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Abstract: In the paper the verification of forecasts of precipitation conditions measured by the 
standardized precipitation index SPI is presented. For the verification of categorical forecasts a 
contingency table was used. Standard verification measures were used for the SPI value forecast. 
The 30 day SPI moved every 10 days by 10 days was calculated in 2013-2015 from April to September 
on the basis of precipitation data from 35 meteorological stations in Poland. Predictions of the 30 
day SPI were created in which precipitation was forecasted in the next 10 days (the SPI 10-day 
forecast) and 20 days (the SPI 20-day forecast). Both for the 10 and 20 days, the forecasts were 
skewed towards drier categories at the expense of wet categories. There was a good agreement 
between observed and 10-day forecast categories of precipitation. Less agreement is obtained for 
20-day forecasts – these forecasts evidently “over-dry” the assessment of precipitation anomalies. 
The 10-day SPI value forecast accuracy is acceptable, whereas for the 20-day forecast is 
unsatisfactory. Both for the SPI categorical and the SPI value forecast, the 10-day SPI forecast is 
reliable and the 20-day forecast should be accepted with reservation and used with caution. 
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1. Introduction 

Modern economy uses natural and at the same time highly dependent on weather conditions 
water resources. It needs a reliable short-, medium- and long-term forecasts of surpluses and 
shortages of rainfall. In agriculture knowledge of current rainfall and their forecasts over the coming 
days enables the prediction of soil moisture changes, which allows farmers to take appropriate 
mitigation measures to reduce the negative effects of adverse weather events, mainly precipitation 
anomalies.  

Natural and climatic conditions in Poland generally conducive to agricultural production, but 
frequent change of weather conditions during the growing season, especially rainfall, results in crop 
production periods of excessive soil moisture, and more often deficient rainfall. Statistics show that 
the average loss in yields caused by drought ranged from 10% to 40%, and in extremely dry years 
(e.g. 1992 and 2000) meteorological drought covered more than 40% of Polish territory [1]. In 
Kujavian-Pomeranian province losses caused by natural disasters in the years 1999-2011 totalled 
about 3.4 billion PLN [2]. Comparative research conducted by Bojar et al. [3] in Kujavian-Pomeranian 
(western Poland) and Lublin province (eastern Poland) showed significant differences in shortage of 
rainfall in agricultural production and yields of some crops due to regional differences in the 
precipitation amount and spatio-temporal distribution.  

Forecasting rainfall, especially short (1-2 days ahead) and medium-term (3-10 days ahead) is 
very important and significant in agriculture production. Monitoring and early warning help to 
reduce the impacts and to mitigate the consequences of weather and climate related natural disasters 
for agricultural production. Transfer of agrometeorological information to farmers can be done in 
different ways. Meteorological services use different options, such as periodical bulletins published 
on the Internet and mass media: TV, radio, newspapers. According to Stigter et al. [4], the 
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agrometeorological services should be simple for their proper assimilation and they must be used 
frequently to facilitate decision-making and planning. Agrometeorological services are often 
exemplified by agroclimatological characterization, weather forecasting (including 
agrometeorological forecasting) and other advisories prepared for farmers. Agrometeorological 
forecasting, with special attention to rainfall, is indispensible for planning agro-technical measures 
e.g. ploughing, sewing, harvesting, not to mention irrigation, when rainfall amount is the main 
determinant of when and how much to irrigate. 

Forecasting rainfall is one of the most difficult meteorological forecasts and has become one of 
the most important elements of forecasting weather conditions at various time scales. Powerful 
forecasting models have been used increasingly in recent years [5–11]. The results of forecasting are 
available on numerous web portals, which the majority of them presents their own interpretations of 
graphic copyright forecasts published by specialized research institutes, such as the European Centre 
for Medium-Range Weather Forecasts [12] or the National Oceanic and Atmospheric Administration 
[10] and by thematic portals weather, for example AgroPogoda [13], WetterOnline [14]. For planning 
management of water in agriculture more valuable are medium- and long-term forecasts of rainfall 
than the prediction of daily precipitation. However, the latter is important in operational control of 
irrigation.  

