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Abstract: The second article in the series presents the application of the Smoothed Particle
Hydrodynamics (SPH) method to modelling of batch crystallisation in stirred tanks. A
methodology to integrate the population balance equations (PBE) in parallel and
independently from the Navier-Stokes equations is demonstrated. The benefits of the
proposed methodology in terms of computational requirements, accuracy and availability of
the crystal size distribution are discussed. The specific formulation of the SPH equations
where the resulting system of ordinary differential equations is solved using the weighted
contributions rather than numerically by solving a linear system of equations allows for
massive parallelisation and a very loose coupling of the population balance and the fluid
dynamics. It has been demonstrated, that the population balance equations can be solved on
a Shared Memory Architecture (SMA) system using the OpenMP interface while the fluid
dynamics equations being computed independently on a General Purpose Graphics
Processing Unit (GPGPU) using the NVidia CUDA technology. This way, a significant
portion of the computational overhead due to the large number of additional transport
equations resulting from the discretisation of the population balance was removed: the SPH
simulation coupled with 200 population balance equations was only 40% slower compared
to SPH-only simulation. Two methods for the solution of population balance equations that
preserve full crystal size distribution were implemented: discretised population balance
(DPB) and method of characteristics (MOCH). The DPB equations are solved using the
high-resolution finite-volume method with flux limiter and the effect of a large number of
different flux limiters have been investigated. Both methods were validated using the case
studies from the literature where an analytical solution can be derived. The developed
models were applied to a numerical solution of coupled computational fluid dynamics and
population balance equations to model a batch crystallization process. The effect of the

hydrodynamics on the local temperature/supersaturation and the resulting crystal size
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distribution was captured and compared to the ideal mixing case. The simulation results
from the DPB and MOCH methods were compared in terms of computational requirements

and accuracy and MOCH selected as computationally more efficient and accurate.

Keywords: CFD; SPH; population balance; NVidia CUDA; OpenMP

1. Introduction

A large number of engineering fields such as chemical, petrochemical, pharmaceutical,
microelectronics, aerosol formation, food processing, colloid chemistry, growth of cell
populations and atmospheric physics involve a dynamic evolution of a distribution of
particles. The performance of many industrial downstream processes is directly affected by
particle characteristics and product qualities such as morphology, bulk density, average
particle size, filterability and dry solid flow properties are directly related to the crystal size
distribution (CSD). Therefore, the CSD is one of the most important process performance
parameters. The dynamical behaviour of particles can be best described by population
balance equations (PBE) (Ramkrishna, 2000). The population balance modelling
framework provides a deterministic description of the dynamic evolution of the crystal size
distribution by forming a balance to calculate the number of crystals in the crystalliser.
Since all the above-mentioned processes are largely affected by hydrodynamics the
population balance equations are often coupled with computational fluid dynamics (CFD)

modelling to correctly predict the key process performance indicators.

The solution of the generic population balance equations usually requires computationally
expensive, complex numerical solution techniques (Ramkrishna, 2000). These approaches
can be categorised in five main classes: a) Standard method of moments (SMOM)
(Randolph and Larson, 1971), b) Numerical non-linear model reduction approaches:
method of characteristics (MOCH) (Hounslow and Reynolds, 2006), quadrature method of
moments (QMOM) (McGraw, 1997; Marchisio et al., 2003), fixed quadrature method of
moments (FQMOM) (Alopaeus, 2006), Jacobian matrix transformation (JMT) (McGraw
and Wright, 2003) and direct quadrature method of moments (DQMOM) (Fan et al., 2004),
c) Direct numerical solution approaches involving finite-element or finite-volume
discretisation of the partial differential equation (discretised population balances, DPB)
(LeVeque, 2002; Gunawan et al., 2004; Costa et al., 2007), d) various methods in the

weighted residuals framework such as the least squares, orthogonal collocation and
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Galerkin methods (Singh and Ramkrishna, 1977; Sporleder et al., 2011; van den Bosch and
Padmanabhan, 1974; Nigam and Nigam, 1980; Roussos et al., 2005), and e) Dynamic
Monte Carlo simulation (DMC) (Haseltine and Rawlings, 2005; Rosner et al., 2003). The
two most often used techniques are the standard method of moments and the quadrature
method of moments. The method of moments is based on the idea of tracking only the
moments of the crystal size distribution, rather than the entire distribution. In addition, there
were some efforts to use combined methods to achieve a computationally efficient
technique for the estimation of the crystal size distribution, such as combined QMOM and
MOCH (Aamir et al., 2009). The common problem encountered with the method of
moments is that the CSD is lost and needs to be reconstructed from its distribution
moments. Many reconstruction techniques were developed however, no unified technique
for reconstruction of a complete distribution from a finite number of moments is available
in literature due to the fact that mathematically all the distribution moments up to infinity

are required to achieve an accurate reconstruction (John et al., 2007).

The overall goal in this work is to develop a computationally efficient mathematical model
of integrated CFD and population balance equations. The main idea is to use the SPH
method for rapid prediction of the global mean flow in stirred reactors presented in Nikolic
and Frawley (2015) and apply accurate and computationally efficient methods for the
solution of the population balance equations to preserve the crystal size distribution. The
focus in developing models was put on computational efficiency and accuracy of the CSD

prediction.
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2. Population Balance modelling

The mathematical description of the evolution of particle properties during a process can be

written as (Ramkrishna, 2000):
on(L,t) N 9 (G(L,t)n(L,t))
ot oL

=s(L,t,n)
(M

where n(L,f) is the number density function, L is the internal property such as characteristic
length, volume, mass etc., G(L,?) is growth rate and s(L,n) is the generation/depletion rate.
The term s(L,z,n) can include nucleation, breakage, agglomeration, aggregation, attrition
and other phenomena that contribute to the change of the number density function. Often,
these terms are defined as integral functions making the whole equation (1) an integro
partial-differential equation. There is a large number of methods to solve the population
balance equations numerically and in some case analytically, as already discussed in the
previous section. In this work the methods for solution of population balance equations that
are capable to preserve the full crystal size distribution are of a special interest. The most
suitable in terms of implementation cost and computational requirements are the well
known discretised population balance (DPB) and the method of characteristics (MOCH).

