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Abstract: The second article in the series presents the application of the Smoothed Particle 

Hydrodynamics (SPH) method to modelling of batch crystallisation in stirred tanks. A 

methodology to integrate the population balance equations (PBE) in parallel and 

independently from the Navier-Stokes equations is demonstrated. The benefits of the 

proposed methodology in terms of computational requirements, accuracy and availability of 

the crystal size distribution are discussed. The specific formulation of the SPH equations 

where the resulting system of ordinary differential equations is solved using the weighted 

contributions rather than numerically by solving a linear system of equations allows for 

massive parallelisation and a very loose coupling of the population balance and the fluid 

dynamics. It has been demonstrated, that the population balance equations can be solved on 

a Shared Memory Architecture (SMA) system using the OpenMP interface while the fluid 

dynamics equations being computed independently on a General Purpose Graphics 

Processing Unit (GPGPU) using the NVidia CUDA technology. This way, a significant 

portion of the computational overhead due to the large number of additional transport 

equations resulting from the discretisation of the population balance was removed: the SPH 

simulation coupled with 200 population balance equations was only 40% slower compared 

to SPH-only simulation. Two methods for the solution of population balance equations that 

preserve full crystal size distribution were implemented: discretised population balance 

(DPB) and method of characteristics (MOCH). The DPB equations are solved using the 

high-resolution finite-volume method with flux limiter and the effect of a large number of 

different flux limiters have been investigated. Both methods were validated using the case 

studies from the literature where an analytical solution can be derived. The developed 

models were applied to a numerical solution of coupled computational fluid dynamics and 

population balance equations to model a batch crystallization process. The effect of the 

hydrodynamics on the local temperature/supersaturation and the resulting crystal size 
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distribution was captured and compared to the ideal mixing case. The simulation results 

from the DPB and MOCH methods were compared in terms of computational requirements 

and accuracy and MOCH selected as computationally more efficient and accurate. 

 

Keywords: CFD; SPH; population balance; NVidia CUDA; OpenMP 
 
 
1. Introduction 
 
A large number of engineering fields such as chemical, petrochemical, pharmaceutical, 

microelectronics, aerosol formation, food processing, colloid chemistry, growth of cell 

populations and atmospheric physics involve a dynamic evolution of a distribution of 

particles. The performance of many industrial downstream processes is directly affected by 

particle characteristics and product qualities such as morphology, bulk density, average 

particle size, filterability and dry solid flow properties are directly related to the crystal size 

distribution (CSD). Therefore, the CSD is one of the most important process performance 

parameters. The dynamical behaviour of particles can be best described by population 

balance equations (PBE) (Ramkrishna, 2000). The population balance modelling 

framework provides a deterministic description of the dynamic evolution of the crystal size 

distribution by forming a balance to calculate the number of crystals in the crystalliser. 

Since all the above-mentioned processes are largely affected by hydrodynamics the 

population balance equations are often coupled with computational fluid dynamics (CFD) 

modelling to correctly predict the key process performance indicators. 

 

The solution of the generic population balance equations usually requires computationally 

expensive, complex numerical solution techniques (Ramkrishna, 2000). These approaches 

can be categorised in five main classes: a) Standard method of moments (SMOM) 

(Randolph and Larson, 1971), b) Numerical non-linear model reduction approaches: 

method of characteristics (MOCH) (Hounslow and Reynolds, 2006), quadrature method of 

moments (QMOM) (McGraw, 1997; Marchisio et al., 2003), fixed quadrature method of 

moments (FQMOM) (Alopaeus, 2006), Jacobian matrix transformation (JMT) (McGraw 

and Wright, 2003) and direct quadrature method of moments (DQMOM) (Fan et al., 2004), 

c) Direct numerical solution approaches involving finite-element or finite-volume 

discretisation of the partial differential equation (discretised population balances, DPB) 

(LeVeque, 2002; Gunawan et al., 2004; Costa et al., 2007), d) various methods in the 

weighted residuals framework such as the least squares, orthogonal collocation and 
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Galerkin methods (Singh and Ramkrishna, 1977; Sporleder et al., 2011; van den Bosch and 

Padmanabhan, 1974; Nigam and Nigam, 1980; Roussos et al., 2005), and e) Dynamic 

Monte Carlo simulation (DMC) (Haseltine and Rawlings, 2005; Rosner et al., 2003). The 

two most often used techniques are the standard method of moments and the quadrature 

method of moments. The method of moments is based on the idea of tracking only the 

moments of the crystal size distribution, rather than the entire distribution. In addition, there 

were some efforts to use combined methods to achieve a computationally efficient 

technique for the estimation of the crystal size distribution, such as combined QMOM and 

MOCH (Aamir  et al., 2009). The common problem encountered with the method of 

moments is that the CSD is lost and needs to be reconstructed from its distribution 

moments. Many reconstruction techniques were developed however, no unified technique 

for reconstruction of a complete distribution from a finite number of moments is available 

in literature due to the fact that mathematically all the distribution moments up to infinity 

are required to achieve an accurate reconstruction (John et al., 2007).  

 

The overall goal in this work is to develop a computationally efficient mathematical model 

of integrated CFD and population balance equations. The main idea is to use the SPH 

method for rapid prediction of the global mean flow in stirred reactors presented in Nikolic 

and Frawley (2015) and apply accurate and computationally efficient methods for the 

solution of the population balance equations to preserve the crystal size distribution. The 

focus in developing models was put on computational efficiency and accuracy of the CSD 

prediction.  
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2. Population Balance modelling 

 

The mathematical description of the evolution of particle properties during a process can be 

written as (Ramkrishna, 2000): 

  (1) 

where n(L,t) is the number density function, L is the internal property such as characteristic 

length, volume, mass etc., G(L,t) is growth rate and s(L,t,n) is the generation/depletion rate. 