Beside rainfall forecast giving the information if rainfall occurs or about the amount of rainfall 
in the forecast period, the categorical precipitation forecast is often made. Such forecast gives the 
information in which category (class) precipitation will occur at the given probability or as a 
deterministic phenomena. Moreover, for the operational purpose and to make comparative 
assessments of precipitation anomalies in different regions, it is indispensible to apply not 
precipitation alone but standardized precipitation. One of such indices is the standardized 
precipitation index SPI [15,16]. The SPI has been defined as a key indicator for monitoring drought 
by the World Meteorological Organization [17]. The SPI is a standardized deviation of precipitation 
in a particular period from the median long-term value of this period. It represents an event departure 
from the mean, expressed in standard deviation units. The SPI is a normalised index in time and 
space. The method ensures independence from geographical positions as the index in question is 
calculated with respect to average precipitation in the same place [18]. 

An important issue in the forecasting process is to assess the reliability of forecasts. The result of 
verification of forecasts is the answer to the question whether the discrepancy between observed and 
forecast precipitation or precipitation category is essential according to accepted criteria. In world 
literature you can find a variety of assessment methods for the verification of predictive models, 
including the recommended practice by the World Meteorological Organization [19]. An interesting 
compendium of knowledge on forecasting is a collective work "Forecast Verification. A Practitioner's 
Guide in Atmospheric Science" [20]. In that book, Livezey [21] discusses the assessment of conformity 
of the deterministic categorical forecasts with the actual situation according to the accepted multi-
stage verification criteria.  

There are rather few studies devoted to assessment of forecast of drought identified by SPI. Bordi 
et al. [22] used two methods for forecasting the 1-month SPI: an autoregressive model (AR) and the 
Gamma Highest Probability (GAHP) method. The mean-squared error (MSE) was relatively high for 
both methods. Mishra and Desai [23] used linear stochastic models ARIMA and multiplicative 
Seasonal Autoregressive Integrated Moving Average (SARIMA) models used to forecast droughts 
using standardized precipitation index SPI series in the Kansabati river basin in India. Cancelliere et 
al. [24] proposed methods for forecasting transition probabilities from one drought class to another 
and for forecasting SPI. They showed that the SPI can be forecast with a reasonable degree of 
accuracy, using conditional expectation based on past values of monthly precipitation. Hwang and 
Carbone [25] used a conditional resampling technique to generate ensemble forecasts of SPI and 
found reasonable forecast performance for SPI-1. Hannaford et al. [26] proposed a method for 
forecasting drought in the United Kingdom based on current occurrence of drought. Shirmohammadi 
et al. [27] carried out the research to evaluate the ability of wavelet-artificial neural network (ANN) 
and adaptive neuro-fuzzy inference system (ANFIS) techniques for forecasting meteorological 
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drought identified by SPI in southeastern part of East Azerbaijan province, Iran. The performances 
of the models were evaluated by comparing the corresponding values of root mean squared error, 
coefficient of determination and Nash–Sutcliffe model efficiency coefficient. Belayneh et al. [28] 
compared the effectiveness of five data driven models for forecasting long-term (6 and 12 months 
lead time) drought conditions in the Awash River Basin of Ethiopia. The Standard Precipitation Index 
(SPI-12 and SPI-24) was forecasted using a traditional stochastic model (ARIMA) and compared to 
machine learning techniques such as artificial neural networks (ANNs), and support vector 
regression (SVR). The performances of all models were compared using RMSE, MAE, R2 and a 
measure of persistence. Maca and Pech [29] compared forecast of drought indices based on two 
different models of artificial neural networks. The analyzed drought indices were the standardized 
precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were 
derived for the period of 1948–2002 on two US catchments. The comparison of the models was based 
on six model performance measures.  