The methods are briefly described in the subsequent sections.

2.1 Discretised population balance method (DPB)

The most commonly used direct numerical solution approaches to population balance
equations are finite-difference, finite-element and finite-volume discretisation techniques.
The equation (1) is hyperbolic in its nature and a typical problem is accurate tracking of
sharp fronts in the particle distribution since the differential equation is not valid at
discontinuities, which lead to numerical diffusion and non-physical oscillations (LeVeque,
2002). The high-resolution finite-volume methods (LeVeque, 2002) have been developed to
address these problems. Finite volumes allow direct satisfaction of conservation laws while
cell-centering leads to a natural situation where domain boundaries coincide with cell faces
(Koren, 1993).

The DPB equations are obtained by discretising the domain L (particle size) into N
cells/elements as given in Fig. 1. Applying the cell-centered finite volume scheme on the

one-dimensional population balance equation we get (Koren, 1993):

/Li anth, t) dL + G(L,t)n(L,t) = /L s(L,t,n)dL o
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where the first integral term represents the volume-average number density in every cell:

1 on(L,t)

(3)

Since the discretisation of the source term should be consistent with the discretisation of the
advection term to avoid numerical problems (Koren, 1993) the new source term integral §

is introduced:

S(L,t,n) = /Ll s(L,t,n)dL )

Replacing the new terms in the integral form in equation (2) and integrating in every cell i,

we get:

ani 1 .

where the term (Gn-S) denotes an extended advective flux while the half-integer indices i-12
and ;+1» refer to the cell faces between cell centres Li.; — Li, and L; — Li+1, respectively;
consequently, the terms (Gn)i-12 and (Gn)i+1/2 denote the cell-face fluxes of the element i at
its left and right edge, respectively. The accuracy of the numerical scheme is determined by
the way in which the extended advective fluxes are calculated. Assuming that the flow is in

(Gn=8);11 =(Gn—8);

positive L-direction: and applying the van Leer

piecewise polynomial k-interpolation (van Leer, 1985) we get:

1+ k

(Gn—8);11 =(Gn—8); +

[(Gn —S)it1 — (Gn — 8)i]

[N

11—k
4

[(GTL — S)l — (G?’L — S)i—l} , k€ [*1, 1]

(6)

The parameter « is used to control the accuracy of the scheme: a) for k = -1 we get the fully
one-sided upwind scheme of the second order, b) for k = 1 we get the standard second order
scheme, and c) for other values in the range [-1, 1] we have a weighted blend between the
central and fully one-side upwind schemes (Koren, 1993). In the case where k = 1/3 the
scheme becomes third-order accurate for steady linear problems (Koren, 1993). To suppress
the possible occurrences of non-physical oscillations and possible occurrences of negative
values the flux limiter function are introduced (Koren, 1993). Assuming k=1/3 the high-

resolution upwind scheme for cell-fluxes can be now derived as:
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(Gn—8),yy = (Gn—S); + %¢(ri+%) (Gn—S)i — (Gn — S)i 1]

(7
where ¢ is a flux limiter function and » represents the upwind ratio of two consecutive
solution gradients (Koren, 1993):

- (Gn —8)iy1 — (Gn —8);
2 (Gn—8); — (Gn —8); 1 (8)

There are a large number of flux limiter functions and a list of the most frequently used
ones is given in Table 1. The limiter functions must satisfy certain conditions such as they
must lay inside or at the boundary of the Sweby's monotonicity domain (Sweby, 1984).
Limiter functions used in this work in relation to 2™ order total variation diminishing
(TVD) region are given in Fig. 2. Since the piecewise polynomial interpolation cannot be
applied around and at boundaries (Koren, 1993) the equation (6) must be modified
accordingly: a) the flux at the inflow boundary L. is known exactly through the boundary
condition, b) at L3> only the central interpolation with k = 1 can be consistently applied,
and c) at the outflow boundary Ln+:/2 only the fully one-sided upwind scheme «k = -1 can be

applied. The full set of equations can be found in Koren (1993).

2.2 Method of characteristics (MOCH)

The generic partial differential equation (1) can be reduced to a system of ordinary
differential equations by finding the characteristic curves in the L — ¢ plane (Aamir et al.,
2009). The L — ¢ plane is given in a parametric form by L = L(z) and ¢ = #(z) where the
parameter z gives the measure of the distance along the characteristic curve. For the partial

differential equation (1), the characteristic curves are given parametrically:

(L, t,n) = (L(z), 1(2),n(2)) 9)

such that the following system of ODE:s is satisfied:

dL

dt )

dz (11

dn

E :S(L,t, Z) (12)
with the following initial conditions:

t(O) =0 (13)

L(0) = Lo

(14)
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n(L,0) = f(Lo) (15)
The equation (1) must be linear or quasi-linear, that is the growth rate can be size-

dependent but must not depend on any derivative. Since the number density function is now

a function of L(z) and #(z), applying the chain rule:
dn(L(z),1(z)) _dLon _dton
dz T dz 0L ' dz ot (16)

we get:
on on oG

Comparing equations (16) and (18) it can shown that (Aamir et al., 2009):

t==z (18)
and consequently, the characteristic equations can be described by the following system of
equations:

dL
ar — Y (19)
dn dG(L,t)

To obtain the dynamic evolution of the crystal size distribution the system of equations
(19-20) has to be integrated for different initial values Lo and n(Lo,0), accompanied with
growth and generation/depletion rates. Typically, they are a function of supersaturation and
can be obtained from the mass balance for the solute using the moment transformation of
equation (1). Aamir et al. (2009) used the combined quadrature method of moments with
method of characteristics, however, only the change of the total mass of crystals is required
to form the solute mass balance. For the size-independent growth-only process the system