The term s(L,t,n) can include nucleation, breakage, agglomeration, aggregation, attrition 

and other phenomena that contribute to the change of the number density function. Often, 

these terms are defined as integral functions making the whole equation (1) an integro 

partial-differential equation. There is a large number of methods to solve the population 

balance equations numerically and in some case analytically, as already discussed in the 

previous section. In this work the methods for solution of population balance equations that 

are capable to preserve the full crystal size distribution are of a special interest. The most 

suitable in terms of implementation cost and computational requirements are the well 

known discretised population balance (DPB) and the method of characteristics (MOCH). 

The methods are briefly described in the subsequent sections. 

 

2.1 Discretised population balance method (DPB) 

The most commonly used direct numerical solution approaches to population balance 

equations are finite-difference, finite-element and finite-volume discretisation techniques. 

The equation (1) is hyperbolic in its nature and a typical problem is accurate tracking of 

sharp fronts in the particle distribution since the differential equation is not valid at 

discontinuities, which lead to numerical diffusion and non-physical oscillations (LeVeque, 

2002). The high-resolution finite-volume methods (LeVeque, 2002) have been developed to 

address these problems. Finite volumes allow direct satisfaction of conservation laws while 

cell-centering leads to a natural situation where domain boundaries coincide with cell faces 

(Koren, 1993). 

The DPB equations are obtained by discretising the domain L (particle size) into N 

cells/elements as given in Fig. 1. Applying the cell-centered finite volume scheme on the 

one-dimensional population balance equation we get (Koren, 1993): 

  (2) 
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where the first integral term represents the volume-average number density in every cell: 

  ( 3) 

Since the discretisation of the source term should be consistent with the discretisation of the 

advection term to avoid numerical problems (Koren, 1993) the new source term integral S 

is introduced: 

  (4) 

Replacing the new terms in the integral form in equation (2) and integrating in every cell i, 

we get: 

  (5) 

where the term (Gn-S) denotes an extended advective flux while the half-integer indices i-1/2 

and i+1/2 refer to the cell faces between cell centres Li-1 – Li, and Li – Li+1, respectively; 

consequently, the terms (Gn)i-1/2 and (Gn)i+1/2 denote the cell-face fluxes of the element i at 

its left and right edge, respectively. The accuracy of the numerical scheme is determined by 

the way in which the extended advective fluxes are calculated. Assuming that the flow is in 

positive L-direction:  and applying the van Leer 

piecewise polynomial κ-interpolation (van Leer, 1985) we get: 

 

 (6) 

The parameter κ is used to control the accuracy of the scheme: a) for κ = -1 we get the fully 

one-sided upwind scheme of the second order, b) for κ = 1 we get the standard second order 

scheme, and c) for other values in the range [-1, 1] we have a weighted blend between the 

central and fully one-side upwind schemes (Koren, 1993). In the case where κ = 1/3 the 

scheme becomes third-order accurate for steady linear problems (Koren, 1993). To suppress 

the possible occurrences of non-physical oscillations and possible occurrences of negative 

values the flux limiter function are introduced (Koren, 1993). Assuming κ=1/3 the high-

resolution upwind scheme for cell-fluxes can be now derived as: 
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 (7) 

where φ is a flux limiter function and r represents the upwind ratio of two consecutive 

solution gradients (Koren, 1993): 

  (8) 

There are a large number of flux limiter functions and a list of the most frequently used 

ones is given in Table 1. The limiter functions must satisfy certain conditions such as they 

must lay inside or at the boundary of the Sweby's monotonicity domain (Sweby, 1984). 

Limiter functions used in this work in relation to 2nd order total variation diminishing 

(TVD) region are given in Fig. 2. Since the piecewise polynomial interpolation cannot be 

applied around and at boundaries (Koren, 1993) the equation (6) must be modified 

accordingly: a) the flux at the inflow boundary L1/2 is known exactly through the boundary 

condition, b) at L3/2 only the central interpolation with κ = 1 can be consistently applied, 

and c) at the outflow boundary Ln+1/2 only the fully one-sided upwind scheme κ = -1 can be 

applied. The full set of equations can be found in Koren (1993). 

 

2.2 Method of characteristics (MOCH) 

The generic partial differential equation (1) can be reduced to a system of ordinary 

differential equations by finding the characteristic curves in the L – t plane (Aamir et al., 

2009). The L – t plane is given in a parametric form by L = L(z) and t = t(z) where the 

parameter z gives the measure of the distance along the characteristic curve. For the partial 

differential equation (1), the characteristic curves are given parametrically: 

  (9) 

such that the following system of ODEs is satisfied: 

  (10) 

   (11) 

  (12) 

with the following initial conditions: 
   (13) 

   (14) 
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  (15) 

The equation (1) must be linear or quasi-linear, that is the growth rate can be size-

dependent but must not depend on any derivative. Since the number density function is now 

a function of L(z) and t(z), applying the chain rule: 

  (16) 

we get: 

  (17) 

Comparing equations (16) and (18) it can shown that (Aamir et al., 2009): 

  (18) 

and consequently, the characteristic equations can be described by the following system of 

equations: 

  (19) 

  (20) 

To obtain the dynamic evolution of the crystal size distribution the system of equations 

(19‒20) has to be integrated for different initial values L0 and n(L0,0), accompanied with 

growth and generation/depletion rates. Typically, they are a function of supersaturation and 

can be obtained from the mass balance for the solute using the moment transformation of 

equation (1). Aamir et al. (2009) used the combined quadrature method of moments with 

method of characteristics, however, only the change of the total mass of crystals is required 

to form the solute mass balance. For the size-independent growth-only process the system 

(19‒20) simplifies to: 

   (21) 

   (22) 

