
Article

Construct Linear Polynomial Complementary
Transformation for NP-Completeness Using Parallel
Genetic Algorithm
Tarik Eltaeib * and Julius Dichter

Department of Computer Science, University of Bridgeport, 126 Park Ave, Bridgeport, CT 06604, USA;
dichter@bridgeport.edu
* Correspondence: teltaeib@bridgeport.edu; Tel.: +678-237-6229

Abstract: This paper examines the correlation between numbers of computer cores in parallel
genetic algorithms. The objective to determine the linear polynomial complementary equation in
order represent the relation between number of parallel processing and optimum solutions. Model
this relation as optimization function (f(x)) which able to produce many simulation results. F(x)
performance is outperform genetic algorithms. Compression results between genetic algorithm and
optimization function is done. Also the optimization function give model to speed up genetic
algorithm. Optimization function is a complementary transformation which maps a TSP given to
linear without changing the roots of the polynomials.

Keywords: genetic algorithms; parallel computation; computational complexity; algorithms;
optimization techniques; traveling salesman problem; NP-Hard problems; Berlin-52 data set;
machine learning; linear regression

1. Introduction

NP problems and NP-completeness problems are nondeterministic polynomial problems. The
main difference between the NP and NP- completeness is that in NP problems the solution is
verifiable unlike NP completeness problems. In other words, the complexity of those problems
cannot be bounded, since the polynomial algorithms are unknown within NP- completeness.
However, there are alternative algorithms that solve NP problems[1]. A famous one is referred as the
Genetic Algorithm (GA).The GA has long been used as a heuristic search technique[2]. This technique
serves as a probabilistic search that applies natural phenomena to find optimum solution[3]. In NP-
completeness problems the GAs are determines the optimum solution[4]. Since NP and NP-
completeness are hard to solve in a polynomial time algorithm, GA is used to determine an optimum
solution. Furthermore, the results of applied GA with NP-completeness problem cannot be
verified[4].

 In our research, we focused on the Traveling Salesperson Problem (TSP) problem, which is
classified as an NP-completeness problem[5]. TSP problem is given a set of cities. The salesman has
to visit each city only once and returning to the starting city. The problem of traveling salesman wants
to minimize the total length of the tour[6].

Since the TSP is difficult to solve in a polynomial algorithm, we applied a GA to determine an
optimum solution. However, GA results cannot be verified, since the TSP is NP-completeness
problem[7, 8]. In conjunction with TSP, the GA created a population based on the theory of fitness
evolution[9, 10]. Therefore, GA consists of the guessing stage and the checking stage. Additionally,
there are several parameters that controlled the performance of GA[11]. Such as, population size,
crossover probability, and mutation probability and all factored into the GA’s results. Although GA
is widely acceptable technique with NP and NP-completeness, having several drawbacks. The first
drawback is that the GA does not have a concrete initial population; the GA often trapped in local

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 2 of 11

minimum[12]. If initial chosen population is not good, it convert hard to find the correct solution of
the problem[13].

The second drawback accused in the evolution stage because solid criteria was missing that
could evaluate populations. The problem in the evolution stage, the population could evaluate either
against the unknown environment or the evolution function complexity is running in exponential
time[14].

Genetic algorithm is fit for parallel execution which increases the speed of search. GA can run
by distributing over a number of CPUs. The parallel application must run on computer architecture
that supports multi-threads, simultaneously, such as multiple instruction stream data stream
(MIMD) otherwise known as multi-cores computers. Intuitive numbers of computer cores play a very
important role in determining the optimum solutions[15]. In our experiment we built application that
applied multithread techniques .Then we ran our application in different number of threads. For
example when we ran two threads we called number of GAs is two, and three threads will have three
GAs and so on.

In our work, we utilize the multi-core architecture by using parallel processing to gain insight
into linear effects of changing the TSP solutions to CPU core allocation.