(19-20) simplifies to:

dL

o G(t)

dn 0

dt (22)

Phenomena that cause the change of the distribution like primary/secondary nucleation,
breakage, agglomeration etc. need a special treatment. Regarding the primary nucleation,
the method requires that a new characteristic line is added every time step. However, in this
work it is assumed that crystals in the characteristic line with the smallest crystal size L=Lo
do not grow — only the newly born crystals are accumulated. When the size of crystals in

the second characteristic line increases for the specified AL value (typically equal to the bin

d0i:10.20944/preprints201611.0012.v1
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size in the CSD) the size of the crystals in the first characteristic line is set to Lo+AL and the
new characteristic line inserted at the beginning with the size Lo. From that point in time,
the crystals in the characteristic line with size Lo+AL are allowed to grow according to the
equations (19-20). This way, the computational and memory requirements are kept low.

Secondary nucleation, breakage and agglomeration require a mathematical procedure to
maintain internal consistency with regard to the desired moments of the distribution
(Kumar and Ramkrishna, 1996a, 1996b). In this work, the fixed pivot technique proposed
by Kumar and Ramkrishna (1996a) is selected and implemented. The pivoting technique is
used to numerically preserve two properties of the distribution: the total number and mass
of crystals. In addition, the identical procedure is applied at the end of the simulation to
assemble the final crystal size distribution from local distributions available in every

particle.

3. Integrated Smoothed Particle Hydrodynamics and Population Balance model

Two different algorithms for coupled SPH and population balance have been developed in
this work: a) both SPH and population balance equations integrated on GPU, b) SPH
equations integrated on GPU while population balance equations integrated on CPUs using
the OpenMP interface. The following basic assumptions have been made: the solid phase is
assumed to closely follow the flow field that is the Stokes number is sufficiently low, the
presence of the solid phase does not affect the flow field, the growth rate is independent of
crystal size, and the perfect micromixing is assumed to exist in each fluid particle.

The first algorithm is an extension of the SPH model (Nikolic and Frawley, 2015) by using
additional transport equations. Three scalar transport equations were added: the heat
conduction (between fluid particles and between the fluid particles and the reactor wall),
the mass diffusion (concentration of dissolved crystals) and a set of population balance
equations (either DPB or MOCH). The heat conduction and mass diffusion equations were

adopted from the work of Monaghan et al. (2005):

prengy = 2 T ) TR
iz P AT i Ly (23)

dC, m; 4D1D vw I‘i—I“,h

pi—t = L= (C = ) ( 2
dt — b D; + D; r;—r; (24)

where A; is thermal conductivity and D; is mass diffusion coefficient. Similar to the pressure

gradient and shear forces, the above equations conserve the heat and mass exactly and
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ensure that the flux will be continuous even when the conductivity is discontinuous (at the
phase interfaces; here, at the fluid-wall interface). The SPH model of a stirred tank is
implemented in c++ using Fluidix software (MacDonald, 2014) and identical to that
described in Nikolic and Frawley (2015). The simulation procedure consists of the
initialization phase and the main SPH loop. First, triangular surface meshes are generated
for stirred tank walls, baffles and a stirrer shaft with impellers. These meshes can be
directly loaded into the Fluidix software. Then, uniformly distributed fluid particles of the
specified size are generated inside the whole volume of the tank and the particles that are
positioned inside the baffles and stirrer meshes are removed. An excess number of particles
from the top of the reactor, up to the prescribed volume, is also removed. Now, “wall”
particles are created at all mesh vertices. The SPH main loop is implemented in a standard
fashion. First, a density of all particles is estimated and internal forces evaluated such as the
pressure gradient, shear forces, gravity and the surface tension. Stirrer mesh and its wall
particles are rotated and the forces between impeller and fluid particles are calculated. The
system is now integrated in time using the second order Verlet scheme and particle-mesh
collisions processed to update particle positions. This procedure is repeated until the
defined time horizon is reached.

The second algorithm is more complex. The computational procedure is divided into three
parts: 1) the master thread — a controlling thread that manages the calls to CUDA kernels
and controls a team of OpenMP threads, 2) the team of (Ninreads-1) threads used to integrate
population balance in parallel, 3) GPU used to calculate particle interactions and integrate
Navier-Stokes, heat and mass balance equations. The solution algorithm is presented in Fig.
3. First, the system is initialized in the master thread in an identical fashion as in the first
algorithm. Next, the master thread repeatedly calls CUDA kernels to calculate the forces
and gradients in Navier-Stokes, heat and mass balance equations and to estimate the time
step. All other threads are idle. When the master thread finishes the work all threads are
joined at the OpenMP barrier 1. Next, the solute concentration in particles is copied from
the main memory to GPU and the temperature and the concentration gradient in particles
copied from GPU to the main memory by the master thread. All other threads are idle.
When the master thread is done with the memory synchronisation all threads are joined at
the OpenMP barrier 2. Now, (Nihreads-1) population balance threads are forked to integrate
the population balance equations while the master thread continues with integration of
Navier-Stokes, heat and mass balance equations on the GPU. The integration of population

balance proceeds to the OpenMP barrier 1 where the threads join the master thread. Finally,
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after the integration stage, all threads check whether the time horizon has been reached and
exit if it has. If the time for integration of population balance equations is lower then
combined time to calculate the forces and gradients and integrate the Navier-Stokes, heat
and mass balance equations the total simulation time should be equal to the SPH-only
simulation and the combined algorithm should be faster than the initial GPU-only
algorithm. However, this is not the case in reality since some time is always spent on thread
scheduling, memory copy between the GPU and the main memory and waiting at barriers.
Therefore, the algorithm is always somewhat slower then the SPH only simulation. The
benchmarks and a detailed discussion on computational requirements is given in section

4.4.

