achieved precise object recognition [3-5]. Object-oriented feature extraction methods 

cluster homogeneous pixels and take advantage of both local and global properties [6]. These 

successful development of feature extraction technologies for HRS satellite images has increased the 

usefulness of remote sensing applications in environmental and land resource management, and 

security and defense issues, urban planning, etc. 

Scene representation and recognition of HRS satellite images is a challenging task given the 

ambiguity and variability of scenes, and has attracted much attention in recent years [7-10]. Scene 

classification is aimed at automatically labeling an image from a set of semantic categories [ 11-13]. In 

this paper, the term “scenes” refers to separated sub-blocks split from a large satellite image. Scenes 

often contain multiple land-cover objects having a specific semantic meaning, such as an agricultural 
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area, residential area, mobile home park, and golf course in a satellite image. These high-level latent 

semantic concepts make it difficult to recognize HRS satellite scenes. As a consequence, the main 

problem in the HRS satellite scene interpretation is bridging semantic gaps [14]. Semantic-based scene 

classification has been widely applied in HRS image scene interpretation [15, 16]. It is usually difficult 

to understand and recognize scene categories because of the high complexity of spatial and structural 

patterns in the massive HRS satellite images [17]. Therefore, feature representation in each scene is a 

key step and highly demanded for accurate scene classification. 

To obtain the meaningful features for scene classification, many descriptors have been 

developed in recent years. Features such as color distributions describing the reflective spectral 

information [18,19], textures reflecting a specific, spatially repetitive pattern of surfaces [20,21], 

structures containing macroscopic relationships between objects [22,23] have been widely used in 

HRS satellite image classification; but none of the feature descriptors have the same discriminating 

power for all classes of scene. For example, features based on color information might perform well 

when classifying forest and desert, while a classifier for residential areas should be invariant to the 

actual color of the scenes. Therefore, instead of using a single modality of feature for all classes, 

adaptively fusing a set of diverse and complementary feature modalities might more accurately and 

precisely discriminate a class from all others. 

There are two general fusion strategies within the machine learning trend to semantic scene 

analysis, namely: early fusion and late fusion. The former combines cues prior to feature extraction  

[24,25], and the latter first separately extracts features and then combines them at the classifier stage 

[26,27]. Both early and later fusion methods can be used to classify an HRS image for satellite scene 

classes have multiple feature dependency and independency simultaneously [6,28]. Because different 

features may have different scales, hard combinations such as concatenation may cause redundancy 

and degenerate efficiency and performance. Recent studies on Multiple Kernel Learning (MKL) [29] 

that fuse different features through multiple similarity function combinations can effectively improve 

the classification performance [30,31]. Several combination methods inspired by MKL have been 

proposed varying from linear to nonlinear, and from the same type of kernel to different types of 

kernels [32,33].  

In contrast to this family of work, Yuan et al. [34] proposed a Multi-Task Joint Sparse 

Representation and Classification (MTJSRC) framework for visual recognition in a regularized Multi-

Task Learning (MTL) framework. The idea behind MTL is basically that, when the tasks to be learned 

are similar or related in some sense, it may be advantageous to take into account these cross-task 

relations in the model. Experimental results have demonstrated the effectiveness of such a framework 

[35,36]. The MTJSRC framework was motivated by the success of multi-task joint sparse linear 

regression and the Sparse Representation Classification (SRC) [37] approaches, which has been 

applied in HRS satellite image classification and achieve excellent performances [ 38,39]. Based on the 

knowledge transferring mechanism in MTL [40] and the collaborative representation mechanism in 

SRC [41], MTJSRC can deal with the “lack of samples” problem for high -dimensional signal 

recognition [38]. The MTJSRC method can learn a common subset of features for all tasks through 

joint sparsity regularization [42] by penalizing the sum of 𝑙2 norms of the blocks of coefficients 

associated with each covariate group across different classification problems. From the perspective 

of linear regression, MTJSRC was inspired by Multi-Task Joint Covariate Selection (MTJCS) which 

can be regarded as a combination model of group Least Absolute Shrinkage and Selection Operator 

(LASSO) [43] and multi-task LASSO [44]. Li et al. [38] introduced the MTJSRC paradigm for 

hyperspectral image classification and achieved competitive performance. However, the multiple 

learning tasks in MTJSRC can be coupled using a set of shared factors possessing low-rank structure 

[45]. For example, satellite scene images with different labels may share similar background under  a 

low-rank structure. Chen et al. [46] demonstrated the effectiveness of the MTL formulation 

considering the sparse and low -rank patterns from multiple related tasks. 

Inspired by the existing works in this fields, we present a Multi-Task Joint Sparse and Low-rank 

Representation and Classification (MTJSLRC) for HRS images. In this paper, the term “multi-task” 

means that several linear representation models are simultaneously estimated through regularization 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2016                   doi:10.20944/preprints201611.0036.v1

Peer-reviewed version available at Remote Sens. 2017, 9, 10; doi:10.3390/rs9010010

http://dx.doi.org/10.20944/preprints201611.0036.v1
http://dx.doi.org/10.3390/rs9010010


 3 of 20 

 

on parameters across all the models. For example, when classifying scenes, we obtain K different 

linear representation models from K different visual features (e.g. texture, shape, and color). The joint 

sparsity and low-rank are enforced by imposing the 𝑙1,2-norm penalty as proposed by [40,42] and 

trace norm penalty as previously developed approaches in [47,48]. The objective in MTJSLRC is to 

determine a squared reconstruction error term and two convex but non-smooth (𝑙1,2-norm and trace 

norm) regularization terms. We deform the model and the use the Accelerated Proximal Gradient 

(APG) method [49] to solve this non-smooth convex optimization problem. Similar to MTJSRC, 

classification is ruled in favor of the class that has lowest total reconstruction error accumulated form 

all the tasks [34]. Extensive experiments show that our method takes advantage of multiple features 

and thus overcomes the over-fitting problem produced by the hyper-dimensional stacked feature 

space and “lack of samples”. In our framework, a low-rank constraint is applied to reduce 

redundancy and correlation in highly correlated tasks for HRS satellite image classification.  