Phenomena that cause the change of the distribution like primary/secondary nucleation, 

breakage, agglomeration etc. need a special treatment. Regarding the primary nucleation, 

the method requires that a new characteristic line is added every time step. However, in this 

work it is assumed that crystals in the characteristic line with the smallest crystal size L=L0 

do not grow – only the newly born crystals are accumulated. When the size of crystals in 

the second characteristic line increases for the specified ΔL value (typically equal to the bin 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2016                   doi:10.20944/preprints201611.0012.v1

http://dx.doi.org/10.20944/preprints201611.0012.v1


8 of 39 

size in the CSD) the size of the crystals in the first characteristic line is set to L0+ΔL and the 

new characteristic line inserted at the beginning with the size L0. From that point in time, 

the crystals in the characteristic line with size L0+ΔL are allowed to grow according to the  

equations (19‒20). This way, the computational and memory requirements are kept low. 

Secondary nucleation, breakage and agglomeration require a mathematical procedure to 

maintain internal consistency with regard to the desired moments of the distribution 

(Kumar and Ramkrishna, 1996a, 1996b). In this work, the fixed pivot technique proposed 

by Kumar and Ramkrishna (1996a) is selected and implemented. The pivoting technique is 

used to numerically preserve two properties of the distribution: the total number and mass 

of crystals. In addition, the identical procedure is applied at the end of the simulation to 

assemble the final crystal size distribution from local distributions available in every 

particle. 

 

3. Integrated Smoothed Particle Hydrodynamics and Population Balance model 
 

Two different algorithms for coupled SPH and population balance have been developed in 

this work: a) both SPH and population balance equations integrated on GPU, b) SPH 

equations integrated on GPU while population balance equations integrated on CPUs using 

the OpenMP interface. The following basic assumptions have been made: the solid phase is 

assumed to closely follow the flow field that is the Stokes number is sufficiently low, the 

presence of the solid phase does not affect the flow field, the growth rate is independent of 

crystal size, and the perfect micromixing is assumed to exist in each fluid particle.  

The first algorithm is an extension of the SPH model (Nikolic and Frawley, 2015) by using 

additional transport equations. Three scalar transport equations were added: the heat 

conduction (between fluid particles and between the fluid particles and the reactor wall), 

the mass diffusion (concentration of dissolved crystals) and a set of population balance 

equations (either DPB or MOCH). The heat conduction and mass diffusion equations were 

adopted from the work of Monaghan et al. (2005): 

  (23) 

  (24) 

where λi is thermal conductivity and Di is mass diffusion coefficient. Similar to the pressure 

gradient and shear forces, the above equations conserve the heat and mass exactly and 
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ensure that the flux will be continuous even when the conductivity is discontinuous (at the 

phase interfaces; here, at the fluid-wall interface). The SPH model of a stirred tank is 

implemented in c++ using Fluidix software (MacDonald, 2014) and identical to that 

described in Nikolic and Frawley (2015). The simulation procedure consists of the 

initialization phase and the main SPH loop. First, triangular surface meshes are generated 

for stirred tank walls, baffles and a stirrer shaft with impellers. These meshes can be 

directly loaded into the Fluidix software. Then, uniformly distributed fluid particles of the 

specified size are generated inside the whole volume of the tank and the particles that are 

positioned inside the baffles and stirrer meshes are removed. An excess number of particles 

from the top of the reactor, up to the prescribed volume, is also removed. Now, “wall” 

particles are created at all mesh vertices. The SPH main loop is implemented in a standard 

fashion. First, a density of all particles is estimated and internal forces evaluated such as the 

pressure gradient, shear forces, gravity and the surface tension. Stirrer mesh and its wall 

particles are rotated and the forces between impeller and fluid particles are calculated. The 

system is now integrated in time using the second order Verlet scheme and particle-mesh 

collisions processed to update particle positions. This procedure is repeated until the 

defined time horizon is reached. 

The second algorithm is more complex. The computational procedure is divided into three 

parts: 1) the master thread – a controlling thread that manages the calls to CUDA kernels 

and controls a team of OpenMP threads, 2) the team of (Nthreads-1) threads used to integrate 

population balance in parallel, 3) GPU used to calculate particle interactions and integrate 

Navier-Stokes, heat and mass balance equations. The solution algorithm is presented in Fig. 

3. First, the system is initialized in the master thread in an identical fashion as in the first 

algorithm. Next, the master thread repeatedly calls CUDA kernels to calculate the forces 

and gradients in Navier-Stokes, heat and mass balance equations and to estimate the time 

step. All other threads are idle. When the master thread finishes the work all threads are 

joined at the OpenMP barrier 1. Next, the solute concentration in particles is copied from 

the main memory to GPU and the temperature and the concentration gradient in particles 

copied from GPU to the main memory by the master thread. All other threads are idle. 

When the master thread is done with the memory synchronisation all threads are joined at 

the OpenMP barrier 2. Now, (Nthreads-1) population balance threads are forked to integrate 

the population balance equations while the master thread continues with integration of 

Navier-Stokes, heat and mass balance equations on the GPU. The integration of population 

balance proceeds to the OpenMP barrier 1 where the threads join the master thread. Finally, 
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after the integration stage, all threads check whether the time horizon has been reached and 

exit if it has. If the time for integration of  population balance equations is lower then 

combined time to calculate the forces and gradients and integrate the Navier-Stokes, heat 

and mass balance equations the total simulation time should be equal to the SPH-only 

simulation and the combined algorithm should be faster than the initial GPU-only 

algorithm. However, this is not the case in reality since some time is always spent on thread 

scheduling, memory copy between the GPU and the main memory and waiting at barriers. 

Therefore, the algorithm is always somewhat slower then the SPH only simulation. The 

benchmarks and a detailed discussion on computational requirements is given in section 

4.4.  