Most of the methods used to forecast SPI are based purely on statistics. There are much fewer 
reports in the literature of an assessment of SPI forecast based on numerical prediction models of 
precipitation. Łabędzki and Bąk [30] conducted a verification of the 10-day forecasts of rainfall and 
the course of meteorological drought in 2009 and 2010 for the station Bydgoszcz ITP. The authors 
checked the validity of the forecasts of precipitation taken from the service WetterOnline and the 
forecasts of rainfall categories based on SPI using their own verification criteria. Singleton [31] 
analyzed the performance of the European Centre for Medium Range Weather Forecasts (ECMWF) 
variable resolution Ensemble Prediction System (varEPS) for predicting the probability 
meteorological drought. Drought intensity was measured by the SPI and forecasts of SPI-1 and SPI-
3 were verified against independent observations. 

Since April 2013, it is conducted in the Institute of Technology and Life Sciences nationwide 
monitoring and forecasting of shortage and excess of water [32]. The current assessment of 
precipitation anomalies and earlier 20- and 10-day forecasts are based on actual and projected values 
of the standardized precipitation index SPI. They are shown on the maps of the distribution of deficit 
and excess rainfall in Poland in real-time and forecast periods. They are available on the website of 
the Institute of Technology and Life Sciences (www.itp.edu.pl) – Monitoring Agrometeo 
(http://agrometeo.itp.edu.pl). The aim of the study is to evaluate the verifiability of these rainfall 
category forecasts. 

2. Materials and Methods  

The evaluation and forecasting of precipitation anomalies (rainfall deficit and surplus) are made 
using the Standardized Precipitation Index SPI. The SPI calculation for any location is based on the 
long-term precipitation record in a given period. SPI was calculated using the normalization method. 
Precipitation P is a random variable with a lower limit and often positive asymmetry and does not 
conform to normal distribution. Most often, periodical (monthly, half-year or annual) sums of 
precipitation conform to the gamma distribution. Therefore, precipitation sequence was normalized 
with the transformation function f(P): ݂ሺܲሻ = ݑ = √ܲయ  (1)

where P is the element of precipitation sequence.  
Values of the SPI for a given P are calculated with the equation:  ܵܲܫ = ݂ሺܲሻ − ത݀௨ݑ  (2)

where SPI is the standardised precipitation index, f(P) is the transformed sum of precipitation, ݑത is 
the mean value of the normalised precipitation sequence, du is the standard deviation of the 
normalised precipitation sequence. 
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The values of SPI are compared with the boundaries of different classes. Because the SPI is 
normalized, wet and dry periods can be classified symmetrically. There are many classifications used 
by different authors. Originally, McKee et al. [15] distinguished four classes of drought and four 
classes of wet periods: mild, moderate, severe and extreme. The threshold value of SPI for the mild 
drought and mild wet category equals to SPI = 0. Agnew [33] writes that in this classification all 
negative values of SPI are taken to indicate the occurrence of drought – this means that for 50% of the 
time drought is occurring. He concluded that it was not rational and suggested alternative, more 
rational thresholds. He recommended the SPI drought thresholds corresponding to 5% (moderate 
drought), 10% (severe drought), and 20% (extreme drought) probabilities (SPI = -0.84, -1.28 and -1.65, 
respectively). Vermes [34] proposed seven categories, with the first class of a dry period starting at 
SPI = -1 and with the wet period at SPI = 1. In this study, this classification was applied (Table 1). 

 
Table 1. Precipitation categories according to SPI. 

Category SPI 
Extremely dry ≤ –2.0 

Very dry –2.0 < SPI ≤ –1.5 

Moderately dry –1.5 < SPI ≤ –1.0 

Normal –1.0 < SPI ≤ 1.0 

Moderately wet 1.0 < SPI ≤ 1.5 

Very wet 1.5 < SPI ≤ 2.0 

Extremely wet > 2.0 

                   
The SPI values are calculated on the basis of precipitation data from 35 meteorological stations 

of the Institute of Meteorology and Water Management (IMGW) - National Research Institute in 
Poland (Figure 1). Series of precipitation records from the period 1961-2012 at each station, were used 
as historical data. 