The contribution of this study lies in the combination of multiple feature based on MTL, SRC, 

and low-rank representation. We found that the multi-task joint sparse and low-rank representation 

is a simple yet effective way to combine multiple complementary features to improve the HRS image 

classification accuracy. We overcome the problem of incoherent sparse and low -rank patterns by 

considering multiple related features, and decomposing model parameters as a joint sparsity-

inducing component and a low -rank component. Specifically, we employ a 𝑙1,2-norm regularization 

term to enforce group sparsity in the model parameter, and identify the essential discriminative 

feature for effective HRS image classification; meanwhile, we use a t race-norm constraint to 

encourage the low-rank structure, capturing the underlying relationship among the tasks for 

improved generalization performance. We employ the APG method to solve this as a non-smooth 

convex optimization problem. 

The remainder of this paper is organized as follows: Section 2 introduces the proposed MTJSLRC 

framework for HRS image classification. The experimental results and analysis are presented in 

Section 3. In Section 4, some concluding remarks and prospects for future work close the paper. 

Notations For any matrix X ∈ 𝑅𝑚×𝑛 , let 𝑥 𝑖𝑗 be the entry in the 𝑖-th row and 𝑗-th column of X; ‖𝑋‖
0 

denotes the 𝑙0-norm which counts the number of non-zero entries in X; let ‖𝑋‖
1 denote the 𝑙1-norm 

and ‖𝑋‖
1 = ∑ ∑ |𝑎𝑖𝑗 |𝑛

𝑗=1
𝑚
𝑖=1 ; let ‖𝑋‖

𝐹 = √∑ ∑ |𝑎𝑖𝑗 |
2

𝑛
𝑗=1

𝑚
𝑖=1 ; let ‖𝑋‖

∗ denote the nuclear norm which is 

the sum of absolute value of all the singular values. 

2. The Proposed Method  

In this section, we describe the MTJSLRC framework for representation and classification of HRS 

image scene with multiple feature representation. We also present the optimization method resorting 

APG algorithm for this framework in detail.  

2.1. The MTJSLRC Framework 

The working mechanism of the proposed method is depicted in Figure 1. In the preprocessing 

stage, multiple feature modalities for all the training images from each of classes are extracted. Given 

a test image, all features that are exactly same as training images are abstracted. Each feature is 

represented as a linear combination of the corresponding training features in a joint sparse and low-

rank way. In this paper, we focus on the usage of 𝑙1,2-norm penalty and 𝑙1-norm of the low-rank 

constraint to enforce joint sparsity and low -rank structure across representation tasks. Thus, the 

objective function consists of a squared reconstruction error term, a non-smooth 𝑙1,2 -norm 

regularization term, and a non-smooth 𝑙1-norm across low-rank regularization term. In order to use 

the APG method [34,49] for optimization, we transform the model into a combination of a smooth 

convex term and a non-smooth term. Once the representation coefficients are estimated, the category 

can be decided according to the overall reconstruction error of the individual class. 
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Figure 1. Flowchart of the proposed approach for HRS scene classification 

2.2. Sparse Representation Classification 

Previous studies have shown that the sparse representation model is discriminative and 

particularly useful for robust multi-class classification [34]. Assuming that we have M distinct classes, 

we define 𝑋𝑚 ∈ 𝑅𝑑×𝑁𝑚  as a stack of 𝑁𝑚  columns of d-dimension feature vectors from training 

images labeled as class m ∈ {1, ⋯ , M} , and N = ∑ 𝑁𝑚
𝑀
𝑚=1 . Each sub-dictionary 𝑋𝑚  can model a 

convex set for a specific class, and the collaborative dictionary X ∈ 𝑅𝑑×𝑁 , made up of all the sub-

dictionary 𝑋𝑚 , maps each feature vectors into a new dimensional space corresponding to the 

dictionary. Given a testing image feature Y ∈ 𝑅𝑑 , the optimization problem of the sparse linear 

representation model is described as follows: 

�̂� = min
𝑤

‖𝑤‖
0 ,    s. t. ‖𝑌 − 𝑋𝑤‖ ≤ 𝜀, (1) 

where 𝜀  denotes the noise level parameter. It is known that problem (1) is NP-hard. Previous 

research results [50] show that under mild assumptions, this problem can be relaxed as the follow ing 

objective function: 

�̂� = min
𝑤

‖𝑤‖
1 ,    s. t. ‖𝑌 − 𝑋𝑤‖ ≤ 𝜀, (2) 

This optimization problem is convex and the optimal solution �̂� can be efficiently solved. Then, for 

classification, the class of the image feature 𝑌 can be determined by minimizing the reconstruction 

error 𝑟𝑖  (error between Y and the linearly reconstruct result from the training images in the m-th 

class) as follows: 

class(Y) = �̂� = arg min
𝑚∈{1,⋯,𝑀 }

𝑟𝑚 (𝑌) = arg  min
𝑚∈{1,⋯,𝑀}

‖𝑌 − 𝑋𝑚 �̂�𝑚
‖2, (3) 

where �̂�𝑚 denote the components of �̂� corresponding to class 𝑚. In the study of face recognition, 

the SRC is expressed as the model (2) and the decision rule (3). 
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2.3. Multi-Task Joint Sparse Representation Classification 