 

4. Case Studies 

4.1 High-resolution schemes 

In this section the simulation results obtained by using the high-resolution scheme for 

solution of DPB equations were compared to the analytical solutions for different cases 

using the numerical examples from Qamar et al. (2006). A range of different flux limiter 

functions given in Table 1 have been used in all tests. All models in this section were 

developed in Python using DAE Tools software (Nikolic, 2014). The quality of prediction 

of different flux limiters was assessed by calculating the p-norms in the Lp space:  

  (25) 

where nHR is the number density function from the high-resolution scheme and nAnalytical is 

the number density function from the analytical solution. Two error norms have been used: 

 a) L1-norm:   (26) 

 b) L2-norm:   (27) 

 

4.1.1 Size-independent growth I 

The aim of this example is to illustrate the importance of high resolution schemes and to 

point out the numerical problems present in the hyperbolic partial differential equations 

with sharp discontinuities in the solution. Although most size distributions in real processes 
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are smooth, sharp fronts occur very often during the primary nucleation, especially in anti-

solvent crystallisations, due to high supersaturation values when a burst in the number 

density function of nearly zero-sized crystals occurs. Here, the growth-only crystallisation 

process was considered with the constant growth rate of 1μm/s and the following initial 

number density function: 

  (28) 

The crystal size distribution in the size range of [0, 100]μm discretised into 100 elements 

was used. The analytical solution in this case is equal to the initial profile translated right in 

time by a distance Gt (the growth rate multiplied by the time elapsed in the process): 

  (29)  

This problem is a good numerical benchmark because it is a combination of a sharp step 

function in the distribution and a very high growth rate. If the method works under these 

extreme conditions one can expect very good numerical results in the real problems without 

sharp fronts and with lower growth rates (Qamar et al., 2006). The simulations were 

performed using the I-order upwind, II-order central, and high-resolution schemes with 

different flux limiters and the results compared to the analytical solution. The number 

density functions for the I-order upwind and II-order central are shown in Fig. 4 and the 

best three high-resolution schemes (a-c) and the worst one (d) are presented in Fig. 5. L1 

and L2 norms for high-resolution schemes are given in Table 2. As expected, the I-order 

upwind scheme produces the solution with a very high numerical diffusion while the II-

order central scheme produces non-physical oscillation in the presence of sharp fronts. The 

high-resolution schemes suppressed the numerical diffusion, non-physical oscillations and 

negative values in the solution to a different degree. In this case, the superbee, Sweby and 

Koren flux limiters showed the best prediction compared to the analytical solution and the 

superbee outperformed all the rest in terms of both L1 and L2 error tests. 

  

4.1.2 Size-independent growth II 

The aim of this example is to analyse the performance of high resolution schemes in the 

presence of various challenging profiles in the crystal size distribution. Again, the same 

growth-only crystallisation process was considered with the constant growth rate of 

0.1μm/s and the crystal size distribution in the size range of [0, 100]μm discretised into 100 

elements. The analytical solution is equal to the initial profile translated right in time by a 

distance Gt (equation 29). The initial number density function forms four distinct regions: 
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 (30) 

The first region is a square step with a sharp discontinuity, the second region is a cosine-

squared wave with the discontinuities at each side, the third region is a semi-ellipse with a 

combination of sharp and gradual changes in gradient, and the last region represents a 

narrow Gaussian distribution (σ = 0.778ΔL) with a very sharp peak. The results are 

compared to the analytical solution: the best three high-resolution schemes (a-c) and the 

worst one (d) are presented in Fig. 6. L1 and L2 norms for high-resolution schemes are 

given in Table 3. Again, the high-resolution schemes suppressed the numerical diffusion, 

non-physical oscillations and negative values in the solution to a different degree. Overall, 

the superbee, smart and Koren flux limiters showed the best prediction compared to the 

analytical solution and the superbee again produced the best prediction in both error tests. 

The results in the first three regions are fairly good for all flux limiters; however, a certain 

degree of numerical diffusion is still present in all of them. In the most challenging fourth 

region we can clearly observe the limitations of discretisation schemes. The very sharp 

peaks commonly occur at the beginning of the distribution during an intense nucleation. 

The solution to this phenomena would be a very fine grid for the smallest sizes in the 

distribution or some sort of an adaptive grid. However, both approaches demand a much 

higher computational power to successfully resolve this kind of discontinuities.  

 

4.1.3 Size-dependent growth 

In this example the performance of high resolution schemes for a batch process with the 

size-dependent growth rate was analysed. Again, the same growth-only crystallisation 

process was considered with the growth rate given by: 
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  (31) 

and the crystal size distribution in the size range of [0, 1]μm discretised into 100 elements. 

The analytical solution in this case and is given by: 

  (32) 

where G0 is a constant (0.1μm/s), Lmean is the distribution mean size (0.01μm) and N0 is the 

total number of particles in the distribution (100). The initial number density function is 

given by: 

  (33) 

The results are compared to the analytical solution: the best three high-resolution schemes 

(a-c) and the worst one (d) are presented in Fig. 7 and 8 (the zoomed region). L1 and L2 

norms for high-resolution schemes are given in Table 4. All high-resolution schemes 

performed approximately equally well with very small differences. Overall, van Albada 2, 

ospre and van Albada 1 flux limiters showed somewhat better prediction compared to the 

analytical solution.  

 

4.1.4 Stiff nucleation at a negligible size 

In this problem, the performance of high resolution schemes for a batch process with stiff 

nucleation and constant growth rate is analysed. It was assumed that the nucleation takes 

place at the minimum size L0 = 0 with the nucleation rate given by: 

  (34) 

The growth rate is 1μm/s and the crystal size distribution is given in the size range of [0, 

2]μm discretised into 200 elements. The analytical solution for this case is: 

            

 (35) 

The initial number density function is given by: 

  (36) 
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The first region in the solution is a narrow wave originating from the nucleation while the 

second region is a square step with a sharp discontinuity. The results are compared to the 

analytical solution: the best three high-resolution schemes (a-c) and the worst one (d) are 

presented in Fig. 9. L1 and L2 norms for high-resolution schemes are given in Table 5. 