We conducted experimental research to determine the following: What the interaction between
number of computer cores and TSP? In particular, we explored the correlation between the increased
number of parallel processing which mean number of GAs and finding better optimum solution in
TSP. Moreover, we explored how we can transfer NP-completeness problem to be NP problem using
this correlation. By demonstrating this we captured a crucial properties in order to find a
complementary linear polynomial function. This function works as a polynomial transformation
mapping model for NP-completeness to NP problem. We showed how to use this derivative
polynomial function to predict the list of optimum solutions.

2. Supervised machine learning

Supervised machine learning (SML) using regression is well-established method in data
analysis[16]. The main purpose of using regression model is to find the relation between two
independent variables[17]. In our work, the machine learning algorithm will be run in the beginning
to create its training dataset. While the algorithm to build its training set, it can use it to specify the
best number of assigned cores for this specific problem that run on that particular system.

We presented how we built training data set and how we used it formulate the relation between
number of GAs and CPU core allocation. Finally, analyze this mathematical model to determine how
we can construct it as polynomial formula.

In machine learning there are many techniques such as linear regression and random forest. In
our research, we used regression model to formulate the relation between Number of GAs and
finding optimum solution. We build our dataset for two parameters that number of GAs and
corresponding optimum solution. We used linear regression model to build training set to build
up predicator in real dataset to find what the optimum number of GAs values that required for this
dataset in a parallel environment to turn quickly to an acceptably good target solution.

3. Genetic Algorithms

The main reason to use the Genetic Algorithms (GAs) to find the global optimum; for that GAs are

technique for solving NP problems which their growth exponential[18]. GAs involve in developing

a population of individuals. GA are population established optimization procedures intended for

searching optimal solutions in complex spaces. GAs are mimic biological processing in nature in

order to get better populations. These algorithms are mimic on some biological procedures that can

be gotten in Nature, like natural selection [19]or genetic inheritance [5]. The initial population is

made randomly. A fitness evaluation gives a cost to each individual. This assessment can be did by

an objective function which call fitness value and it done a mathematical. The stop condition is

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 3 of 11

typically set to reach a number of repetitions, or to catch a solution to the problem if it is known

beforehand.

In general the GAs apply a single population of individuals and manipulate them with different

parameters. However, there another type of GAs called decentralized and also it is known as

structured GAs. This type is fitting for parallel techniques since the population is not centralized.

Each individuals has their fitness so that each one represent possible solutions. Fitness reflect

numerical measurement used by GA to guide the search processing. Because the isolated populations

are the main aspect of decentralized population that enable to implement the parallel technique in

this type smoothly and keep a higher genetic differentiation[20].Moreover, since the enrich and the

variety of initial sampling , decentralized genetic algorithms (dGAs) have demonstrated better

performance in search space comparing with ordinary genetic algorithms[21].

Cellular genetic algorithms (cGAs) another type which are fitting with parallelism[2]. They are
similar to dGAs which worked with isolated population .however, the cGAs used communication
utility between neighbored in order to maintain high quality of diversity[22]. Furthermore, the cGAs
consist of small neighborhood which only interact with its adjacent neighbors. This technique make
the cGAs discovering the search space more effective because they induced spreading of solutions
through the population in order to maintain the diversity and intensely for each neighborhood[23].

 However, we need balance between the exploration of new area of search space and exploitation
of computer resources such as processor. If we able to accomplish this balance that will lead us to
high performance of GAs. In fact, this exploration and exploitation can be an impact each other,
meaning increasing or decreasing one of them can influence another. Thus, the parallelism is
necessary to not only decrease the processing time, but also to improve the quality of solutions. In
the beginning we would like to introduce some terminology definition of GAs[14].