The SRC model was originally developed for single feature, and MTJSRC model extends it to 

multiple features and multiple instances based visual recognition. Suppose K modalities of features 

for all the training samples with M classes, and the 𝑋𝑘 ∈ 𝑅𝑑𝑘×𝑁  is the training feature matrix for each 

modality index K = 1, ⋯ , K . Then, we denote 𝑋𝑚
𝑘 ∈ 𝑅𝑑𝑘×𝑁𝑚 as the 𝑁𝑚 columns of 𝑋𝑘  associated 

with the 𝑚-th class. For a testing image, let Y = {𝑌𝑘𝑙 ∈ 𝑅𝑑𝑘 ,𝑘 = 1, ⋯ , 𝐾, 𝑙 = 1, ⋯ , 𝐿} be the ensemble 

of L different instances (e.g. multiple transformation of a HRS scene) with same K modalities of 

features as training images. For each testing image feature 𝑌𝑘𝑙, we suppose the representation vector 

as 𝑊𝑘𝑙 = [(𝑊1
𝑘𝑙 )𝑇 ,⋯ , (𝑊𝑀

𝑘𝑙 )𝑇 ]𝑇, which 𝑊𝑚
𝑘𝑙 ∈ 𝑅𝑛𝑚 restricts on class 𝑚. Let us define the coefficients 

associated with class 𝑚  as 𝑊𝑚 = [𝑊𝑚
11 ,⋯ , 𝑊𝑚

𝐾𝐿 ] ∈ 𝑅𝑁𝑚×𝐾𝐿 . Thus, the multi-task joint covariate 

selection model in sparse learning [42] seeks to solve the following optimization problem: 

�̂� = arg min
𝑊

𝑓(𝑊) + 𝛼𝑃(𝑊), (4) 

where the expressions of 𝑓(𝑊) and 𝑃(𝑊 ) are defined respectively as 

𝑓(𝑊) =
1

2
∑ ∑ ‖𝑌𝑘𝑙 − 𝑋𝑘 𝑊𝑘𝑙 ‖2𝐿

𝑙=1
𝐾
𝑘 =1 , (5) 

𝑃(𝑊) = ∑ ‖𝑊𝑚
‖

𝐹
𝑀
𝑚 =1 , (6) 

This optimized problem can be solved by the APG method [49]. Given the optimal coefficient 

matrix �̂� , we can approximately recover each testing feature 𝑌𝑘𝑙 as 𝑋𝑘 �̂�𝑘𝑙 . The class can be 

decided with the lowest reconstruction error accumulated over all the K × L tasks: 

class(Y) = arg min
𝑚∈{1,⋯,𝑀 }

∑ ∑ 𝑟𝑚 (𝑌𝑘𝑙)𝐿
𝑙=1

𝐾
𝑘=1 = arg min

𝑚∈{1,⋯,𝑀 }

∑ ∑ ‖𝑌𝑘𝑙 − 𝑋𝑚
𝑘 �̂�𝑚

𝑘𝑙 ‖
2

𝐿
𝑙=1

𝐾
𝑘=1 , (7) 

The model (4) together with decision rule (7) is known as MTJSRC in the study of visual 

classification [34]. 

2.4. Multi-Task Joint Sparse and Low-rank Representation Classification 

The MTJSRC model described in the previous section considered the sparse patterns from 

multiple related tasks (multiple features and instances based visual recognition). However, in the 

HRS image classification, the underlying predictive classifiers lie in a hypothesis space of some low -

rank structure for the redundancy and correlation in highly correlated tasks. In this paper, we 

consider both the sparse and low -rank patterns for multiple features and instances-based HRS image 

classification to improve performance. 

2.4.1. Class-Level Joint Sparse and Low-rank Regularization 

This formulation of problem (4) improves the independent learning model (2) to a joint learning 

model by imposing a class-level sparsity-inducing term. It can be useful to represent a testing image 

by a few training samples under the common class for the multi-class classification. To encourage the 

low-rank structure in the model coefficient, we impose a class-level rank-constraint term to capture the 

underlying relationship among the tasks for improved generalization performance. Therefore, the 

representation of multiple features and instances may share certain class-level sparse and low-rank 

patterns. 

To consider the low-rank structure within class m, we apply rank constraint over 𝑊𝑚 . We employ 

𝑙1-norm across the rank constraint of 𝑊𝑚  to reduce the redundancy in highly correlated tasks for 

HRS image classification. We denote the class-level rank constraint term as follows: 

Γ(𝑊 ) = ‖[𝑟𝑎𝑛𝑘 (𝑊1 ),⋯ , 𝑟𝑎𝑛𝑘(𝑊𝑀 )]‖
1 = ∑ 𝑟𝑎𝑛𝑘 (𝑊𝑚 )𝑀

𝑚=1 , (8) 

We propose to solve the following multi-task joint sparse and low-rank representation model: 

�̂� = arg min
𝑊

𝑓(𝑊) + 𝛼𝑃(𝑊) + 𝛽Γ(𝑊), (9) 
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where the expressions of 𝑓(𝑊), 𝑃(𝑊) and Γ(𝑊) are given in (5), (6) and (8), respectively, and 𝛼 

and 𝛽 are the regularization coefficients to balance the strength of the general loss component and 

regularization terms. The problem (9), however, is non-convex and the solution may not be unique 

due to the rank-constraint in Γ(𝑊), which can be regarded as 𝑙0-norm of its singular value matrix. 

To make the problem tractable, we relax the rank operator with nuclear norm, and rewritten the 

model as follow: 

�̂� = arg min
𝑊

𝑓(𝑊) + 𝛼𝑃(𝑊) + 𝛽𝑄(𝑊 ), (10) 

where 𝑄(𝑊) is the following 𝑙1-norm across the nuclear norm: 

Q(𝑊) = ‖[‖𝑊1
‖

∗, ⋯ , ‖𝑊𝑀
‖

∗
]‖

1 = ∑ ‖𝑊𝑚
‖

∗
𝑀
𝑚 =1 , (11) 

The classification rule of our model, therefore, is identical with MTJSRC. We call the model (10) 

together with the decision rule (7) as MTJSLRC, namely multi-task joint sparse representation and 

classification. 