 

Figure 1. Location of precipitation stations. 
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The SPI was calculated in 2013-2015 from April to September and for the 30(31)-day periods 

moved every 10(11) days by 10(11) days. Using the forecasted precipitation, predictions of the 30(31)-
day SPI are created in which precipitation is forecasted in the next 10(11) (the SPI 10-day forecast) 
and 20(21) days (the SPI 20-day forecast). Altogether there were 1330 observed-forecast pairs. The 
period of 10, 20 and 30 days refers to the calendar decade with 10, 20 and 30 days and the period of 
11, 21 and 31 to the calendar decade with 11, 21 and 31 days.  

Rainfall forecasts necessary to develop predictions of precipitation anomalies in the next 10 and 
20 days, come from the meteorological service of MeteoGroup [9]. MeteoGroup has developed its 
own system of forecasting called Multi-Model MOS (Model Output Statistics) which is based on 
numerical model calculations of the most respected European meteorological centres:  ECMWF 
model (European Centre for Medium-Range Weather Forecasts), EPS model (Ensemble Prediction 
System), GFS model (National Centers for Environmental Prediction), UKMO model (British 
Meteorological Institute) as well as on the measurement and observation data from all available 
sources (national synoptic meteorological stations, aerodrome meteorological stations, satellite 
images, radar images). The calculation results of each model are included with different weights. For 
each location, where historical measurements are available (with at least 1 year), for each 
meteorological element are assigned appropriate weights based on the degree of testability of each 
of the models in the past. Weighting is held every year with the new data. Major updates of MOS 
forecasts are held 4 times a day (7, 9, 19 and 21 UTC) based on the new model results (2 to 4 times a 
day depending on the model). In addition, MOS forecast is updated continuously as the inflow of the 
measurement data (1-3 hours). Also a special tool Meteobase is developed that, if necessary, allows 
meteorologists to enter manual adjustments to the forecasts at any time. MeteoGroup can provide 
forecast for any location specified by the user. For this purpose, the method of so-called “smart 
interpolation" is used, taking into account the results of the forecasts for the neighbouring measuring 
stations with weights dependent on their distance from the location, degree of similarity in terms of 
location (height above sea level, distance from the sea, location in a mountain valley, etc.). There is 
also the possibility of including measurement data supplied by the user, which further improves the 
quality of predictions for the location. 

The forecasts, presented and analysed in the paper, are deterministic forecasts of a nominal 
variable. The variable is the standardized precipitation index SPI which value in a given period is 
qualified to the one of the SPI categories. The short-range forecast of SPI issued 10 days ahead and 
medium-range forecast covered the next 20 days were made.  

Verification of two types of the SPI forecast is made: the SPI category forecast and the SPI value 
forecast.  

For the verification of categorical forecasts and the analysis of the joint distribution for forecasts 
and observations a contingency table was used which is considered a good tool for this purpose [21]. 
A contingency table is a type of table in a matrix format that displays the multivariate frequency 
distribution of the variables. It provides a basic picture of the interrelation between two variables and 
can help find interactions between them. 

A contingency table shows the distribution of one variable in rows and another in columns, used 
to study the association between the two variables. The tow-way contingency table is a two-
dimensional table that gives the discrete joint sample distribution of deterministic forecasts and 
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categorical observations in cell counts [21]. The contingency table is a combination of two or more 
frequency tables arranged in such a way that each cell in the table represents clearly a combination 
of specific values of the analysed variables. Such a multi-way table enables the analysis of the 
frequencies corresponding to the categories designated by more than one variable. By analyzing these 
frequencies you can identify the relationships that exist between the variables.  

Each sell of the contingency table contains the relative frequency pij of forecast category i and 
observed category j. It is calculated as the cell count nij divided by the total forecast-observation pair 
sample size n. The sums of pij for a given forecast category i and observed category j is called marginal 
frequencies. 