4. Experimental Set-Up

We developed framework using Java and our instance for traveling salesperson problem. Our
framework consists of a set of threads working in parallel on a multi-core machine solving a single
Traveling Salesman person (TSP) optimization problem. First of all, we give brief description of
hardware and software architecture. The computer specification that we used to run this
experimental is Intel® core 4, speed 2.8 Mhz. Software is 64 Operating system Microsoft windows 10
Pro. Our idea is built around the theory of independent evolution of separate worlds. Each GA solver
initially with some random solutions. Since each GA is independent, the solutions will vary, and
some GAs will have solutions that are better than others[8]. However, since each solution is a
sequence through an entirely linked graph, every solution, even a poor one may have a section
which would make an efficient part of a good solution[24]. Even two good solutions might be good
for different reasons[25, 26]. One solution might have an efficient solution for one graph section while
another good solution could have efficiency in another section[27]. The merging and crossing over of
the different solutions is the elementary idea to improvement in GAs solution [28-30]. In our
framework, we allow multiple GAs to work concurrently and independently of all other GAs. Note
that concurrently may or may not be simultaneously. If there are 8 GAs and 8 CPU cores, then they
may work simultaneously. However, with 16 GAs, two GAs would be running on a single CPU core.
With 64 GAs, that number would increase to 8. As the number of GAs increases as a multiple of the
number of cores. We need find what the optimum number of CPU cores, this ideal point which paly

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 4 of 11

as crucial parameter as well for finding optimum solution, and this optimum point we called C_i
which mean is the number of ideal GAs that we can generated with (i) number of cores. For example
if C_i= 64 GAs for 8 CPU. In the beginning, we built date set which providing foundation for
understanding GA performance proportion with number of cores.

Thus, we fixed all other GA parameters and we ran 10 times and each time for 30 minutes.
Then we store the best optimum results in text file format to use it later in next stage to find correlation
between those sets of fitness and number of threads.

4.1. Framework GAs parameters

In our framework we have many parameters as input variables such as Area, target, city count

[number of cities] display count, thread count, population size, exchange frequency, number of

running, and period of each time. For our experimental we used the benchmark TSP is Berlin52 which

can be found in TSPLIB: http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/ TSPLIB95/TSPLIB.html

In our framework there are some configuration such as number of running meaning how many times

we want to the specific experimental to be run and this feature of automatic running, so we can assign

this framework to run for 10 trails end each time run of 30 minutes period. We ran 10 experiments

automatic and the results of this experiments will be stored in text files with all information needed.

For example, we can run the first experiment with the following parameters as shown in Table [1]

Parameters Values

Number of City 52
Population size 1640

Display 1,2,3...,10
Number of Run 30

Duration 60 second

 1 Input parameters values

4.2. Building Training Dataset

Our framework produces the optimum results as shown in table 2. We have the value of

number of threads to be 1, 2, 3,4,5,6,7,8,9 and 10 and we keep all other GAs parameters

fixed. Then, we have run for 30 times and each time 1 minute .In every time we get the

average of fitness. This is our training dataset that we are going to use it next stage which is

observation stage.

No of Threads Average of
Optimum

1 8759.75
2 8645.18
3 8618.24
4 8485.11
5 8448.81
6 8378.67
7 8418.53
8 8390.70
9 8320.90

10 8247.50

 2 List of optimum solutions from framework

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 5 of 11

Next, we used this dataset to build model mathematically formulae that represent the relationship

between the number of threads with those solutions. Then, in proceed used a linear regression

to be able to generate quantitative analysis between these two variables. In the begging if we assume ݂(ݔ) = optimum solutions, and remember f(x)ܥ the required number threads to and ݔ whereܥ

is the mathematical model we are seeking to generate. In this model should able find depend on some

variables how many GAs that are required to get the optimum solution in appropriate time an based

on number of available CPU core in that specific system. In figure 1 shown the average of optimum

solutions and number of threads. It shows there is systemically decremented and their coloration

between number of threads and getting optimum solutions.

(Figure 1 Average of optimum solutions and number of threads.)