4. Case Studies

4.1 High-resolution schemes

In this section the simulation results obtained by using the high-resolution scheme for
solution of DPB equations were compared to the analytical solutions for different cases
using the numerical examples from Qamar et al. (2006). A range of different flux limiter
functions given in Table 1 have been used in all tests. All models in this section were
developed in Python using DAE Tools software (Nikolic, 2014). The quality of prediction
of different flux limiters was assessed by calculating the p-norms in the LP space:

n 1/p
”n”P = <Z ‘nHR - nAnalytical|p> (25)

=1

where nxr is the number density function from the high-resolution scheme and nanaprical 1S

the number density function from the analytical solution. Two error norms have been used:
n

”nHl = Z |nHR - nAnalytical|
=1

a) L'-norm: (26)

n

HnHQ = Z ‘nHR — N Analytical 2
=1

b) L?-norm: (27)

4.1.1 Size-independent growth 1
The aim of this example is to illustrate the importance of high resolution schemes and to
point out the numerical problems present in the hyperbolic partial differential equations

with sharp discontinuities in the solution. Although most size distributions in real processes
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are smooth, sharp fronts occur very often during the primary nucleation, especially in anti-
solvent crystallisations, due to high supersaturation values when a burst in the number
density function of nearly zero-sized crystals occurs. Here, the growth-only crystallisation
process was considered with the constant growth rate of 1um/s and the following initial
number density function:

10 #
n(L,0) = I x 10772, 10um < L < 20pm
0, otherwise (28)

The crystal size distribution in the size range of [0, 100]um discretised into 100 elements
was used. The analytical solution in this case is equal to the initial profile translated right in
time by a distance Gt (the growth rate multiplied by the time elapsed in the process):
n(L,t) = no(L — Gt) (29)

This problem is a good numerical benchmark because it is a combination of a sharp step
function in the distribution and a very high growth rate. If the method works under these
extreme conditions one can expect very good numerical results in the real problems without
sharp fronts and with lower growth rates (Qamar et al., 2006). The simulations were
performed using the I-order upwind, II-order central, and high-resolution schemes with
different flux limiters and the results compared to the analytical solution. The number
density functions for the I-order upwind and II-order central are shown in Fig. 4 and the
best three high-resolution schemes (a-c) and the worst one (d) are presented in Fig. 5. L!
and L? norms for high-resolution schemes are given in Table 2. As expected, the I-order
upwind scheme produces the solution with a very high numerical diffusion while the II-
order central scheme produces non-physical oscillation in the presence of sharp fronts. The
high-resolution schemes suppressed the numerical diffusion, non-physical oscillations and
negative values in the solution to a different degree. In this case, the superbee, Sweby and
Koren flux limiters showed the best prediction compared to the analytical solution and the

superbee outperformed all the rest in terms of both L! and L? error tests.

4.1.2 Size-independent growth 11

The aim of this example is to analyse the performance of high resolution schemes in the
presence of various challenging profiles in the crystal size distribution. Again, the same
growth-only crystallisation process was considered with the constant growth rate of
0.1um/s and the crystal size distribution in the size range of [0, 100]um discretised into 100
elements. The analytical solution is equal to the initial profile translated right in time by a

distance Gt (equation 29). The initial number density function forms four distinct regions:
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(0%, L <2.0um
1010, 2.0um < L < 10pum (regionI)
0, 10um < L < 18um
10"0cos?(n£528),  18um < L < 34pum  (regionII)
n(L,0) = 0, 34pm < L < 42um
10104/1 — (LEZO)Q, 42pm < L < 58um  (region IIT)
0, 58um < L < 66um
1010~ <L2_a720)2 , 66um < L < 74um  (regionIV)
L0, L > 74um
(30)

The first region is a square step with a sharp discontinuity, the second region is a cosine-
squared wave with the discontinuities at each side, the third region is a semi-ellipse with a
combination of sharp and gradual changes in gradient, and the last region represents a
narrow Gaussian distribution (¢ = 0.778AL) with a very sharp peak. The results are
compared to the analytical solution: the best three high-resolution schemes (a-c) and the
worst one (d) are presented in Fig. 6. L! and L? norms for high-resolution schemes are
given in Table 3. Again, the high-resolution schemes suppressed the numerical diffusion,
non-physical oscillations and negative values in the solution to a different degree. Overall,
the superbee, smart and Koren flux limiters showed the best prediction compared to the
analytical solution and the superbee again produced the best prediction in both error tests.
The results in the first three regions are fairly good for all flux limiters; however, a certain
degree of numerical diffusion is still present in all of them. In the most challenging fourth
region we can clearly observe the limitations of discretisation schemes. The very sharp
peaks commonly occur at the beginning of the distribution during an intense nucleation.
The solution to this phenomena would be a very fine grid for the smallest sizes in the
distribution or some sort of an adaptive grid. However, both approaches demand a much

higher computational power to successfully resolve this kind of discontinuities.

4.1.3 Size-dependent growth
In this example the performance of high resolution schemes for a batch process with the
size-dependent growth rate was analysed. Again, the same growth-only crystallisation

process was considered with the growth rate given by:
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G(L) = GoL 1)

and the crystal size distribution in the size range of [0, 1]um discretised into 100 elements.

The analytical solution in this case and is given by:

Ny L
exp(—+——

Lmean

n(L,t) = e Gt _ Got)

(32)

Lmean

where Go is a constant (0.1um/s), Lmean 1s the distribution mean size (0.01um) and Ny is the
total number of particles in the distribution (100). The initial number density function is
given by:

n(L,0) = N0 g L/ Lmean

mean

(33)

The results are compared to the analytical solution: the best three high-resolution schemes
(a-c) and the worst one (d) are presented in Fig. 7 and 8 (the zoomed region). L! and L?
norms for high-resolution schemes are given in Table 4. All high-resolution schemes
performed approximately equally well with very small differences. Overall, van Albada 2,
ospre and van Albada 1 flux limiters showed somewhat better prediction compared to the

analytical solution.