To test if frequencies in each category of observed and forecasted SPI values are strongly 
dependent (it means the significant relationship between them) the Pearson Chi-squared test (χ2) was 
used. The null hypothesis is that they are not dependent (there is no relationship between them) and 
the contingency table is the result of independent forecast-observation pairs for categorical events. 
High statistically significance of the dependence of observed and forecasted SPI category indicates 
high forecast accuracy. Test χ2 consists of comparing observed frequencies with expected frequencies 
with the assumption of the null hypothesis (no association between observed and predicted values). 
Expected frequency Eij is calculated using the empirical marginal distributions as: 

௜௝ܧ = ෍ ௜௝݌ ෍ ௜௝ ௞݌
௜ୀଵ

௞
௝ୀଵ ෍ ෍ ௜௝௞݌

௝ୀଵ
௞

௜ୀଵ൙ ݅, ݆ = 1, … . , ݇ (3)

where: 
pij – relative frequency of forecast category i and observed category j 
k  – number of observed and forecast categories  

The test statistic, called the Pearson Chi-squared statistic, takes the form: 

߯ଶ = ෍ ෍ ൫݌௜௝ − ௜௝ܧ௜௝൯ଶܧ
௞

௝ୀଵ
௞

௜ୀଵ  (4)

Assuming the veracity of the null hypothesis this statistic has the asymptotic χ2 distribution with 
the degrees of freedom df equal to: ݂݀ = ሺ݇ − 1ሻଶ (5)

The results of observed-forecast frequencies depend on the relation of  the number of categories 
and the sample size. For more than two categories forecast, a sample size required for proper 
estimates should be of the order of 10k2 [21]. In the presented study k = 7 and the sample size of 1330 
forecast-observation pairs is completely sufficient.  

If the values of the computed statistic according to Eq. (4) exceed the critical χ2cr for their chance 
probabilities to be less than e.g. 0.05, 0.01, 0.001 (χ2  > χ2cr) the null hypothesis can be rejected at a 
given probability level. The asymptotic distribution of χ2 for different degrees of freedom is tabulated 
in different sources from which  χ2cr can be determined for a given probability and the sample size 
n.  

For categorical forecasts presented in the form of a contingency table the following measures of 
accuracy were used based on the frequencies and the marginal distributions: 
1) Proportion correct PC 
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ܥܲ = ෍ ௜௜௞݌
௜ୀଵ  (6)

2) Bias B 

௜ܤ = ෍ ௜௝௞݌
௝ୀଵ ෍ ௝௜௞݌

௝ୀଵ൙ ݅ = 1, … . , ݇ (7)

3) Probability of detection POD 

௜ܦܱܲ = ෍ ௜௝௞݌
௝ୀଵ ෍ ௝௜௞݌

௝ୀଵ൙ ݅ = 1, … . , ݇ (8)

Besides the verification of the SPI category forecasts on the basis of the contingency table, the 
verifiability of the SPI value forecasts was assessed. The following measures of goodness of fit were 
used to evaluate the forecast performance: 
1) Ratio of the number of the periods in which the criterion  หܵܲܫ௙௢௥௘௖௔௦௧ − ௢௕௦௘௥௩௘ௗหܫܲܵ ≤ 0.5 (9)

was met to the number of all periods.  
2) Mean systematic error (bias) b 

ܾ = 1݊ ෍൫ܵܲܫ௙௢௥௘௖௔௦௧ − ௢௕௦௘௥௩௘ௗ൯௡ܫܲܵ
௜ୀଵ  (10)

where n is the number of forecast-observation pairs. 
3) Mean absolute error MAE 

ܧܣܯ = 1݊ ෍หܵܲܫ௙௢௥௘௖௔௦௧ − ௢௕௦௘௥௩௘ௗห௡ܫܲܵ
௜ୀଵ  (11)