5. Linear Regression Model

 In linear regression technique, we placed in scatterplot the number of threads and the

average of optimum solutions that we got, and in order to find polynomial formula to

demonstrate this relation. From table 2 we have two variables, optimum solution, and number

of threads. Finding the mathematical model that represent the relationship between the

optimum solution

The basic equation form such as y=mx+b which can represent in our work
as following: F(ݔ) = ܥ + 		ଵܥ ܺ	, where the function F(ݔ) that expresses the potential performance

gain when x threads run ܥ it is average of optimum values, ܥଵ		 it is slop of parameters

Then we need to find the best-fitting

Curve for our data set of by using the residuals∑(ܿ − ܿ̂)ଶ, where ܿ is of values whether is fitness

or GAs count, ܿ̂ is the average. Then next step will be slop calculation	ܥଵ		: 		 = ࢟)∑ − ࢞)(^࢟ − ࢞)∑(^࢞ − (^࢞ 	
(ݔ − ଶ(^ݔ = ݕ)∑ 85 − ݔ)(^ݕ − (^ݔ = - 4143.89

8200
8300
8400
8500
8600
8700
8800

0 2 4 6 8 10 12

Average Optimum solution

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 6 of 11

		ଵܥ 85−4143.89 = −0.205	
2nd step we want to calculate ܥ		 ܥ		 = 	 ^ݕ 		ܥ ^ݔ		ଵܥ	− = 	 ^ݕ − ∵	^ݔ	0.205 8471.34=^ݕ ,6=^ݔ ,= 0.205		ଵܥ

 ∴ 		ܥ	 =8471.34-(0.205) ∗ 6 =8470.11≈ 8470

Then next we applied these values for our form F(ݔ) = ܥ + 		ଵܥ ܺ F(ݔ) = 8470 − 0.205ܺ	
This the constructed polynomial equation that describe the correlation of this problem instance of

TSP Berlin 52. After that we are applying this linear equation to predicate solutions .Table 3

shown the results first column X which represent number of threads which is the inputs will be

varieties from x=1 to x 10. The second column is representing the optimum solutions from our

equationF(ݔ) = 8470 − 0.205ܺ.

No of Threads ۴(࢞)= ૡૠ − . ࢄ
Average of
Optimum

1 8,469.80 8759.75

2 8,469.59 8645.18

3 8,469.38 8618.24

4 8,469.18 8485.11

5 8,468.97 8448.81

6 8,468.77 8378.67

7 8,468.56 8418.53

8 8,468.36 8390.70

9 8,468.15 8320.90

10 8,467.95 8247.50

 3 the optimum solution from f(x)

A column chart is a graphic representation of data. In the chart below figure 2 , the x-axis represents

the threads and y-axis represent the average of optimum solutions from framework . From the chart

we can clearly see that results of both the software and function f(x) are very close to each other.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 7 of 11

(a)

Figure 2. This a column chart show comparison between performance of f(x) and framework

6. Empirical Results and discussion

In the table (3) the first Colum represents threads, second column represents results from software
and third column represents results from function f(x).we have collected data for 10 threads both
form our framework and the function f(x). We used only 10 threads because we can’t use more than
10 threads using the framework because the pc capabilities. When we go over more than 10 thread
which consider beyond the saturation point, and no performance advantage resource that called the
bottleneck. The bottleneck point that point we cannot increase parallel program performance and
scalability but also reduce the work. In our situation we found our bottleneck at thread 11 for that
reason we got our thread parameters form thread one to ten.

The table 3, we observe that the linear polynomial ۴(࢞) = ૡૠ − . ࢄ	 which gives slightly
shorter time where x = [1, 2, 3, 4]. Then when we lunch more threads it obviously that framework
slightly performed better than f(x). But if we make x=200, we will get better feasible solution 8429
and we are not able to lunch 200 threads within our framework.

No of Threads ۴(࢞)= ૡૠ − . ࢄ
Average of
Optimum

1 8,469.80 8759.75

2 8,469.59 8645.18

3 8,469.38 8618.24

4 8,469.18 8485.11

5 8,468.97 8448.81

6 8,468.77 8378.67

7 8,468.56 8418.53

8 8,468.36 8390.70

9 8,468.15 8320.90

10 8,467.95 8247.50

 4 Comparison between the optimum solution from f(x) and framework

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 8 of 11

However, the best optimum solution for berlin52 is 7542, and we can obtain this solution by making

x= 4,965. Furthermore, better result produced such as 7445 when using x= 5000. Conversely, there

is no guarantee to get close optimum solution by using ordinary GA algorithms. Instead, we can

get sort of solution using linear f(x). Besides, it provide verification of the solution method if it is good

or not. Again, if we compare column 2 with column 3, easily we can verify the quality of optimum

solutions.