4.1.4 Stiff nucleation at a negligible size

In this problem, the performance of high resolution schemes for a batch process with stiff
nucleation and constant growth rate is analysed. It was assumed that the nucleation takes
place at the minimum size Lo = 0 with the nucleation rate given by:

n(0,1) = 100 + 100 10" =0-215)% [ /) (34)

The growth rate is 1um/s and the crystal size distribution is given in the size range of [0,

2]um discretised into 200 elements. The analytical solution for this case is:

100 + 100107 (GE=L) =021 # = 0, < [ < Gt

n(L,0) = < 100, 0.4pum < L — Gt < 0.6um
0.01, otherwise
(35)

The initial number density function is given by:

(2.0) 100%, 0.4pum < L < 0.6um
n(L,0) =
0.01, otherwise (36)
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The first region in the solution is a narrow wave originating from the nucleation while the
second region is a square step with a sharp discontinuity. The results are compared to the
analytical solution: the best three high-resolution schemes (a-c) and the worst one (d) are
presented in Fig. 9. L' and L? norms for high-resolution schemes are given in Table 5.
Similarly to the case study in the section 4.1.2, discretisation schemes have problems with
the very sharp peaks in the size distribution. Again, all high-resolution schemes performed
approximately equally well with a significant degree of numerical diffusion present in all
schemes. Overall, smart, HQUICK and HCUS flux limiters showed somewhat better

prediction than the rest.

Based on the numerical problems in sections 4.1.1 to 4.1.4 an overall conclusion is that
superbee and Koren flux limiter showed better results in most of the cases considered and
that all schemes produce a significant numerical diffusion when sharp peak-like fronts are
present in the distribution. Therefore, in a general case, selection of a suitable flux limiter

function is case-dependent and some experimenting is necessary.

4.2 Growth-only cooling crystallisation (hydrodynamics effects)

In this case study, the effect of hydrodynamics in a poorly mixed reactor were analysed.
The growth only cooling crystallization problem has been used, since the analytical
solution can be easily obtained while the effect of the other phenomena is absent. The
results from four different cases were compared: a) ideal mixing assumed and
crystallization modelled using the discretised population balance (IDMIX+DPB), b) ideal
mixing assumed and crystallization modelled using the method of characteristics
(IDMIX+MOCH), ¢) SPH used for fluid dynamics coupled with the discretised population
balance model, applied to every fluid particle (SPH+DPB), and d) SPH coupled with the
method of characteristics, again applied to every fluid particle (SPH+MOCH). A low rpm
of the stirrer and short impeller blades were used to create poor mixing conditions. The
temperature profile in both ideal mixing cases was set to the calculated average temperature
profile of the SPH cases to create the identical cooling conditions. The domain was
discretized using 200 elements. The process studied was crystallisation of paracetamol from
ethanol solution in the 1 lit Labmax reactor using the kinetic data from Mitchell et al.
(2011a). The initial supersaturation ratio was set to 1.5667, the initial temperature to 20°C,
the rotational speed to 150 rpm and the radius of the stirrer to 2cm (4 blade paddle turbine

used). The reactor is then cooled using the reactor jacket. It was assumed that the wall
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temperature was constant and equal to 0°C. The stirred tank wall, baffles and stirrer surface
meshes are presented in the Fig. 10. The stirred tank filled with fluid particles of the radius
1.5mm is given in Fig. 11. The ideal mixing models coupled with DPB/MOCH methods
were developed in Python using DAE Tools software (Nikolic, 2014). The model equations
are identical to the model equations presented in (Mitchell et al., 2011a). The only
difference is that the method of moments equations were replaced by the DPB or MOCH
equations and that the temperature profile in the ideal mixing case was set to the calculated

average temperature of the SPH cases.

Simulations were executed on NVidia GeForce 780 Ti graphics card with 2880 cores and
3GB of RAM and Dell Precision 7500 workstation running Debian GNU/Linux operating
system. The temperature of the fluid particles in the reactor's axial cross-section at ¢ = 300 s
is given in Fig. 12. The calculated average temperature in the reactor for SPH+DPB and
SPH+MOCH cases is presented in Fig. 13. The performance of the developed models was
analysed using the seed with sharp discontinuities in its CSD as shown in Fig. 14 (black
dotted line). Since the process is growth-only the analytical solution for the ideal-mixing
case is simply the initial CSD translated right by a cumulative distance XGi-At; (a sum of
the growth rate multiplied by the time elapsed for every time step). The simulation results
for all cases at time t = 300s are presented in Fig. 14 and the zoomed areas in Fig. 15. The
results for the ideal mixing cases is shown in Fig. 14a. It can be observed that the scheme
suppressed oscillations in the solution and decreased the amount of numerical diffusion,
although not completely. However, the ideal mixing models do not take into the account the
non-idealities in the reactor with poor mixing since they do not capture the local
hydrodynamics conditions. From the Fig. 12 we can observe three zones in the reactor:
zone 1 (yellow) around the impellers with the relatively good mixing, zone 2 (blue) along
the reactor wall with poor mixing and good heat transfer, and zone 3 (red) in the upper part
of the reactor with poor mixing and low heat transfer rate. Overall CSDs in the reactor for
the SPH+DPB and SPH+MOCH cases is obtained by combining the CSD from individual
particles and presented in Fig. 14b. Obviously, the non-idealities in the reactor resulted in
some fluid particles being well mixed while some other are located in poorly mixed zones
(i.e. trapped in the zones around baffles or located in poorly mixed upper part of the
volume) and contribute to the dispersion of the CSD. Similarly to the temperature profile in
the reactor, we can observe three zones in the CSD plot in Fig. 14b. First, the particles that

are located in the middle part of the CSD in the Fig. 14 belong to the well mixed zone 1
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(yellow) and have approximately uniform growth rate. Next, the mostly static particles
along the wall in the zone 2 (blue) have a high cooling rate and a faster growth and form the
front end of the CSD. Finally, the particles that belong to the poorly mixed zone 3 (red)
away from the walls, have a low cooling rate and therefore a lower growth rate and form

the CSD tail.