4) Mean squared error MSE 

ܧܵܯ = 1݊ ෍൫ܵܲܫ௙௢௥௘௖௔௦௧ − ௢௕௦௘௥௩௘ௗ൯ଶ௡ܫܲܵ
௜ୀଵ  (12)

 
5) Root mean squared error RMSE ܴܧܵܯ = (13) ܧܵܯ√

6) Pearson’s linear correlation coefficient r ݎ = ∑ ൫ܵܲܫ௙௢௥௘௖௔௦௧ − ௢௕௦௘௥௩௘ௗܫതതതതത௙௢௥௘௖௔௦௧൯ሺܵܲܫܲܵ − ∑തതതതത௢௕௦௘௥௩௘ௗሻ௡௜ୀଵටܫܲܵ ൫ܵܲܫ௙௢௥௘௖௔௦௧ − തതതതത௙௢௥௘௖௔௦௧൯ଶ௡௜ୀଵܫܲܵ ට∑ ሺܵܲܫ௢௕௦௘௥௩௘ௗ − തതതതത௢௕௦௘௥௩௘ௗሻଶ௡௜ୀଵܫܲܵ   (14)

 
In the above equations SPIforecast denotes the forecast SPI value in the 30(31)-day period in which 

the 20(21)-day rainfall sum was measured and the 10(11)-day rainfall sum was forecast in the case of 
the 10-day forecast and the 10(11)-day rainfall sum was measured and the 20(21)-day rainfall was 
forecast in the case of the 20-day forecast. SPIobserved denotes the observed SPI value in the same 30(31)-
day period on the base of the measured rainfall sum in this period. 
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3. Results 

3.1. SPI category forecast  

The joint distribution of forecast and observed SPI is presented in the contingency tables for the 
10-day forecasts (Table 2) and for the 20-day forecasts (Table 3). The contingency tables show the 
relative frequencies and the empirical margins distributions in seven categories of  precipitation. The 
forecasts were made for 35 stations and for the years 2013-2015 for April through September. Each 
table is constructed from a sample of 1330 forecasts-observations. 

Base on the distribution of the observed SPI it can be concluded that in 2013-2015 the periods 
drier than normal dominated (23%) in comparison with the wetter periods (11%). Normal periods 
occurred most often (66%). The similar frequency distribution was found for the forecasts, both for 
10 and 20 days ahead. These forecasts are skewed towards forecasts of drier categories at the expense 
of wet categories – 27% periods were predicted as drier than normal in the case of 10-day forecasts 
and 30% in the case of 20-day forecasts. Comparing the distribution of observations and forecasts it 
seem reasonable to conclude that there is a good agreement between observed and 10-day forecast 
categories of precipitation. Less agreement is obtained for 20-day forecasts – these forecasts evidently 
“over-dry” the assessment of precipitation anomalies. The observed normal category of precipitation 
is almost as often as the 10-day forecast of this category (66% and 63%, respectively). The 20-day 
forecast of normal category is less frequent (55%) than the observed normal category. The frequency 
of 20-day forecast of dry periods distinctly increased while of normal and wet periods decreased. 
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Table 2. Relative frequency (in percent) for SPI 10-day forecasts (n = 1330). 

Forecast 
Observed 

Extremely 
dry 

Very 
dry 

Moderately 
dry 

Normal 
Moderately 

wet 
Very 
wet 

Extremely 
wet 

Forecast 
distribution 

Extremely 
dry 

3 1 1 1 0 0 0 6 

Very dry 1 3 3 1 0 0 0 8 
Moderately 

dry 
1 2 5 5 0 0 0 13 

Normal 0 0 3 56 3 1 0 63 
Moderately 

wet 
0 0 0 2 3 1 0 6 

Very wet 0 0 0 1 1 1 0 3 
Extremely 

wet 
0 0 0 0 0 0 1 1 

Observed 
distribution 

5 6 12 66 7 3 1 100 

n – the number of observation-forecast pairs 
 

Table 3. Relative frequency (in percent) for SPI 20-day forecasts (n = 1330). 