2.4.2. Optimization Algorithm 

The problem (10) is intractable for the two non-smooth convex regularization terms P(𝑊)  and 

Q(𝑊). Considering a general minimization problem of that the objective composes a smooth convex 

term and a non-smooth convex term, Nesterov et al. [49] proposed the APG method that achieving 

O(1/𝑡2) rate of convergence. Chen et al. [51] applied a nearly unified treatment using existing APG 

methods to group/multi-task joint sparse learning. Similar to [51], Yuan et al. implemented an APG 

optimization procedure for MTJSRC [34]. In this paper, we solve the problem (10) by transforming it 

to a combination of a smooth convex term and a non-smooth term. Then, we apply the APG algorithm 

to optimize it. We adopt the Moreau Proximal Smoothing [52] on the nuclear norm regularization 

term in Q(𝑊). More formally, the nuclear norm 𝛽‖𝑊𝑚
‖

∗  is approximated by Moreau approximation 

Φ𝜇
(𝑊𝑚

) = min
𝐺

(
1

2𝜇
‖𝑊𝑚 − 𝐺‖

𝐹
2 + 𝛽‖𝑊𝑚

‖
∗ ), (12) 

where 𝜇 is the smoothing parameter. The Φ𝜇
(𝑊𝑚

) is convex and smooth with respect to 𝑊𝑚 , and 

the gradient can be computed as 

∇Φ𝜇
(𝑊𝑚

) = β(𝑊𝑚 − 𝐺∗(𝑊𝑚 )), (13) 

where G∗ (𝑊𝑚
) = arg min

𝐺
(

1

2𝜇
‖𝑊𝑚 − 𝐺‖

𝐹
2 + 𝛽‖𝐺‖

∗) . The closed-form expression of G∗ (𝑊𝑚
)  can be 

determined using the soft-threshold operation on the singular values of 𝑊𝑚  [48], and the gradient 

can be denoted as 

∇Φ(𝑊𝑚
) = β(𝑊𝑚 − 𝑈Σ𝜆 VT), (14) 

where 𝑊𝑚 = 𝑈ΣVT  is the singular value decomposition of 𝑊𝑚 , Σ𝜆  is diagonal with (Σ𝜆 )𝑖𝑖 =

max (0, Σ𝑖𝑖 − 𝜆), and 𝜆 = 𝛽/𝜇. Therefore, we apply the following smoothing function to the class-level 

rank constraint term Q(𝑊), and the approximation is: 

Ω(𝑊 ) = ∑ Φ𝜇
(𝑊𝑚

)𝑀
𝑚=1 , (15) 

The Ω(𝑊 ) is convex and smooth due to Φ𝜇
(𝑊𝑚

) is convex and smooth, and the gradient is: 

∇Ω(𝑊) = ∑ ∇Φ𝜇
(𝑊𝑚

)𝑀
𝑚=1 = ∑ β(𝑊𝑚 − 𝑈Σ𝜆 VT)𝑀

𝑚=1 , (16) 

We replace the nuclear norm with its Moreau approximation in model (12) and obtain the 

approximated objective with only one non-smooth term. 

�̂� = arg min
𝑊

𝑓(𝑊) + 𝛼𝑃(𝑊) + 𝛽Ω(𝑊), (17) 

We define the smooth component in (17) as Η(𝑊 ) = 𝑓(𝑊) + 𝛽Ω(𝑊). The objective function can be 

seen as the summation of a smooth term Η(𝑊) and a non-smooth 𝑙1,2-norm regularization term 

𝛼𝑃(𝑊). 
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�̂� = arg min
𝑊

𝐻(𝑊) + 𝛼𝑃(𝑊), (18) 

Then, we can use the APG optimization algorithm to solve problem (18).  

Algorithm 1 summarizes the details of optimization and classification. Each iteration consists of 

the generalized gradient mapping step and the aggregation forward step. In the generalized gradient 

mapping step, we update the 𝑾(𝒕+𝟏)  using current matrix 𝑉(𝑡+1) as follows: 

𝑊 (𝑡+1) = arg  min
𝑊

𝐻(𝑉(𝑡) ) + 〈∇𝐻(𝑉(𝑡) ),(𝑊 − 𝑉(𝑡) )〉 +
1

2𝜆
‖𝑊 − 𝑉(𝑡) ‖

𝐹

2
+ 𝛼‖𝑊‖

1,2, (19) 

where 𝜆 is the step-size parameter. The solution of problem shown in [53] is: 

𝑈
(𝑡)

= 𝑉
(𝑡)

− 𝜆∇𝐻(𝑉
(𝑡) ), (20) 

𝑊𝑚
(𝑡+1)

= max (0, [1 −
𝛼𝜆

‖𝑈𝑚
(𝑡)

‖
]) ∙ 𝑈𝑚

(𝑡)
, (21) 

Then, as shown in [53], we apply the aggregation forward step to update 𝑉(𝑡)  as follows: 

𝑉(𝑡 +1) = 𝑊(𝑡+1) +
𝜃𝑡−1

𝜃𝑡+1
(𝑊 (𝑡+1) − 𝑊(𝑡) ), (22) 

𝜃𝑡 +1 =
1

2
(1 + √1 + 4𝜃𝑡

2), (23) 

 

Algorithm 1: MTJSLRC Algorithm 

Inputs： 

The training image feature matrices, {𝑿𝒌, k=1,…,K}; 

An ensemble of testing image features, {𝒀𝒌𝒍, 𝒌 = 𝟏, 𝟐, ⋯ , 𝑲, 𝒍 = 𝟏, 𝟐, ⋯ , 𝑳}; 

The regularization parameters, 𝜶 > 𝟎, 𝜷 > 𝟎; 

The step-size parameter, 𝝀 > 𝟎; 

Output： 

The representation coefficients, 𝑾(𝒕);  

The predicted labels for testing image scenes, �̂� 

Initialization： 

𝑾𝟎 = 𝑽𝟎 = 𝟎, 𝜽𝟎 = 𝟏, 𝒕 = 𝟎 

  1: while 𝑾 does not converge do： 

  2:   Calculate 𝑼(𝒕) = 𝑽(𝒕) − 𝝀𝛁𝑯 (𝑽(𝒕) )，in which 𝛁𝑯(𝑽(𝒕) ) is given by 

𝛁𝑯(𝑽𝒕 ) = 𝛁𝒇(𝑽(𝒕) ) + 𝛃𝛁𝛀(𝑽(𝒕) ), (24) 