4.3 Cooling crystallisation with primary nucleation (SPH+DPB vs SPH+MOCH)

In this case study, the capability of SPH+DPB and SPH+MOCH methods to handle sharp
fronts/peaks in the distribution occurring during the primary nucleation was studied. The
process was cooling crystallization starting with primary nucleation followed by growth.
All runtime parameters and kinetics data are identical to those in the previous problem
(section 4.2). The equation for the primary nucleation kinetics is adopted from the work of
Mitchell et al. (2011b):

B = k,Ac" (37)
with k» = 1.597 x 10'° #/(min x m®)* and n = 2.276. The initial CSD is assumed to be empty
and the models were again simulated for 300s. The simulation results are shown in Fig. 16.
As it was previously discussed in the section 4.1 the DPB method is not able to accurately
track sharp peak-like discontinuities in the solution and a significant degree of numerical
diffusion is present in those cases. On the other hand, the MOCH method produces the

results identical to the analytical solution.

4.4 Benchmarking and computational requirements

In this case study, the computational efficiency of four different methods for the solution of
coupled SPH and population balance equations were compared: a) both SPH and DPB
equations integrated on GPU (SPH+DPB), b) both SPH and MOCH equations integrated on
GPU (SPH+MOCH), c¢) SPH equations integrated on GPU and DPB equations integrated
on CPUs using the OpenMP interface (SPH+DPB+OpenMP), and d) SPH equations
integrated on GPU and MOCH equations integrated on CPUs using the OpenMP interface
(SPH+MOCH+OpenMP). The identical reactor and input parameters as previously
discussed in sections 4.2 and 4.3 were used again. Simulations were executed using NVidia
GeForce 780 Ti graphics card with 2880 cores and 3GB of RAM and Dell Precision 7500
dual-cpu workstation using 24 OpenMP threads. The total number of particles was 37038
and the particle radius 1.5mm. The simulation runs were repeated for different number of

bins in CSD (200 to 1000) for all four cases. The aim was to profile the simulation
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algorithm, analyse the data in terms of the computational requirements, detect the
bottlenecks and propose the most efficient method from the computational perspective. The
results are presented in Tables 6 to 9, while a graphical comparison for 300 bins is given in
Fig. 17. The data represent durations in milliseconds of individual stages in the algorithm
for a single time step during the simulation. Three main stages were considered: calculation
of forces for Navier-Stokes equations and gradients for heat/mass transfers (stage: N-S
forces), integration of Navier-Stokes equations and heat/mass balances (stage: N-S
integration), integration of population balance equations (stage: PB integration). OpenMP
methods contain two additional stages: waiting on OpenMP barriers (stages: OpenMP
barrier I and 2) and data synchronisation between GPU and main memory (stage: Memory
copy). All results are averaged over approximately two thousand time steps.

The general conclusion is that MOCH method is computationally more efficient. In
particular, if we compare the total step durations we can observe that
SPH+MOCH+OpenMP method is superior to the others reducing the computational
overhead caused by population balance equations to only ~40%, compared to SPH only.
Although, the parallel algorithm does not bring many benefits for a low number of
bins/characteristic lines, the difference gets more pronounced for higher numbers. In
addition, the population balance model did not include any other phenomena such as
secondary nucleation, breakage, agglomeration etc. typically described by kernels given in
an integral form. These integrals typically require a rather expensive numerical evaluation
and significantly contribute to the total simulation time. Looking at the duration of PB
integration relative to the total time we can see that it is very short in
SPH+MOCH+OpenMP case and the additional integral evaluation calculations will not
cause a slowdown. Also, a good indicator of whether an additional processing can be
performed is a time spent by the master thread at the OpenMP barrier 1. A short waiting
time (i.e. less than 1 ms) is an indicator that the time for integration of population balance
equations is shorter than the processing and integration of the Navier-Stokes forces and
gradients. The results also show that a certain overhead must always be present. The
reasons for this are: a) thread management in general (i.e. time spent by threading library
scheduling chunks of work on each thread), b) waiting at the barriers (i.e. 7% of the total
step time in SPH+DPB+OpenMP and 4% in SPH+MOCH+OpenMP case for 200 bins), c)
memory copy (i.e. 14% of the total step time in SPH+DPB+OpenMP and 12% in
SPH+MOCH+OpenMP case for 200 bins), d) one of the threads lags behind the rest

causing the whole team of threads to wait for the slowest one (i.e. a thread is waiting for the
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data to be fetched from the main memory). For instance, the overhead due to the time spent
on barriers and memory synchronisation in the case with 200 bins is significant: 21% in
SPH+DPB+OpenMP and 17% in SPH+MOCH-+OpenMP case. The other contributing
factor is longer calculation of forces and longer integration of Navier-Stokes equations
since the data structure in memory holding the particle information is larger and an
additional time is required to fetch larger chunks of memory.

The advantage of application of the SPH method to modelling of the integrated fluid
dynamics and crystallisation process is that a very large number of bins or characteristic
lines can be used. For instance, the SPH+MOCH+OpenMP simulation with 500
characteristic lines is only 18% slower compared to 200 characteristic lines. Obviously,
there is a lot of room for further optimisations: use of more processors, multiple GPUs, and
merging the memory copy routine with the population balance integration stage. The

above-mentioned optimisations will be a part of the future work.