Forecast 
Observed 

Extremely 
dry 

Very 
dry 

Moderately 
dry Normal 

Moderately 
wet 

Very 
wet 

Extremely 
wet 

Forecast 
distribution 

Extremely 
dry 3 2 3 4 0 0 0 12 

Very dry 1 2 2 7 0 0 0 12 
Moderately 
dry 1 1 3 11 0 0 0 16 

Normal 0 1 4 42 6 1 1 55 
Moderately 
wet 0 0 0 2 1 1 0 4 

Very wet 0 0 0 0 0 1 0 1 
Extremely 
wet 0 0 0 0 0 0 0 0 

Observed 
distribution 

5 6 12 66 7 3 1 100 

 
To answer the question whether the constructed contingency tables are the result of dependent 

forecast-observations pairs for categorical events, a Chi-squared test (χ2) was performed with the 
assumption of the null hypothesis that no association between observed and predicted values 
occurred. Both for 10-day and 20-day forecast the test statistics χ2 are greater than the critical values 
of χ2cr. It means that the null hypothesis should be rejected. The relation between the frequency 
distribution in SPI categories is statistically significant at least at the 0.001 level for 10-day forecast 
and at the 0.05 level for 20-day forecast (Table 4). These results show that categorical forecasts of SPI 
are highly accurate and reliable for 10 days ahead and reasonably accurate for 20 days ahead. 
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Table 4. χ2 values for SPI forecasts in seven categories (n = 1330; df = 36).  

Test statistic 10-day forecast 20-day forecast 
χ2 calculated 155.7 51.5 

χ2cr  for α = 0.05 51.0 
χ2cr  for α = 0.01 58.6 
χ2cr  for α = 0.001 68.0   

    df – degree of freedom 
 
For categorical forecasts the measures of accuracy based on the frequencies and the marginal 

distributions are shown in Table 5. The proportion correct PC shows the proportion of correct 
categorical forecasts, the bias B reveals whether some forecast categories are over- or under-forecast 
while the probability of detection POD quantifies the success rate for detecting different categorical 
events. PC is rather high for 10-day forecasts (72%) and less for 20-day forecasts (52%). In case of the 
10-day forecasts, the forecast-observation set has little bias for the normal as well as for the 
moderately and very dry and wet categories (value close to 1). The forecasts and observations are 
rather dissimilar for the extreme category. The values of bias B are worse for the 20-day forecasts. 
Both for the 10-day and 20-day forecasts, the dry categories are above-forecast (B > 1) and the wet 
categories are under-forecast (B < 1). The probability of detection is only satisfactory for the 10-day 
normal category forecast (POB = 0.83); other forecasts are modestly under-detected. 

 
Table 5. Measures of accuracy for SPI forecasts in seven categories. 

Measure 
Extremely 

dry Very dry 
Moderately 

dry Normal 
Moderately 

wet Very wet 
Extremely 

wet 
10-day forecast 

PC 0.72 
B 1.63 1.15 1.08 0.94 0.85 0.92 1.38 

POD 0.64 0.52 0.46 0.83 0.42 0.42 0.69 
  20-day forecast 

PC 0.51 
B 3.13 1.89 1.49 0.80 0.50 0.45 0.56 

POD 0.67 0.28 0.27 0.62 0.13 0.18 0.19 

3.2. SPI value forecast 

In this chapter the verification of SPI value forecast is done (Table 6). 
 

Table 6. Measures of accuracy for SPI value forecasts.  