(Figure 2 average optimum solution and model f(x))

In figure 2, we use a line chart to show over all comparison of the 10 threads and solutions. In the

chart above, both the result are almost overlapping. Which means there is no such difference in the

output of both the results. There is a strong positive correlation between average optimum solution

and Model f(x). That means with the increase of Model f(x), the average optimum solution value

should be increase and vice versa.

7. Conclusions

TSP is classified as NP completeness problem. The main purpose of this study to investigate the
correlation between the number of cores and optimum solutions. This correlation presented in linear
polynomial equation.

We observed the results from our framework and infer the equation that used regression model for
demonstrate this correlation in linear polynomial equation. This polynomial equation gives ability to
better predicate list of optimum solutions for this specific instance TSP problem.in additional better
predicate of the impact of thread and expect performance of thread allocation.

Furthermore, this model shows that value of feasible optimum solution is function of value of number
of GAs that mean the value of solution always dependent on value of number of GAs. It is very good
tooling to analysis the relation between genetic algorithm parameters. Also, f(x) could use to evaluate
GAs are perform.

Yet, this technique using the linear F (x) allow to transfer problem of TSP from NP-completeness class
to NP problem class where we able to verify the optimum solutions. Moreover, the best results of
TSP were produced without local search.

We can use this f(x) function to lead to better solutions and for predicating in advance the list of
possible solutions. In fact, those solutions can bound the exponential algorithms to be provably

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 9 of 11

efficient. The bounded property that makes polynomial algorithms are preferred way for solving NP
problems. Moreover, find the thread allocation that guarantees certain response.

From all of the charts we used for this experiment is clearly shown that the function f(x) developed
has very close results with the framework results. In addition, the f(x) can find global optimum
solution, but the framework there is no guarantee to find the global optimum.

.

Author Contributions:

We are in this study, did experiment to discovery the mathematical correlation between the number of threads
and optimum solution in parallel genetic algorithm. This is new approach in parallel processing research that
consider the number of threads as parameter that has crucial impact. We did analysis of optimum results and
found the linear model that represent the relation and we had approved that model can use to predicate impact
of threads and it can use to estimate the expect performance for any thread allocation.

References

[1] M. R. Gary and D. S. Johnson, "Computers and Intractability: A Guide to the

Theory of NP-completeness," ed: WH Freeman and Company, New York,
1979.

[2] E. Bagheri and H. Deldari, "Dejong function optimization by means of a
parallel approach to fuzzified genetic algorithm," in 11th IEEE Symposium on
Computers and Communications (ISCC'06), 2006, pp. 675-680.

[3] R. Bardenet, "Towards adaptive learning and inference-Applications to
hyperparameter tuning and astroparticle physics," Université Paris Sud-Paris
XI, 2012.

[4] E. Cantu-Paz, Efficient and accurate parallel genetic algorithms vol. 1: Springer
Science & Business Media, 2000.

[5] W. A. Chaovalitwongse, C.-A. Chou, T. Y. Berger-Wolf, B. DasGupta, S.
Sheikh, M. V. Ashley, et al., "New optimization model and algorithm for
sibling reconstruction from genetic markers," INFORMS Journal on
Computing, vol. 22, pp. 180-194, 2010.

[6] D. E. Goldberg and J. Richardson, "Genetic algorithms with sharing for
multimodal function optimization," in Genetic algorithms and their applications:
Proceedings of the Second International Conference on Genetic Algorithms, 1987,
pp. 41-49.

[7] G. Gutin and A. P. Punnen, The traveling salesman problem and its variations vol.
12: Springer Science & Business Media, 2006.