Similarly to the case study in the section 4.1.2, discretisation schemes have problems with 

the very sharp peaks in the size distribution. Again, all high-resolution schemes performed 

approximately equally well with a significant degree of numerical diffusion present in all 

schemes. Overall, smart, HQUICK and HCUS flux limiters showed somewhat better 

prediction than the rest. 

 

Based on the numerical problems in sections 4.1.1 to 4.1.4 an overall conclusion is that  

superbee and Koren flux limiter showed better results in most of the cases considered and 

that all schemes produce a significant numerical diffusion when sharp peak-like fronts are 

present in the distribution. Therefore, in a general case, selection of a suitable flux limiter 

function is case-dependent and some experimenting is necessary. 

 

4.2 Growth-only cooling crystallisation (hydrodynamics effects) 

In this case study, the effect of hydrodynamics in a poorly mixed reactor were analysed. 

The growth only cooling crystallization problem has been used, since the analytical 

solution can be easily obtained while the effect of the other phenomena is absent. The 

results from four different cases were compared: a) ideal mixing assumed and 

crystallization modelled using the discretised population balance (IDMIX+DPB), b) ideal 

mixing assumed and crystallization modelled using the method of characteristics 

(IDMIX+MOCH), c) SPH used for fluid dynamics coupled with the discretised population 

balance model, applied to every fluid particle (SPH+DPB), and d) SPH coupled with the 

method of characteristics, again applied to every fluid particle (SPH+MOCH). A low rpm 

of the stirrer and short impeller blades were used to create poor mixing conditions. The 

temperature profile in both ideal mixing cases was set to the calculated average temperature 

profile of the SPH cases to create the identical cooling conditions. The domain was 

discretized using 200 elements. The process studied was crystallisation of paracetamol from 

ethanol solution in the 1 lit Labmax reactor using the kinetic data from Mitchell et al. 

(2011a). The initial supersaturation ratio was set to 1.5667, the initial temperature to 200C, 

the rotational speed to 150 rpm and the radius of the stirrer to 2cm (4 blade paddle turbine 

used). The reactor is then cooled using the reactor jacket. It was assumed that the wall 
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temperature was constant and equal to 00C. The stirred tank wall, baffles and stirrer surface 

meshes are presented in the Fig. 10. The stirred tank filled with fluid particles of the radius 

1.5mm is given in Fig. 11. The ideal mixing models coupled with DPB/MOCH methods 

were developed in Python using DAE Tools software (Nikolic, 2014). The model equations 

are identical to the model equations presented in (Mitchell et al., 2011a). The only 

difference is that the method of moments equations were replaced by the DPB or MOCH 

equations and that the temperature profile in the ideal mixing case was set to the calculated 

average temperature of the SPH cases. 

 

Simulations were executed on NVidia GeForce 780 Ti graphics card with 2880 cores and 

3GB of RAM and Dell Precision 7500 workstation running Debian GNU/Linux operating 

system. The temperature of the fluid particles in the reactor's axial cross-section at t = 300 s 

is given in Fig. 12. The calculated average temperature in the reactor for SPH+DPB and 

SPH+MOCH cases is presented in Fig. 13. The performance of the developed models was 

analysed using the seed with sharp discontinuities in its CSD as shown in Fig. 14 (black 

dotted line). Since the process is growth-only the analytical solution for the ideal-mixing 

case is simply the initial CSD translated right by a cumulative distance ΣGi·Δti (a sum of 

the growth rate multiplied by the time elapsed for every time step). The simulation results 

for all cases at time t = 300s are presented in Fig. 14 and the zoomed areas in Fig. 15. The 

results for the ideal mixing cases is shown in Fig. 14a. It can be observed that the scheme 

suppressed oscillations in the solution and decreased the amount of numerical diffusion, 

although not completely. However, the ideal mixing models do not take into the account the 

non-idealities in the reactor with poor mixing since they do not capture the local 

hydrodynamics conditions. From the Fig. 12 we can observe three zones in the reactor: 

zone 1 (yellow) around the impellers with the relatively good mixing, zone 2 (blue) along 

the reactor wall with poor mixing and good heat transfer, and zone 3 (red) in the upper part 

of the reactor with poor mixing and low heat transfer rate. Overall CSDs in the reactor for 

the SPH+DPB and SPH+MOCH cases is obtained by combining the CSD from individual 

particles and presented in Fig. 14b. Obviously, the non-idealities in the reactor resulted in 

some fluid particles being well mixed while some other are located in poorly mixed zones 

(i.e. trapped in the zones around baffles or located in poorly mixed upper part of the 

volume) and contribute to the dispersion of the CSD. Similarly to the temperature profile in 

the reactor, we can observe three zones in the CSD plot in Fig. 14b. First, the particles that 

are located in the middle part of the CSD in the Fig. 14 belong to the well mixed zone 1 
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(yellow) and have approximately uniform growth rate. Next,  the mostly static particles 

along the wall in the zone 2 (blue) have a high cooling rate and a faster growth and form the 

front end of the CSD. Finally, the particles that belong to the poorly mixed zone 3 (red) 

away from the walls, have a low cooling rate and therefore a lower growth rate and form 

the CSD tail. 

 

4.3 Cooling crystallisation with primary nucleation (SPH+DPB vs SPH+MOCH) 

In this case study, the capability of SPH+DPB and SPH+MOCH methods to handle sharp 

fronts/peaks in the distribution occurring during the primary nucleation was studied. The 

process was cooling crystallization starting with primary nucleation followed by growth. 