Measure 10-day forecast 20-day forecast 
Ratio  72% 40% 
Bias b -0.10 -0.53 
MAE 0.39 0.80 
MSE 0.30 1.08 

RMSE 0.543 1.037 
Correlation coefficient r 0.870 0.648 

 
The first measure of the accuracy – the ratio of the number of the periods in which the absolute 

value of the difference between the forecast and observed SPI was not greater than 0.5 to the number 
of all periods, averaged for all stations, was 72% for the 10-day forecast and 40% for the 20-day 
forecast. At different stations the ratio changes from 54 to 85% for the 10-day forecast and from 18 to 
58% for the 20-day forecast. 
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The mean systematic error (bias) is negative (-0.10 for 10-day forecast and -0.53 for 20-day 
forecast). It means that the forecasts are too dry on average. This verification measure in not fully 
adequate because negative errors can be compensated by positive errors. The mean absolute error 
MAE avoids this disadvantage since it takes into the account absolute values of the individual 
forecast error. The MAE is used to measure how close forecasted values are to the observed values. 
It is the average of the absolute errors. In our study it shows that the positive and negative errors of 
the SPI forecast are twice greater for 20-day forecast than for 10-day forecast. However, the MAE of 
10-day forecast (0.4) is relative small (10%) compared to the range of the most often observed SPI 
values (from -2 to 2).   

The mean squared error (MSE) of a forecast measures the average of the squares of the errors, 
that is, the difference between the forecast and observed SPI. The MSE is the second moment of the 
error, and thus incorporates both the variance of the forecast and its bias. Taking the square root of 
MSE yields the root-mean-squared error (RMSE), being the square root of the variance. The values 
MSE = 0.30 and RMSE = 0.54 for the 10-day forecast seem to be acceptable taking into account the 
possible range of SPI; for 20-day forecast they are unsatisfactory (RMSE > 1).  

The last measure most often used for evaluation of the forecasts is simply the correlation 
coefficient between forecast and observed values. This coefficient measures the degree of association 
among the forecast and observed values. It is acceptable for 10-day forecast (0.87) and rather 
unsatisfactory for 20-day forecast (0.65). 

4. Conclusions  

This study investigated the accuracy of forecasts of precipitation conditions measured by the 
standardized precipitation index SPI. Verification of two types of the SPI forecast was performed: the 
SPI category forecast and the SPI value forecast. For the verification of categorical forecasts a 
contingency table was used. Standard verification measures were used for the SPI value forecast. The 
SPI was calculated for the 30(31)-day periods moved every 10(11) days by 10(11) days. Using the 
forecasted precipitation, predictions of the 30(31)-day SPI were created in which precipitation was 
forecasted in the next 10(11) and 20(21) days.  

In 2013-2015 both for the 10 and 20 days, the forecasts were skewed towards forecasts of drier 
categories at the expense of wet categories. Comparing the distribution of observations and forecasts 
there was a good agreement between observed and 10-day forecast categories of precipitation. Less 
agreement is obtained for 20-day forecasts – these forecasts evidently “over-dry” the assessment of 
precipitation anomalies. The observed normal category of precipitation was almost as often as the 10-
day forecast of this category. The 20-day forecast of normal category was less frequent than the 
observed normal category. The frequency of 20-day forecast of dry periods distinctly increased while 
of normal and wet periods decreased 

Considering the SPI values, the ratio of the number of the periods in which the absolute value 
of the difference between the forecast and observed SPI was not greater than 0.5 to the number of all 
periods, averaged for all stations, was 72% for the 10-day forecast and 40% for the 20-day forecast. 
Considering the measures of the SPI value forecast accuracy, the reliability of the 20-day forecast was 
shown to be weaker than of the 10-day forecast. The mean absolute error MAE of the SPI forecast was 
twice greater for 20-day forecast than for 10-day forecast. The MAE of 10-day forecast was relative 
small compared to the range of the most often observed SPI values. Other measures (the mean 
squared error MSE, the square root of MSE, the correlation coefficient) shows that the 10-day forecast 
accuracy is acceptable taking into account the possible range of SPI, whereas for the 20-day forecast 
is unsatisfactory.  

The performed analysis shows that, both for the SPI categorical and the SPI value forecast, the 
10-day SPI forecast is reliable and the 20-day forecast should be accepted with reservation and used 
with caution. 
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