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1. Introduction

Windings of 2-dimensional processes, and especially of planar Brownian motion have several
applications, namely in Finance. More precisely, in Financial Mathematics, the exponential
functionals of Brownian motion are of special interest. A fundamental example is the pricing of Asian
options (see e.g. [8,11,31,33]), where the payout of an Asian call option is given by:

E

[(
1
t

∫ t

0
ds exp(βs + νs)− K

)+
]

,

where (βu, u ≥ 0) is a real Brownian motion, ν ∈ R and K ∈ R+ is the strike price. It is easy to show
(for further details, see e.g. [11]) that the computation of this expectation simplifies to the computation
of

E

[(∫ t

0
ds exp(βs + νs)− K

)+
]

,

which follows by studying

E
[∫ t

0
ds exp(βs + νs)

]
.

In particular, in [31] one can find a more detailed discussion for the distribution of the exponential
functional A(ν)

t :=
∫ t

0 ds exp(βs + νs) taken up to a random time Tλ which follows the exponential
distribution with parameter λ > 0. More precisely, Yor [30] obtained that

2A(ν)
Tλ

(law)
=

Q1,a

2Gb

(law)
=

1−U 1/a

2Gb
,

where Q1,a ∼ Beta(1, a), Gb ∼ Gamma(b), U ∼ U[0, 1], a = (ν/2) + (1/2)
√

2λ + ν2, b = a− ν and
the random variables are independent.
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In this paper, we will study this exponential functional in terms of planar Brownian motion, i.e.
taken up to a random time different from the case mentioned above, that is (we suppose now that
ν = 0 but at the end we will also discuss the case ν 6= 0):

∫ Tγ
c

0
ds exp(2βs) ,

where Tγ
c = inf{u ≥ 0 : γu = c}, c > 0, and (γu, u ≥ 0) another real Brownian motion independent

from β. For more precise connection with the windings, see Proposition 2 below.
We consider the following processes:

• (Zt, t ≥ 0) a planar Brownian motion (BM),
• (Vt, t ≥ 0) a complex-valued Ornstein-Uhlenbeck (OU) process, i.e.: with λ ≤ 0,

Vt = V0 + Zt − λ
∫ t

0
Vsds , (1)

or equivalently, with (Bt, t ≥ 0) another planar Brownian motion starting from V0:

Vt = e−λt
(

V0 +
∫ t

0
eλsdZs

)
= e−λtBαt , (2)

and
• (Ut, t ≥ 0) a planar Stable process of index α ∈ (0, 2),

all of them starting from a point different from 0 (without loss of generality we may consider all of
them start from 1).

It is well-known [13] that since Z0 6= 0, (Zt, t ≥ 0) does not visit a.s. the point 0 but keeps
winding around it infinitely often. Hence, its continuous winding process θZ

t = Im(
∫ t

0
dZs
Zs

), t ≥ 0 is
well defined. We also recall the skew-product representation of planar BM (see also e.g. [19]):

log |Zt|+ iθZ
t =

∫ t

0

dZs

Zs
= (βu + iγu)

∣∣∣
u=HZ

t =
∫ t

0
ds
|Zs |2

, (3)

with (βu + iγu, u ≥ 0) denoting another planar Brownian motion starting from log 1 + i0 = 0 (for the
Bessel clock HZ, see also [29]).
We easily deduce that the two σ-fields σ{|Zt| , t ≥ 0} and σ{βu, u ≥ 0} are identical, whereas (γu, u ≥
0) is independent from (|Zt| , t ≥ 0). Note that the inverse of HZ is:

AZ(t) = inf{u ≥ 0, HZ(u) > t} =
∫ t

0
ds exp(2βs) . (4)

Similarly, for the OU process V we have that its continuous winding process, i.e.
θV

t = Im(
∫ t

0
dVs
Vs

), t ≥ 0 is also well defined.

Following [22,24], we have:

Proposition 1. The following identity holds:

θV
t = θB

αt , (5)

where αt =
e2λt−1

2λ .
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Proof. Applying Itô’s formula to (2) and dividing by Vs, we obtain:

dVs

Vs
= −λ ds +

dBαs

Bαs

, (6)

hence:

Im
(

dVs

Vs

)
= Im

(
dBαs

Bαs

)
,

and (5) follows easily.