[∇𝑓(𝑉(𝑡 ) )]𝑘𝑙 = (𝑋𝑘 )𝑇 𝑋𝑘 [𝑉(𝑡) ]
𝑘𝑙

− (𝑋𝑘 )𝑇 𝑦𝑘𝑙, (25) 

[∇Ω(𝑉𝑚

(𝑡)
)]𝑘𝑙 = (∇Φ𝜇 (𝑉𝑚

(𝑡)
))𝑘𝑙 , (26) 

𝒍 = 𝟏, … , 𝐋, 𝒌 = 𝟏, … , 𝑲, 𝒎 = 𝟏,… , 𝑴 

  3:   Calculate 𝑾𝒎
(𝒕+𝟏)

 as 

𝑾𝒎
(𝒕+𝟏)

= 𝐦𝐚𝐱 (𝟎, [𝟏 −
𝜶𝜼

‖𝑼𝒎
(𝒕)

‖
]) ∙ 𝑼𝒎

(𝒕)
, 𝒎 = 𝟏, … , 𝑴 

  4:   Set 𝜽𝒕 +𝟏 =
𝟏

𝟐
(𝟏 + √𝟏 + 𝟒𝜽𝒕

𝟐) 

  5:   Update 𝑽(𝒕+𝟏) = 𝑾(𝒕+𝟏) +
𝜽𝒕−𝟏

𝜽𝒕+𝟏
(𝑾 (𝒕+𝟏) − 𝑾(𝒕) )  

  6:   Set 𝐭 ← 𝐭 + 𝟏  

  7: end while 
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  8: Calculate �̂� = 𝒂𝒓𝒈 𝒎𝒊𝒏 ∑ ∑ ‖𝒚𝒌𝒍 − 𝑿𝒎
𝒌 𝑾𝒎

𝒌𝒍‖
𝟐

𝑳
𝒍=𝟏

𝑲
𝒌=𝟏   

2.4.3. Time complexity analysis 

Due to the iterative characteristic of MTJSLRC, the computational complexity depends on two 

factors, the number of iterations before convergence and the time consumed at each iteration. As 

MTJSRC, the objective of our proposed model is to minimize reconstr uction error of a testing image；  

therefore, it is not necessary to execute the algorithm until convergent for the best recognition 

performance. Therefore, we consider the dominant computational cost at each iterate of Algorithm 1, 

which comes from the calculation of gradient (25) and (26) in step 2. Assume T be the average 

number of iterations for the running of Algorithm 1, the total Floating-point operations (Flops) for 

gradient estimation of (25) in step 2 is 𝑂(𝐾𝐿𝑁 𝑑𝑘 + 2𝑇𝐾𝐿𝑛𝑑𝑘
) as estimated in [34]. The time-

consuming part of (26) are SVD of matrix 𝑉𝑚

(𝑡)
 and the 𝑈Σ𝜆 VT  in ∇Φ𝜇 (𝑉𝑚

(𝑡)
). The costs of the two 

terms are typically O(Ms) and O(2𝑀(𝐾𝐿)2𝑁𝑚
) flops, respectively, where 𝑠 is the computation time 

for the SVD of 𝑉𝑚

(𝑡)
. The total flops consumed by gradient estimation in (24) is typically 

O(𝑇𝑀𝑠 + 2𝑇𝑀(𝐾𝐿)2𝑁𝑚
). The time consumed in the other steps is negligible in comparison to that of 

gradient estimation in step 2.  

3. Experiments and Analysis 

In this section, we provide the experimental setups, and discuss the results on two public 

datasets. We conducted several groups of experiments to evaluate the feature combination capability 

and effectiveness of MTJSLRC for HRS image classification.  

3.1. Experimental Setup 

We evaluated our proposed MTJSLRC method on two public land-use scene datasets, which 

were: 

 UC Merced Land Use Dataset. The UC Merced dataset (UCM) [10] is one of the first ground truth 

datasets derived from publicly available high resolution overhead image; manually extracted 

from aerial orthoimagery downloaded from the United States Geological Survey (USGS) 

National Map. This dataset contains 21 typical land-use scene categories, each of which consists 

of 100 images measuring 256 × 256 pixels with a pixel resolution of 30 cm in the red-green-blue 

color space. Figure 2 shows two examples of ground truth images from each class in this dataset. 

The classification of UCM dataset is challenging because of the high inter-class similarity among 

categories such as medium residential and dense residential areas. 

 WHU-RS Dataset. The WHU-RS dataset [54] is a new publicly available dataset that all the 

images are collected from Google Earth (Google Inc.). This dataset consists of 950 images with a 

size of 600 × 600 pixels distributed among 19 scene classes. Examples of ground truth images 

are shown in Figure 3. It can be seen that, as compared to the UCM dataset, the scene categories 

in the WHU-RS dataset are more complicated due to the variation in scale, resolution, and 

viewpoint-dependent appearance. 
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Figure 2. Two example ground truth images of each scene category in UC Merced dataset  

For the test image, we utilize four types of transform to obtain multiple instance as follows: zoom 

in it 1.2, flip it left to right, and rotate it five degrees clockwise and counterclockwise. Therefore we 

utilize L = 4 instances for each test image in the MTJSRC and MTJSLRC models. We give an 

overview of the features used in our experiments, and refer to the corresponding publications for 

more details: 

 Bag of Visual Words (BoVW). We extracted Scale-Invariant Feature Transform (SIFT) 

descriptors [18] using a dense regular grid on the image with image patches at a 16 × 16 pixel 

size over a grid with spacing of eight pixels [22]. The visual vocabulary containing 600 entries 

was formed by k-means clustering of a random subset of patches from the training set. 

 Multi-Segmentation-based correlaton (MS-based correlaton) [8]. SIFT descriptors are 

extracted on a regular grid with a spacing of eight pixels and at 16 × 16 pixels grid size. The 

segmentation size is set at six and the number of segments were {22 , 23 , 24, 25 , 26, 27 }. The MS-

based correlograms were quantized in 300 MS-based correlatons using k-means. 