All runtime parameters and kinetics data are identical to those in the previous problem 

(section 4.2). The equation for the primary nucleation kinetics is adopted from the work of 

Mitchell et al. (2011b): 

  (37) 

with kn = 1.597 x 1010 #/(min x m3)n and n = 2.276. The initial CSD is assumed to be empty 

and the models were again simulated for 300s. The simulation results are shown in Fig. 16. 

As it was previously discussed in the section 4.1 the DPB method is not able to accurately 

track sharp peak-like discontinuities in the solution and a significant degree of numerical 

diffusion is  present in those cases. On the other hand, the MOCH method produces the 

results identical to the analytical solution. 

 

4.4 Benchmarking and computational requirements 

In this case study, the computational efficiency of four different methods for the solution of 

coupled SPH and population balance equations were compared: a) both SPH and DPB 

equations integrated on GPU (SPH+DPB), b) both SPH and MOCH equations integrated on 

GPU (SPH+MOCH), c) SPH equations integrated on GPU and DPB equations integrated 

on CPUs using the OpenMP interface (SPH+DPB+OpenMP), and d) SPH equations 

integrated on GPU and MOCH equations integrated on CPUs using the OpenMP interface 

(SPH+MOCH+OpenMP). The identical reactor and input parameters as previously 

discussed in sections 4.2 and 4.3 were used again. Simulations were executed using NVidia 

GeForce 780 Ti graphics card with 2880 cores and 3GB of RAM and Dell Precision 7500 

dual-cpu workstation using 24 OpenMP threads. The total number of particles was 37038 

and the particle radius 1.5mm. The simulation runs were repeated for different number of 

bins in CSD (200 to 1000) for all four cases. The aim was to profile the simulation 
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algorithm, analyse the data in terms of the computational requirements, detect the 

bottlenecks and propose the most efficient method from the computational perspective. The 

results are presented in Tables 6 to 9, while a graphical comparison for 300 bins is given in 

Fig. 17. The data represent durations in milliseconds of individual stages in the algorithm 

for a single time step during the simulation. Three main stages were considered: calculation 

of forces for Navier-Stokes equations and gradients for heat/mass transfers (stage: N-S 

forces), integration of Navier-Stokes equations and heat/mass balances (stage: N-S 

integration), integration of population balance equations (stage: PB integration).  OpenMP 

methods contain two additional stages: waiting on OpenMP barriers (stages: OpenMP 

barrier 1 and 2) and data synchronisation between GPU and main memory (stage: Memory 

copy). All results are averaged over approximately two thousand time steps. 

The general conclusion is that MOCH method is computationally more efficient. In 

particular, if we compare the total step durations we can observe that 

SPH+MOCH+OpenMP method is superior to the others reducing the computational 

overhead caused by population balance equations to only ~40%, compared to SPH only. 

Although, the parallel algorithm does not bring many benefits for a low number of 

bins/characteristic lines, the difference gets more pronounced for higher numbers. In 

addition, the population balance model did not include any other phenomena such as 

secondary nucleation, breakage, agglomeration etc. typically described by kernels given in 

an integral form. These integrals typically require a rather expensive numerical evaluation 

and significantly contribute to the total simulation time. Looking at the duration of PB 

integration relative to the total time we can see that it is very short in 

SPH+MOCH+OpenMP case and the additional integral evaluation calculations will not 

cause a slowdown. Also, a good indicator of whether an additional processing can be 

performed is a time spent by the master thread at the OpenMP barrier 1. A short waiting 

time  (i.e. less than 1 ms) is an indicator that the time for integration of population balance 

equations is shorter than the processing and integration of the Navier-Stokes forces and 

gradients. The results also show that a certain overhead must always be present. The 

reasons for this are: a) thread management in general (i.e. time spent by threading library 

scheduling chunks of work on each thread), b) waiting at the barriers (i.e. 7% of the total 

step time in SPH+DPB+OpenMP and 4% in SPH+MOCH+OpenMP case for 200 bins), c) 

memory copy (i.e. 14% of the total step time in SPH+DPB+OpenMP and 12% in 

SPH+MOCH+OpenMP case for 200 bins), d) one of the threads lags behind the rest 

causing the whole team of threads to wait for the slowest one (i.e. a thread is waiting for the 
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data to be fetched from the main memory). For instance, the overhead due to the time spent 

on barriers and memory synchronisation in the case with 200 bins is significant: 21% in 

SPH+DPB+OpenMP and 17% in SPH+MOCH+OpenMP case. The other contributing 

factor is longer calculation of forces and longer integration of Navier-Stokes equations 

since the data structure in memory holding the particle information is larger and an 

additional time is required to fetch larger chunks of memory.  

The advantage of application of the SPH method to modelling of the integrated fluid 

dynamics and crystallisation process is that a very large number of bins or characteristic 

lines can be used. For instance, the SPH+MOCH+OpenMP simulation with 500 

characteristic lines is only 18% slower compared to 200 characteristic lines. Obviously, 

there is a lot of room for further optimisations: use of more processors, multiple GPUs, and 

merging the memory copy routine with the population balance integration stage. The 

above-mentioned optimisations will be a part of the future work. 