Concerning now the Stable process U (see also [3,7,14]), contrary to planar Brownian motion, we
cannot define its winding number directly. However, we can consider a path on a finite time interval
[0, t] and "fill in" the gaps with line segments in order to obtain the curve of a continuous function
f : [0, 1] → C with f (0) = 1. 0 is polar and V has no jumps across 0 a.s., thus we have f (u) 6= 0 for
every u ∈ [0, 1] and the process of the winding number of around 0, θU = (θU

t , t ≥ 0) is well-defined,
it has cadlag paths of absolute length greater than π and, for all t ≥ 0,

exp(iθU
t ) =

Ut

|Ut|
. (7)

We also introduce the clock:

HU(t) =
∫ t

0

ds
|Us|α

, (8)

and its inverse:
AU(u) = inf{t ≥ 0, HU(t) > u} . (9)

For each process, we will study the exit times from a cone of single and of double border,that is:

TθW

c = inf{t : θW
t = c} , (10)

T|θ
W |

c = inf{t : |θW
t | = c} , (11)

where W = Z, V or U. Moreover, we will study the asymptotic behavior of each winding process.
The rest of this paper is organized as follows: In Section 2 we discuss windings and the associated

version of Spitzer’s Asymptotic Theorem (that correspond to the large time asymptotics) (i) for planar
Brownian motion, (ii) for complex-valued Ornstein-Uhlenbeck processes, and (iii) for planar Stable
processes. In particular, in Subsection 2.1 we characterize the distribution of the exit times from a
single and from a double border cone via their Gauss-Laplace transform, that we prove by using
Bougerol’s identity in law, and we also illustrate the formula for the second random time by giving
two examples. We also comment briefly to the small time asymptotics case. Section 3 deals with
applications of the previous results to the pricing of Asian options. More precisely, we discuss
separately the case of exponential functionals of Brownian motion and of Lévy processes. Finally,
in the Appendix A we give a comparative table concerning the clocks associated to each process, i.e.
HZ, HV and HU and Spitzer’s asymptotic Theorem for planar Brownian motion, for complex-valued
Ornstein-Uhlenbeck and for planar Stable processes, followed by some comments and remarks.

2. Windings of planar processes, exponential functionals and Spitzer’s Theorem

2.1. The planar Brownian motion case

First, we recall our main tool, that is Bougerol’s celebrated identity in law [6], stating that with
(βu, u ≥ 0) and (β̂u, u ≥ 0) denoting two independent linear Brownian motions for t ≥ 0 fixed,

sinh(βt)
(law)
= β̂AZ

t (β)=
∫ t

0 ds exp(2βs)
. (12)
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For the proof and other developments of this identity, see [23] and the references therein. We will
study Bougerol’s identity in law in terms of planar Brownian motion, which is strongly related to
exponential functionals of Brownian motion as one can see below. To that end, we shall also need the
following exit times for the BM γ associated to θZ:

Tγ
c = inf{t : γt = c} , T|γ|c = inf{t : |γt| = c} .

A first result is the following:

Proposition 2. We have the following relations:

TθZ

c = AZ
Tγ

c
, and T|θ

Z |
c = AZ

T|γ|c
.

Proof. It follows by the skew-product representation (θZ
t = γHZ

t
), using the fact that AZ is the inverse

of HZ (see also (4)):

TθZ

c = inf{t : θZ
t = c} = inf{t : γHZ

t
= c}

s=HZ
t= inf{AZ

s : γs = c} = AZ
Tγ

c
. (13)

The second relation follows similarly.

From now on, all the results may be stated either for AZ
Tγ

c
(resp. AZ

T|γ|c
) or for TθZ

c (resp. T|θ
Z |

c ). For

the sake of applications in the Mathematical Finance framework, we will mostly use the first notation.

We state now Spitzer’s celebrated asymptotic Theorem for planar BM [20]:

Theorem 3 (Spitzer’s Asymptotic Theorem (1958)). The following convergence in law holds:

2
log t

θZ
t

(law)−→
t→∞

C1 , (14)

with C1 denoting a standard Cauchy variable.

There exist several proofs, based on different approaches (see e.g. [2,9,15,17,22,28,32]). Here,
following [26] (see also [15]), we propose an easy proof based on Proposition 2.

Proof. First,

TθZ

c = AZ
Tγ

c
(β)

(law)
= AZ

u (β)
∣∣∣
u=c2Tγ

1

thus:
1
c2 TθZ

c
(law)
=

∫ Tγ
1

0
dv exp (2cβv) . (15)

For c → ∞, taking logarithms on both sides of (15) and dividing by c, the LHS gives: 1
c log

(
Tθ

c
)
−

2
c log c, and the RHS writes:

1
c

log

(∫ Tγ
1

0
dv exp (2cβv)

)
= log

(∫ Tγ
1

0
dv exp (2cβv)

)1/c

.
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Invoking the classical Laplace argument: ‖ f ‖p
p→∞−→‖ f ‖∞, the latter converges for c→ ∞ to:

2 sup
v≤Tγ

1

(βv)
(law)
= 2|β|Tγ

1
.