 Dense words (including PhowGray, PhowColor) [11]. The PhowGray was modeled using 

rotationally invariant SIFT descriptors computed on a regular grid with step of five pixel at four 

multiple scales (5, 7, 9, 12 pixel radii), zeroing the low contrast pixels. Then the descriptors were 

subsequently quantized into a vocabulary of 600 visual words that generated by k-means 

clustering. The PhowColor is the color version of PhowGray that stacks SIFT descriptors for each 

HSV color channel. 

 Self-SIMilarity features (SSIM).  SSIM descriptors [12] were extracted on a regular grid at steps 

of five pixels. We acquired each descriptor by computing the correlation map of a 5 × 5 pixels 

patch in a window of radius 40 pixels, quantizing it in 3 radial bins and 10 angular bins. This 

way, we obtained a pack of 30 dimensional descriptor vectors. These descriptors were then 

quantized into 600 visual words. 
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Figure 3. Example ground truth images of each scene category in WHU-RS dataset 

We computed all but the MS-based correlaton features in a spatial pyramid as proposed in [22]. 

A pyramid representation consists of several levels obtained by partitioning the image into 

increasingly fine non-overlapping sub-regions and computing histograms of features found inside 

each sub-region. The features of each level were concatenated to build the final descriptor. We 

computed a three-level pyramid of spatial histograms for each feature channel. In the experiment, 

we divided the dataset 10 times to obtain reliable results, and all the final results,  as well as the 

classification accuracy rate for categories were recorded as the mean and standard deviation of these 

10 runs. 

The features were computed using open source code [55]. All experiments in this work are 

implemented var Matlab 8.0/Windows 10, and run on a workstation equipped with 4 Intel quadcore 

3.3 GHz CPU with 16GB memory. 

3.2. Experimental Results 

3.2.1. Explanation of Feature Combination 

We applied the UCM dataset to demonstrate the feature combination capability of MTJSLRC. 

For each image, we set K = 2 for feature combination test, including the SSIM and BoVW features. 

These two features are complementary in terms of co-occurrence of local patches and appearance. 

We used L = 4  instances for each test image by transformation, and obtained K × L = 2 × 4 

representation tasks. The number of training images was varied using 𝑁𝑚 =

{10,20,30,40,50,60,70,80,90} per category for training and the remaining images for testing.  

Figure 4 shows the classification accuracy results of individual features by SRC and their 

combination by MTJSRC and MTJSLRC. The MTL-based models including the MTJSRC and 

MTJSLRC models improved the performance by well feature combination. We can see that the 

performance improved as the training ratio increased since more data is available for model training. 
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Moreover, the average accuracy approached 80% while the number of training images per category 

was 20. This indicates that the SRC and MTL can deal with the “lack of samples” problem in HRS 

image recognition. Compared with the MTJSRC model, our MTJSLRC method improved 

classification accuracy slightly for low number of tasks. The low -rank structure had no significant 

effect on the MTJSRC while the class-level coefficient 𝑟𝑎𝑛𝑘 (𝑊𝑚 ) was less than or equal to the number 

of tasks.  

 

Figure 4. Classification results on the  UCM dataset. The MTL based models, MTJSRC and MTJSLRC 

models, outperform each single task SRC model. The MTJSLRC model is slightly better than MTJSRC 

due to low number of tasks. 

In Figure 5, several example classifications are provided while the number of images per 

category was 𝑁𝑚 = 40. In the figure 5(a), we can see that the cases of failure using BoVW feature due 

to the relatively ordinary appearance, resulting in misclassification into similar categories.  In contrast, 

the SSIM feature uses the geometric shape information in these six samples, and thus classifies them 

correctly. However, the SSIM feature failed in some of other samples shown in Figure 5(b) that the 

BoVW feature recognizes correctly, when samples lacked of obvious spatial arrangements and their 

background were clutter. We fused the benefits of these two complementary features by combining 

them to improve the classification performance. 

 
Figure 5. Example classification on feature combination (with 𝑁𝑚 = 40). (a) The SSIM feature 

classifies correctly but the BoVW fea ture makes an incorrect decision; (b) The SSIM feature classifies 

incorrectly but the BoVW feature makes  an right decision. For the images in (a) and (b), our MTJSLRC 

model makes the right decision. 
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3.2.2. Parameter Effect 

We investigated the effect of iteration on classification performance (Figure 6). Although our 

optimal algorithm has been proved to be convergent to global minimum with the optimal rate 

O(1/𝑡2) in [34], it does not guarantee a monotonous decrease in objective value. We therefore, have 

to run our optimal algorithm until convergent within several hundred times of iteration. However, 

in our experiments, we found that convergence is not necessary for the good classification 

performance. The results seen in Figure 6 show that performance increases first and then gradually 

drops with the increase of iterations. The best performance on the two datasets consistently occurs at 

about 10 time of iteration. This evaluation demonstrates that the objective of our proposed method is 

to address minimal reconstruction error on a testing image, while those classifier training based 

methods, such as SVM, directly optimize the classification error on training data. Thus, instead of 

running Algorithm 1 until convergent, we can achieve a sufficient classification performance within 

a few times of iteration. 

 

  

Figure 6. Classification performance of MTJSLRC against the times of iterations on the  UCM and 

WHU-RS datasets 

There are two other parameters that affect the classification performance, including the 

regularization coefficients for class-level sparsity and low-rank constraint. We analyze the effects of 

the parameters on the classification accuracy to choose the optimal parameters. These regularization 

coefficients determines the strength of the loss and regularization terms. Intuitively, there is actually 

a trade-off between the sparse structure and low -rank structure. Let us consider several special cases 

of our formulation: when α = 0, the problem degenerates to a model with only a low-rank structure 

that learns a small number of shared features among tasks; when β = 0, the problem degenerates 

into model with only sparse structure among tasks. To take advantages of both properties, we adjust 

α and β to balance the sparse and low -rank structures.  