 

5. Conclusions 
 
The integrated SPH and population balance model has been developed based on the fluid 

dynamics model presented in Nikolic and Frawley (2015). Two existing methods for 

solution of population balance equations have been implemented: a) discretised population 

balance method solved using the high-resolution finite volume schemes with flux limiter, 

and b) method of characteristics. Both methods have successfully been applied to numerical 

benchmarking problems available in the literature where the analytical solutions are 

available. The algorithm to integrate the population balance equations in parallel and 

independently from the Navier-Stokes equations has been developed. It has been shown 

that the population balance equations can be solved using the OpenMP interface while the 

fluid dynamics equations being computed independently on a GPGPU using the NVidia 

CUDA technology. The benefits of the proposed methodology were pointed out such as 

significantly lower computational requirements and availability of the crystal size 

distribution. This way, a significant portion of the computational overhead due to a large 

number of additional transport equations resulting from the discretisation of the population 

balance can be removed: the total overhead was reduced to only 40% for 200 additional 

equations, compared to CFD-only simulation. 

The developed models were applied to a numerical solution of coupled computational fluid 

dynamics and population balance equations to capture the effect of the hydrodynamics on 

the local temperature/supersaturation and the resulting crystal size distribution. The method 
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of characteristics has been selected as computationally more efficient and more accurate for 

problems where sharp or peak-like gradients are present in the distribution. 

Acknowledgments: This research has been conducted as part of the Synthesis and Solid 
State Pharmaceutical Centre (SSPC) and funded by Science Foundation Ireland (SFI). 
 
Nomenclature 
B – birth rate, #/(m.m3.s) 
C – concentration, mol/m3 
ΔC – supersaturation, mol/m3 
D – diffusivity coefficient, m/s 
cp – heat capacity, J/(kg.K) 
ri-rj – distance between two particles, m 
g – gravity constant, m/s 
G – growth rate, m/s 
h – smoothing length, m 
L – crystal size or size discretization domain, m 
m – mass od the particle, kg 
n, ni – number density function, #/(m.m3) 
p – pressure, Pa 
p0 – pressure magnitude for the equation of state, Pa  
r – position of a particle in space (x,y,z), m 
s – source term in the population balance equation (births - deaths), #/(m.m3.s) 
S – source term integral,  
T – temperature, K  
u – velocity, m/s 
z – parameter representing the measure of the distance along the characteristic line, - 
W – Smoothing kernel, - 
Greek symbols 
λ – thermal conductivity, W/(m.K) 
μ – viscosity, Pa.s 
ρ – density, kg/m3 
φ – flux limiter, -  
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Tables 
 
Table 1. Flux limiters 
 

Flux limiter Formula

CHARM (Zhou, 1995) 

HCUS (Waterson and Deconinck, 1995) 

HQUICK (Waterson and Deconinck, 1995) 

Koren (Koren, 1993)  
MC (van Leer, 1977)  
minmod (Roe, 1986) 

Osher (Chakravarthy and Osher, 1983)  

ospre (Waterson and Deconinck, 1995) 

smart (Gaskell and Lau, 1988)  
superbee (Roe, 1986)  
Sweby (Sweby, 1984) 

UMIST (Lien and Leschziner, 1994) 

vanAlbada1 (van Albada et al., 1982) 

vanAlbada2 (Kermani et al., 2003) 

vanLeer (van Leer, 1974) 

vanLeer-minmod (van Leer, 1974)  
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Table 2. Performance of flux limiters for the size-independent growth I case (L2 sorted)  
 

Flux limiter ||n||1  ||n||2 
superbee 1.827e+10 0.716e+10 
Sweby 2.678e+10 0.857e+10 
Koren 3.496e+10 1.025e+10 
smart 3.562e+10 1.039e+10 
HCUS 4.167e+10 1.083e+10 
MC 3.966e+10 1.100e+10 
HQUICK 4.213e+10 1.101e+10 
vanLeer-minmod 4.128e+10 1.113e+10 
CHARM 4.424e+10 1.116e+10 
vanLeer 4.562e+10 1.165e+10 
ospre 4.757e+10 1.180e+10 
vanAlbada1 5.126e+10 1.203e+10 
Osher 5.303e+10 1.231e+10 
UMIST 5.356e+10 1.255e+10 
minmod 6.744e+10 1.356e+10 
vanAlbada2 6.415e+10 1.405e+10 

 
 

 
Table 3. Performance of flux limiters for the size-independent growth II case (L2 sorted) 
 
Flux limiter ||n||1  ||n||2 
superbee 4.464e+10 1.015e+10 
smart 4.727e+10 1.120e+10 
Koren 4.861e+10 1.141e+10 
MC 5.129e+10 1.162e+10 
Sweby 5.435e+10 1.142e+10 
HCUS 5.528e+10 1.194e+10 
HQUICK 5.531e+10 1.194e+10 
vanLeer-minmod 5.600e+10 1.202e+10 
vanLeer 5.814e+10 1.225e+10 
ospre 6.131e+10 1.252e+10 
UMIST 6.181e+10 1.259e+10 
vanAlbada1 6.600e+10 1.281e+10 
Osher 6.690e+10 1.275e+10 
minmod 7.751e+10 1.360e+10 
vanAlbada2 7.901e+10 1.413e+10 
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Table 4. Performance of flux limiters for the size-dependent growth case (L2 sorted) 
 

Flux limiter ||n||1  ||n||2 
vanAlbada2 12.0030 6.08332 
ospre 12.0030 7.53221 
vanAlbada1 12.0030 8.79521 
Koren 12.0030 9.67953 
smart 12.0030 9.68046 
UMIST 12.0030 9.68063 
vanLeer 12.0030 9.68106 
HCUS 12.0030 9.68543 
vanLeer-minmod 12.0030 9.68618 
MC 12.2824 9.69038 
HQUICK 12.0030 9.69071 
Sweby 12.0030 9.69257 
Osher 12.0372 9.71215 
minmod 12.0372 9.71218 
superbee 13.3472 9.75628 

 
 

 
Table 5. Performance of flux limiters for the stiff nucleation at negligible size case (L2 
sorted) 
 