5. Conclusions

The integrated SPH and population balance model has been developed based on the fluid
dynamics model presented in Nikolic and Frawley (2015). Two existing methods for
solution of population balance equations have been implemented: a) discretised population
balance method solved using the high-resolution finite volume schemes with flux limiter,
and b) method of characteristics. Both methods have successfully been applied to numerical
benchmarking problems available in the literature where the analytical solutions are
available. The algorithm to integrate the population balance equations in parallel and
independently from the Navier-Stokes equations has been developed. It has been shown
that the population balance equations can be solved using the OpenMP interface while the
fluid dynamics equations being computed independently on a GPGPU using the NVidia
CUDA technology. The benefits of the proposed methodology were pointed out such as
significantly lower computational requirements and availability of the crystal size
distribution. This way, a significant portion of the computational overhead due to a large
number of additional transport equations resulting from the discretisation of the population
balance can be removed: the total overhead was reduced to only 40% for 200 additional
equations, compared to CFD-only simulation.

The developed models were applied to a numerical solution of coupled computational fluid
dynamics and population balance equations to capture the effect of the hydrodynamics on

the local temperature/supersaturation and the resulting crystal size distribution. The method
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of characteristics has been selected as computationally more efficient and more accurate for

problems where sharp or peak-like gradients are present in the distribution.
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Nomenclature

B — birth rate, #/(m.m>.s)

C — concentration, mol/m’

AC — supersaturation, mol/m?

D — diffusivity coefficient, m/s

cp — heat capacity, J/(kg.K)

ri-rj — distance between two particles, m

g — gravity constant, m/s

G — growth rate, m/s

h — smoothing length, m

L — crystal size or size discretization domain, m

m —mass od the particle, kg

n, ni —number density function, #/(m.m>)

p — pressure, Pa

po — pressure magnitude for the equation of state, Pa
r — position of a particle in space (x,y,z), m

s — source term in the population balance equation (births - deaths), #/(m.m?.s)
S — source term integral,

T — temperature, K

u — velocity, m/s

z — parameter representing the measure of the distance along the characteristic line, -
W — Smoothing kernel, -

Greek symbols

A — thermal conductivity, W/(m.K)

1 — viscosity, Pa.s

p — density, kg/m’

¢ — flux limiter, -
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Tables

Table 1. Flux limiters

Flux limiter Formula
rGrH) S 0, limy e G(7) = 3
CHARM (Zhou, 1995) ¢(r) =< r+D) o "
0 otherwise
] B 1.5+ 1r) .. B
HCUS (Waterson and Deconinck, 1995)  ¢(r) = Thx2) Llim p(r)=3
2(r+1rf) .. _
HQUICK (Waterson and Deconinck, 1995) ¢(r) = R Jlim p(r) =4
Koren (Koren, 1993) ¢(r) = max [0, min (2r, (2 +7) /3,2)], lim ¢(r) =
MC (van Leer, 1977) ¢(r) = max [0, min (2r,0.5(1 + r), 2)] 7T1Lfgo o(r) =
minmod (Roe, 1986) ¢(r) = max [0, min (1,7)], im ¢(r) =1
Osher (Chakravarthy and Osher, 1983) ¢(r) = max [0, min (r, B)], (1 < B < 2) ,rh—>rgo o(r) =P
1.5 +
ospre (Waterson and Deconinck, 1995) o(r) = ((:rJr?) hm o(r)=1.5
smart (Gaskell and Lau, 1988) ¢(r) = max [0, min (2r, (0.25 + 0.757) , 4)] 7T1LI§O o(r) =
superbee (Roe, 1986) ¢(r) = max [0, min (2r, 1) , min (r, 2)] 7}5{.10 o(r) =2
Sweby (Sweby, 1984) ¢(r) = max [0, min (87, 1) ,min (r, )], (1 < § < 2), lim ¢(r) = 5
UMIST (Lien and Leschziner, 1994) ¢(r) = max [0, min (2r, (0.25 + 0.75r) , (0.75 + 0.257) , 2)] 7}320 o(r) =2
r24+r
vanAlbadal (van Albada et al., 1982) o(r) = T rli>nolo o(r)=1
. 2r .
vanAlbada2 (Kermani et al., 2003) o(r) = oy 1’rli>r{>lo o(r)=0
r+ry .
vanLeer (van Leer, 1974) o(r) = i |r| » lim o(r) =2

vanLeer-minmod (van Leer, 1974) ¢(r,0) = max (0, min (6r, £, 6)) .60 € [1,2]
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Table 2. Performance of flux limiters for the size-independent growth I case (L? sorted)

Flux limiter
superbee
Sweby
Koren

smart

HCUS

MC
HQUICK
vanLeer-minmod
CHARM
vanLeer
ospre
vanAlbadal
Osher
UMIST
minmod
vanAlbada2

Il
1.827e+10
2.678e+10
3.496e+10
3.562e+10
4.167e+10
3.966e+10
4.213e+10
4.128e+10
4.424e+10
4.562e+10
4.757e+10
5.126e+10
5.303e+10
5.356e+10
6.744e+10
6.415e+10

[
0.716e+10
0.857e+10
1.025e+10
1.039e+10
1.083e+10
1.100e+10
1.101e+10
1.113e+10
1.116e+10
1.165e+10
1.180e+10
1.203e+10
1.231e+10
1.255e+10
1.356e+10
1.405e+10

Table 3. Performance of flux limiters for the size-independent growth II case (L? sorted)

Flux limiter
superbee
smart

Koren

MC

Sweby
HCUS
HQUICK
vanLeer-minmod
vanLeer
ospre
UMIST
vanAlbadal
Osher
minmod
vanAlbada2

Inls
4.464e+10
4.727e+10
4.861e+10
5.129e+10
5.435e+10
5.528e+10
5.531e+10
5.600e+10
5.814e+10
6.131e+10
6.181e+10
6.600e+10
6.690e+10
7.751e+10
7.901e+10

|Inf2
1.015e+10
1.120e+10
1.141e+10
1.162e+10
1.142e+10
1.194e+10
1.194e+10
1.202¢+10
1.225e+10
1.252e+10
1.259¢+10
1.281e+10
1.275e+10
1.360e+10
1.413e+10
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Table 4. Performance of flux limiters for the size-dependent growth case (L? sorted)