We tested a series of α and β on the UCM and WHU-RS datasets, and the classification results 

are shown in Figure 7. The sparse regularization parameter was selected from the range α ∈

{0, 0.1, 0.2, … , 1}, and the low-rank regularization parameter β ∈ {0, 1, 2,… ,30} was selected for these 

two datasets. From Figure 7, we can observe that MTJSLRC achieves best results at most of settings 

for these two datasets. This verifies the ability and benefit of MTJSLRC when simultaneously learning 

low-rank and sparse structures from multiple tasks. For the low-rank regularization coefficient, 

although the classification accuracy on the UCM and WHU-RS datasets fluctuates, it takes on an 

overall trend that first improves, then comes to its maximum, and begins to gradually decrease. The 

optimal low-rank regularization coefficient was around 25 to the UCM dataset and 20 to the WHU-

RS dataset for most of sparse regularization parameter. This demonstrates the significance of the low-

rank structure for this multiple feature combination tasks based on MTL and SRC. The variation of 
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performance to the sparse regularization parameter α was relatively smooth relative to the low-rank 

regularization coefficient. The overall optimal α was both around 0.1 for these two datasets.  

 

 
Figure 7. Classification performance of MTJSLRC against regularization parameters α and β. The x-

axis (left) represents α, the y-axis (right) represents β, and the z-axis (vertical) is average classification 

accuracy. (a) Effect on the UCM dataset; (b) Effect on the WHU-RS dataset. 

To better visualize this phenomena, we selected α = 0.1 to distinguish effects of the low-rank 

regularization parameter β  on these two datasets. As shown in Figure 8, the trend in the 

classification accuracy is not easy to see. This is probably because the convergence of our objective 

function to minimizer is no guaranteed, and the objective value does not monotonously decrease. On 

the whole however, the performance first improves and then gradually drops with the increase of β, 

and the best performance occurs at β = 24  for the UCM dataset and β = 18  for the WHU-RS 

dataset. The results show clearly that the multiple tasks in MTJSLRC share one low -dimension feature 

space assumed as low-rank structure in this paper. The low-rank regularization parameter β indeed 

had a substantial impact on final performance, and overlooking the low-rank structure for these two 

datasets would have negative compromised the results. 
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Figure 8. Classification performance of MTJSLRC against low-rank regularization parameter β while 

sparse regularization parameter α = 0.01. The x-axis represents low-rank regularization coefficient 

β, and the y-axis is average classification accuracy. 

3.2.3. Classification Results 

We applied the MTJSLRC to HRS image classification on the UCM and WHU-RS datasets. In 

addition, to further illustrate the effect of our method, we compared our MTJSLRC method with the 

following methods: 

 Feature combination based on independent SRC. This method can be seen as a simplification of 

MTJSLRC method without the joint sparsity and low -rank structure across tasks. So the 

coefficients �̂� are independently learned by SRC. 

 Feature combination based on MTJSRC. This method enforces the joint sparsity across tasks but 

ignore the low-rank structure in the multiple feature space. 

 The representative multiple kernel learning method. The kernel matrices are computed as 

exp  (−𝜒 2(x, 𝑥 ′)/μ), where μ is set to be the mean value of the pairwise 𝜒 2 distance on the 

training set. 

The classification accuracy of our MTJSLRC along with baselines and results from several state-

of-the-art methods on the UCM dataset are shown in Table 1. The results on single feature are listed 

in Table 1(a). We can observe that SRC based methods yield comparable accuracies to SVM on single 

features. The results by feature combination methods are tabulated in Table 1(b). It can be seen that 

all feature combination methods dramatically improve classification performance, but our MTJSLRC 

based algorithm are slightly better than SRC based combination method, the MTJSRC based method, 

and the MKL method. The independent SRC combination, a simplification of MTJSRC or MTJSLRC 

based method, is competitive to the MKL. By considering the joint sparsity across different tasks, the 

MTJSRC based algorithm is superior to the independent SRC combination methods, even better than 

the MKL, but slightly inferior to our MTJSLRC method that takes into account the low-rank structure 

from multiple tasks. As the SRC based combination and MTJSRC based methods, our MTJSLRC 

method does not require any classifier training procedures. Thus it is flexible in practice, and novel 

reference samples can be introduced without additional efforts to update the classifier.  

Table 1. Accuracy (mean±std%) performance on the UCM dataset 

                       (a) Single features                      (b) Feature combination methods 

Features SVM SRC 

BoVW 80.21±1.6 79.92±0.83 

PhowColor 87.46±1.7 86.99±0.85 

PhowGray 85.87±1.75 86.35±0.59 

SSIM 80.95±1.26 80.38±1.27 

MS-based Correlaton 81.73±1.15 81.12±0.86 

The HRS image classification results on the WHU-RS dataset are listed in Table 2. Table 2(a) lists 

the results on a single feature, which indicate that SRC methods are competitive to SVM for single 

features on this dataset. Table 2(b) shows the results from feature combination methods. We can see 

that our algorithm performs comparably to the MKL method, and superior to the independent SRC 

combination and MTJSRC methods.  

 

 

Methods Accuracy 

 SRC 90.03±0.78 

MKL 90.15±0.96 

MTJSRC 90.45±0.53 

MTJSLRC 91.07±0.67 
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Table 2. Accuracy (mean±std%) performance on the WHU-RS dataset 

                       (a) Single features                      (b) Feature combination methods 

Features SVM SRC 

BoVW 85.68±1.07 85.85±0.95 

PhowColor 86.84±1.39 88.04±1.32 

PhowGray 85.05±1.48 84.04±0.96 

SSIM 84.9±2.18 82.32±1.02 

MS-based Correlaton 87.72±1.42 87.12±1.7 

The classification performances of individual classes on the UCM and WHU-RS datasets using 

our proposed MTJSLRC method with the optimal parameters as previously described are shown in 

the confusion matrices shown in Figure 9. As observed, there is some confusion between certain 

scenes in the UCM dataset. The identified positive samples for the storage tanks display the greatest 

confusion because their color information, spatial information, and texture information are likely to 

be confused with those of baseball diamond, buildings, intersections, forests, golf courses, airplane 

fields, and mobile home parks. The most confusing pairs were median residential and dense 

residential with the misclassification rate reaching 12% because of the strong similarity of these 

scenes. Therefore, the features used in our research were not sufficient for separating these scenes, 

and additional features must be included in our future work. 