Flux limiter ||n||1  ||n||2 
smart 2.08484e+06 8.29318e+05 
HQUICK 2.18136e+06 8.42675e+05 
HCUS 2.19180e+06 8.50234e+05 
Koren 2.14188e+06 8.51961e+05 
Sweby 2.16105e+06 8.53665e+05 
superbee 2.04586e+06 8.56988e+05 
vanLeer-minmod 2.19952e+06 8.60628e+05 
MC 2.16293e+06 8.60771e+05 
vanLeer 2.22526e+06 8.66659e+05 
Osher 2.27713e+06 8.67580e+05 
ospre 2.06679e+06 8.68821e+05 
UMIST 2.25735e+06 8.72690e+05 
vanAlbada1 2.21372e+06 8.76436e+05 
minmod 2.35476e+06 8.92151e+05 
vanAlbada2 1.95642e+06 9.16490e+05 
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Table 6. Profiling of SPH+DPB simulations (Nparticles = 37038, Rp =1.50 mm) 

Stage SPH-only 
Duration in [ms] for different number of bins 

200 300 400 500 1000
N-S forces 13.468 15.706 15.772 15.786 15.817 15.836
N-S integration 6.320 6.567 6.493 6.537 6.518 6.529

PB integration  15.590 22.457 31.680 39.898 79.841

Total time step 19.784 37.860 44.717 53.999 62.228 102.201
Slowdown (to SPH-only): 91% 126% 173% 215% 417%

 

Table 7. Profiling of SPH+MOCH simulations (Nparticles = 37038, Rp =1.50 mm) 

Stage SPH-only 
Duration in [ms] for different number of bins 

200 300 400 500 1000
N-S forces 13.468 15.730 15.857 15.595 15.731 16.953

N-S integration 6.320 6.606 6.627 6.465 6.553 6.550

PB integration  6.302 10.617 12.637 15.497 27.858
Total time step 19.784 28.657 33.096 34.694 37.777 51.356

Slowdown (to SPH-only): 45% 67% 75% 91% 160%
 

Table 8. Profiling of SPH+DPB+OpenMP simulations (Nparticles = 37038, Rp =1.50 mm) 

Stage SPH-only 
Duration in [ms] for different number of bins 

200 300 400 500 1000
N-S forces 13.468 15.700 16.040 18.166 18.555 18.605

N-S integration 6.320 8.913 9.318 9.578 9.500 9.438

Memory copy  2.784 2.999 3.125 3.146 3.649
OpenMP barrier 1  0.888 7.526 12.483 18.749 53.675

OpenMP barrier 2  0.484 0.442 0.433 0.428 0.452

PB integration  16.689 24.004 30.687 37.692 71.538
Total time step 19.784 28.787 36.364 43.820 50.414 85.851

Slowdown (to SPH-only): 46% 84% 121% 155% 334%
 

Table 9. Profiling of SPH+MOCH+OpenMP simulations (Nparticles = 37038, Rp =1.50 
mm) 

Stage SPH-only 
Duration in [ms] for different number of bins 

200 300 400 500 1000
N-S forces 13.468 15.179 15.209 15.198 15.237 18.202

N-S integration 6.320 9.662 11.182 12.900 14.389 18.115
Memory copy  2.466 2.902 2.533 2.689 3.031

OpenMP barrier 1  0.468 0.457 0.437 0.423 0.441

OpenMP barrier 2  0.355 0.410 0.385 0.413 0.428
PB integration  5.200 7.939 10.623 13.304 26.758

Total time step 19.784 28.170 30.257 31.501 33.224 40.251
Slowdown (to SPH-only): 41% 53% 59% 68% 103%
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Figures 
 

 
 
Figure 1. Cell-centered finite volume discretisation 

 
 
 
 

 
 
Figure 2. Flux limiter functions (red lines) in relation to 2nd order TVD region (light blue) 
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Figure 3. Algorithm for the parallel solution of coupled SPH and population balance  
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Figure 4. Size-independent growth I at time t = 60s (I-order upwind and II-order central 
schemes) 

 
 
 

a) superbee b) Sweeby 

c) Koren d) van Albada 2 
 
Figure 5. Size-independent growth I at time t = 60s for different flux limiters 
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a) superbee b) Smart 

c) Koren d) van Albada 2 
 
Figure 6. Size-independent growth II at time t = 100s for different flux limiters 
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a) van Albada 2 b) ospre 

c) van Albada 1 d) superbee 
 
Figure 7. Size-dependent growth at time t = 4s for different flux limiters 
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a) van Albada 2 b) ospre 

c) van Albada 1 d) superbee 
 

Figure 8. Size-dependent growth at time t = 4s for different flux limiters (zoomed) 
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a) smart b) HQUICK 

c) HCUS d) van Albada 2 
 

Figure 9. Stiff nucleation at negligible size at time t = 0.5s for different flux limiters 
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Figure 10. LabMax stirred tank surface meshes: reactor wall (dark green), baffles (yellow) 
and Rushton turbine (light green)  
 

   
 
Figure 11. LabMax stirred tank filled with fluid particles (given in blue). Left: no 
transparency, right: with 40% transparency added for better visualisation. 
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Figure 12. Temperature of the particles in the axial cross section of the reactor for the 
growth-only crystallisation at t = 300s (SPH+DPB and SPH+MOCH cases) 
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Figure 13. The average temperature profile in the reactor for the growth-only crystallisation 
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a) Ideal mixing

 
b) SPH

Figure 14. Simulation results for growth-only cooling crystallisation at t = 300s 
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a) Ideal mixing

 
b) SPH

Figure 15. Simulation results for growth-only cooling crystallisation at t = 300s (zoomed) 
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Figure 16. Simulation results for cooling crystallisation with primary nucleation at t = 300s 
 
 
 
 

 
 
Figure 17. Profiling data (Nparticles = 37038, Rp =1.50 mm, 300 bins) 
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