Table 5. Performance of flux limiters for the stiff nucleation at negligible size case (L?

sorted)

Flux limiter
vanAlbada2
ospre
vanAlbadal
Koren

smart
UMIST
vanLeer
HCUS
vanLeer-minmod
MC
HQUICK
Sweby
Osher
minmod
superbee

Flux limiter
smart
HQUICK
HCUS
Koren
Sweby
superbee
vanLeer-minmod
MC

vanLeer
Osher

ospre
UMIST
vanAlbadal
minmod
vanAlbada2

[Im]|x
12.0030
12.0030
12.0030
12.0030
12.0030
12.0030
12.0030
12.0030
12.0030
12.2824
12.0030
12.0030
12.0372
12.0372
13.3472

[
2.08484e+06
2.18136e+06
2.19180e+06
2.14188e+06
2.16105e+06
2.04586e+06
2.19952e+06
2.16293e+06
2.22526e+06
2.27713e+06
2.06679¢+06
2.25735e+06
2.21372e+06
2.35476e+06
1.95642e+06

[Im]2
6.08332
7.53221
8.79521
9.67953
9.68046
9.68063
9.68106
9.68543
9.68618
9.69038
9.69071
9.69257
9.71215
9.71218
9.75628

[T
8.29318e+05
8.42675e+05
8.50234e+05
8.51961e+05
8.53665e+05
8.56988e+05
8.60628e+05
8.60771e+05
8.66659¢e+05
8.67580e+05
8.68821e+05
8.72690e+05
8.76436e+05
8.92151e+05
9.16490e+05
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Table 6. Profiling of SPH+DPB simulations (Nparticles = 37038, Rp =1.50 mm)
Duration in [ms] for different number of bins

Stage SPH-only

200

N-S forces 13.468 15.706
N-S integration 6.320 6.567
PB integration 15.590
Total time step 19.784 37.860
Slowdown (to SPH-only): 91%

300
15.772
6.493
22.457
44.717
126%

400
15.786
6.537
31.680
53.999
173%

500 1000
15.817 15.836
6.518 6.529
39.898 79.841
62.228 102.201
215% 417%

Table 7. Profiling of SPH+MOCH simulations (Nparticles = 37038, Rp =1.50 mm)
Duration in [ms] for different number of bins

Stage SPH-only 200
N-S forces 13.468 15.730
N-S integration 6.320 6.606
PB integration 6.302

Total time step 19.784 28.657
Slowdown (to SPH-only): 45%

300
15.857
6.627
10.617
33.096
67%

400
15.595
6.465
12.637
34.694
75%

500 1000
15.731 16.953
6.553 6.550
15.497 27.858
37.777 51.356
91% 160%

Table 8. Profiling of SPH+DPB-+OpenMP simulations (Nparticles = 37038, Rp =1.50 mm)
Duration in [ms] for different number of bins

Stage SPH-only
200 300 400 500 1000
N-S forces 13.468 15.700 16.040 18.166 18.555 18.605
N-S integration 6.320 8913 9.318 9.578 9.500 9.438
Memory copy 2.784 2.999 3.125 3.146 3.649
OpenMP barrier 1 0.888 7.526 12.483 18.749 53.675
OpenMP barrier 2 0.484 0.442 0.433 0.428 0.452
PB integration 16.689 24.004 30.687 37.692 71.538
Total time step 19.784 28.787 36.364 43.820 50.414 85.851
Slowdown (to SPH-only): 46% 84% 121% 155% 334%

Table 9. Profiling of SPH+MOCH+OpenMP simulations (Nparticles = 37038, Rp =1.50

mm)
Duration in [ms] for different number of bins
Stage SPH-only
200 300 400 500 1000
N-S forces 13.468 15.179 15.209 15.198 15.237 18.202
N-S integration 6.320 9.662 11.182 12.900 14.389 18.115
Memory copy 2.466 2.902 2.533 2.689 3.031
OpenMP barrier 1 0.468 0.457 0.437 0.423 0.441
OpenMP barrier 2 0.355 0.410 0.385 0.413 0.428
PB integration 5.200 7.939 10.623 13.304 26.758
Total time step 19.784 28.170 30.257 31.501 33.224 40.251
Slowdown (to SPH-only): 41% 53% 59% 68% 103%
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Figure 2. Flux limiter functions (red lines) in relation to 2" order TVD region (light blue)
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Figure 3. Algorithm for the parallel solution of coupled SPH and population balance
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Figure 4. Size-independent growth I at time # = 60s (I-order upwind and II-order central
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Figure 5. Size-independent growth I at time # = 60s for different flux limiters
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Figure 6. Size-independent growth II at time # = 100s for different flux limiters
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Figure 7. Size-dependent growth at time ¢ = 4s for different flux limiters
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Figure 8. Size-dependent growth at time ¢ = 4s for different flux limiters (zoomed)
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Figure 9. Stiff nucleation at negligible size at time ¢ = 0.5s for different flux limiters
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Figure 10. LabMax stirred tank surface meshes: reactor wall (dark green), baffles (yellow)
and Rushton turbine (light green)

=T

Figure 11. LabMax stirred tank filled with fluid particles (given in blue). Left: no
transparency, right: with 40% transparency added for better visualisation.
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Figure 12. Temperature of the particles in the axial cross section of the reactor for the
growth-only crystallisation at # = 300s (SPH+DPB and SPH+MOCH cases)
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Figure 13. The average temperature profile in the reactor for the growth-only crystallisation
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Figure 14. Simulation results for growth-only cooling crystallisation at # = 300s
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Figure 15. Simulation results for growth-only cooling crystallisation at # = 300s (zoomed)
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Figure 16. Simulation results for cooling crystallisation with primary nucleation at ¢ = 300s
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Figure 17. Profiling data (Nparticles = 37038, Rp =1.50 mm, 300 bins)
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