 

Figure 9. Confusion matrix for the MTJSLRC method on the UCM dataset. 

The classification results on the WHU-RS dataset is illustrated in Figure 10. Based on the fusion 

of the visual effect, deserts, football fields, parks, ponds, mountains, and viaducts achieve the best 

results over 97%; residential areas are mixed with commercial, and industrial areas are mixed with 

residential. This may result from the strong similarity of these scenes and intuitively , give rise to 

weak performance. 

 

Methods Accuracy 

 SRC 91.2±1.03 

MKL 91.67±0.95 

MTJSRC 91.45±0.98 

MTJSLRC 91.74±1.14 
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Figure 10. Confusion matrix for the MTJSLRC method on the WHU-RS dataset. 

3.2.4 Running Time 

In this experiment, we analyzed the running times for different models on the UCM and WHU-

RS datasets. As shown in Table 3, per query times of our method were 0.37s for the UCM dataset and 

0.38s for the WHU-RS dataset, while per query times were 0.09s and 0.12s for the SRC combination 

method, and 0.1s and 0.12s for MTJSRC method. The running time of the MKL method was much 

longer than the others on account of the required training phase. 

Table 3. Running time comparison (in seconds) 

Methods 
UCM WHU-RS 

Training Testing Trainging Testing 

SRC 0 94.27 0 45.42 

MKL 992.18 1.07 345.24 0.64 

MTJSRC 0 124.98 0 58.17 

MTJSLRC 0 389.2 0 179.57 

4. Discussion

HRS image classification plays an important role in understanding remotely sensed image. In 

our work, we built a multi-task joint sparse and low-rank representation for HRS image classification. 

Our objective is to improve the classification accuracy by fusing multiple features and instances. The 

experimental results on the UCM and WHU-RS datasets indicate that the proposed MTJSLRC model 

is competitive with the state-of-the-art methods. 

From the experiments on feature combination illustrated in Figure 4, we observe that the multi-

task joint sparse representations is a simple yet effective way to fuse multiple complementary visual 

features and instances to improve the classification accuracy. Considering the low -rank structure, our 

MTJSLRC model can achieve slightly more accurate results than the MTJSRC model for multiple 

tasks. The performance is competitive even when the number of samples for learning is small. This 

benefits from MTL as it transfer knowledge from one task to another. 
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We tested three important parameters of the MTJSLRC method in experiments. As shown in 

Figure 6, we found that the convergence is not necessary and the algorithm can achieve good 

classification performance with several iterations. This means that our proposed method requires less 

time overall and hence is very competitive. We see from Figure 7 and Figure 8 that the two 

regularization parameters for the sparse structure and low -rank structure have impact on the final 

performance. It shows improvement at first and then a gradually dropping performance trend with 

an increasing low-rank regularization parameter. The variation of performance along with joint 

sparse regularization parameter is relatively stable for two dataset s as discussed in this paper. Our 

experiments show that the low-rank regularization parameter ranging from 20-25 is suitable for the 

best accuracy. The joint sparse regularization parameter as 0.1 is sufficient to result in good 

performance. Table 1 and Table 2 show that our method can fuse multiple complementary visual 

features and instances to improve classification accuracy. The proposed MTJSLRC method achieves 

better classification results than the MTJSRC method, which ignores the low-rank structure across 

tasks, and is slightly superior to MKL.  

The proposed MTJSLRC method performs quite competitively to several representative state-

of-the-art approaches by fusing multiple complementary features and instances, thus considering the 

sparse and low-rank structure across tasks. However, our MTJSLRC method is inferior in terms of 

computational speed when compared to the state-of-the-art methods since the SVD algorithm is used 

in the optimal solution. Considering the computational complexity, we use 4 instances for each test 

image by transformation. In future work, we plan to improve MTJSLRC by elaborating more efficient 

optimal schemes with increased instances to add more robustness and cope with variations in scales, 

translation and rotation. 

5. Conclusions  

This paper presents the MTJSLRC algorithm for HRS image scenes classification. In MTL 

framework, both low-rank structure and sparse structure are important but are quite different in 

nature. We note that the multi-task joint sparse and low-rank representation is a simple yet effective 

way to fuse multiple complementary features and instances. Compared to the MTJSRC method that 

only considers the sparse structure, our proposed method can improve classification performance by 

learning low-rank and sparse structures simultaneously. Experiments on the UCM and WHU-RS 

datasets indicate that our method performs quite competitively to several representative state-of-the-

art approaches. Similar to the SRC and MTJSRC methods, our proposed method is free of classifier 

training, which makes it convenient when introducing novel reference samples and classifier update 

s. On the whole, multi-task joint sparse and low-rank representation is a promising method for scene 

classification with multiple features and/or instances in terms of accuracy and computational cost. In 

the future work, we will consider more texture, shape, or structural features that are more 

appropriate for HRS image scene classification. Accelerating the speed of the algorithm is another 

research direction given its practical significance. 
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HRS: high resolution satellite  

MKL: multiple kernel learning 

MTJSRC: multi-task joint sparse representation and classification 

MTL: multi-task learning 

SRC: sparse representation classification 

MTJCS: multi-task joint covariate selection 

LASSO: least absolute shrinkage and selection operator  

MTJSLRC: multi-task joint sparse and low-rank representation and classification 

APG: accelerated proximal gradient  

Flops: floating-point operations 

BoVW: bag of visual word 

SIFT: scale-invariant feature transform 

MS-based correlaton：  multi-segmentation-based correlaton 

SSIM: self-similarity features 
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