[8] J. E. A. Heris and M. A. Oskoei, "Modified genetic algorithm for solving n-
queens problem," in Intelligent Systems (ICIS), 2014 Iranian Conference on, 2014,
pp. 1-5.

[9] M. Mansour, "A Genetic Algorithm identification technique for the estimation
of process derivatives and model parameters in on-line optimization," in
Systems and Control (ICSC), 2016 5th International Conference on, 2016, pp. 120-
125.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 10 of 11

[10] J. McCall, "Genetic algorithms for modelling and optimisation," Journal of
Computational and Applied Mathematics, vol. 184, pp. 205-222, 2005.

[11] F. Oppacher and M. Wineberg, "The shifting balance genetic algorithm:
Improving the GA in a dynamic environment," in Proceedings of the 1st Annual
Conference on Genetic and Evolutionary Computation-Volume 1, 1999, pp. 504-
510.

[12] M. Lybanon and K. Messa, "Genetic algorithm model fitting," Practical
handbook of genetic algorithms, vol. 3, 1999.

[13] D. Gupta and S. Ghafir, "An overview of methods maintaining diversity in
genetic algorithms," International journal of emerging technology and advanced
engineering, vol. 2, pp. 56-60, 2012.

[14] P. Guo, X. Wang, and Y. Han, "The enhanced genetic algorithms for the
optimization design," in 2010 3rd International Conference on Biomedical
Engineering and Informatics, 2010, pp. 2990-2994.

[15] E. Popovici and K. De Jong, "Understanding EA dynamics via population
fitness distributions," in Genetic and Evolutionary Computation Conference, 2003,
pp. 1604-1605.

[16] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey," Computer, vol.
27, pp. 17-26, 1994.

[17] S. Paterlini and T. Minerva, "Regression model selection using genetic
algorithms," in Proceedings of the 11th WSEAS international conference on nural
networks and 11th WSEAS international conference on evolutionary computing and
11th WSEAS international conference on Fuzzy systems, 2010, pp. 19-27.

[18] M. Tang and R. Y. Lau, "A parallel genetic algorithm for floorplan area
optimization," in Seventh International Conference on Intelligent Systems Design
and Applications (ISDA 2007), 2007, pp. 801-806.

[19] C. Darwin, "On the origins of species by means of natural selection," London:
Murray, vol. 247, 1859.

[20] S. Wright, "Isolation by distance," Genetics, vol. 28, p. 114, 1943.
[21] E. Alba and J. M. Troya, "Improving flexibility and efficiency by adding

parallelism to genetic algorithms," Statistics and Computing, vol. 12, pp. 91-114,
2002.

[22] E. Alba and B. Dorronsoro, Cellular genetic algorithms vol. 42: Springer Science
& Business Media, 2009.

[23] G. Luque and E. Alba, Parallel genetic algorithms: theory and real world
applications vol. 367: Springer, 2011.

[24] A. Kaznatcheev, "Complexity of evolutionary equilibria in static fitness
landscapes," arXiv preprint arXiv:1308.5094, 2013.

[25] W. LIPENG, "Large-scale structural identification by multi-civilization
genetic algorithm approach," 2004.

[26] J. Lis, "Parallel genetic algorithm with the dynamic control parameter," in
Evolutionary Computation, 1996., Proceedings of IEEE International Conference on,
1996, pp. 324-329.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

 11 of 11

[27] A. M. Sutton and F. Neumann, "Parameterized Runtime Analyses of
Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem,"
arXiv preprint arXiv:1207.0578, 2012.

[28] K. Deb and S. Agrawal, "Understanding interactions among genetic
algorithm parameters," Foundations of Genetic Algorithms, vol. 5, pp. 265-286,
1999.

[29] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter control in
evolutionary algorithms," IEEE Transactions on evolutionary computation, vol.
3, pp. 124-141, 1999.

[30] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning,"
Machine learning, vol. 3, pp. 95-99, 1988.

© 2016 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2016 doi:10.20944/preprints201611.0033.v1

http://dx.doi.org/10.20944/preprints201611.0033.v1