Hence:
1
c

log
(

TθZ

c

)
(law)−→
c→∞

2|β|Tγ
1

. (16)

which can be equivalently stated as (recall that βTγ
1

(law)
= C1)

P
(

log TθZ

c < cx
)

(law)−→
c→∞

P (2|C1| < x) . (17)

The LHS of (17) equals:

P
(

log TθZ

c < cx
)

= P
(

TθZ

c < exp(cx)
)
= P

(
sup

u≤exp(cx)
θZ

u > c

)

= P
(
|θZ

exp(cx)| > c
)
= P

(
|θZ

t | >
log t

x

)
, (18)

where t = exp(cx). Recalling now the fact that |C1|
(law)
= |C1|−1, from (17) we get:

f or every x > 0 given, P
(
|θt| >

log t
x

)
(law)−→
t→∞

P
(
|C1| >

2
x

)
, (19)

hence we obtain precisely Spitzer’s Theorem (14).

Remark 1. Spitzer’s Asymptotic Theorem can be equivalently stated in terms of the clock HZ, i.e.:

4
(log t)2 HZ(t)

(law)−→
t→∞

Tγ
1 . (20)

Following [21,22], we have:

Proposition 4. The distributions of AZ
Tγ

c
and of AZ

T|γ|c
are characterized by the following Gauss-Laplace

transforms (x ≥ 0 and m = π
2c ):

c E

√ π

2AZ
Tγ

c

exp

− x
2AZ

Tγ
c

 =
1√

1 + x
c2

(c2 + log2(
√

x +
√

1 + x))
, (21)

c E

√√√√ 2
πAZ

T|γ|c

exp

− x
2AZ

T|γ|c


 =

1√
1 + x

2
(
√

1 + x +
√

x)m + (
√

1 + x−
√

x)m
. (22)

Remark 2. From e.g. formula (22) with some analytic computations, we can obtain the density
function of AZ

T|γ|c
. For further details, see e.g. [21,22].

Examples

We first illustrate formula (22) by 2 examples that come essentially from [25]:
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1. m = 1⇒ c =
π

2

Formula (22) states that (AZ
T|γ|π/2

T|θ|π/2):

E

√√√√ 2
πAZ

T|γ|π/2

exp

− x
2AZ

T|γ|π/2


 =

1
1 + x

. (23)

We will verify this formula by simple computations. Indeed, we have that:

AZ
T|γ|π/2

= T|θ|π/2 = inf{t : Xt = 0} = inf{t : X0
t = 1},

where (X0
t , t ≥ 0) is another real BM starting from 0. However, with N ∼ N (0, 1), AZ

T|γ|π/2

(law)
= 1

N2 ,

hence, the LHS of (23) gives:

E

[√
2
π
|N| exp

(
− x

2
N2
)]

=
∫ ∞

0
dy y e−

x+1
2 y2

=
1

1 + x
, (24)

thus we get directly (23). Note that on the RHS of (23) we have the Laplace transform of an
exponential variable of parameter 1, denoted by e1.

2. m = 2⇒ c =
π

4
Similarly, (22) writes:

E
[√

π

4(T1 ∧ T̃1)
exp

(
− x

T1 ∧ T̃1

)]
=

1√
1 + x

1
1 + 2x

. (25)

With (N, Ñ ∼ N (0, 1)),

AZ
T|γ|π/4

= T|θ|π/4 = inf{t : Xt + Yt = 0, or Xt −Yt = 0}

= inf{t :
X0

t + Yt√
2

=
1√
2

, or
X0

t −Yt√
2

=
1√
2
}

= T1/
√

2 ∧ T̃1/
√

2
(law)
=

1
2
(
T1 ∧ T̃1

)
.

where for every x, Tx = inf{t, βt = x} and T̃ is an independent copy of T. We remark that

T1
(law)
= 1

N2 , T̃1
(law)
= 1

Ñ2 , which yields (C is a constant):

E
[(
|N| ∨ |Ñ|

)
exp

(
−x
(

N2 ∨ Ñ2
))]

= 2E
[
|N| exp

(
−xN2

)
1(|N|≥|Ñ|)

]
= C

∫ ∞

0
du u e−xu2

e−
u2
2

∫ u

0
dy e−

y2
2 .

Using Fubini’s theorem we get (25). Note that now, on the RHS of (25) we have the Laplace

transform of the variable N2

2 + 2e1
(law)
= γ1/2 + 2e1.

Proof of Proposition 4. We apply Bougerol’s identity (12) for Tγ
c . Hence (N ∼ N (0, 1)):

sinh(βTγ
c
)
(law)
= β̂AZ

Tγ
c

(law)
=

√
AZ

Tγ
c

N,
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which yields that for fixed c > 0:

sinh(Cc)
(law)
= β̂(Tθ

c )
,

where (Cc, c ≥ 0) is a standard Cauchy process. We identify the densities of the two variables:
LHS: 1√

1+x2 hc(arg sinh x) = 1√
1+x2 hc(a(x)) ;

RHS: E

 1√
2πAZ

Tγ
c

exp

(
− x2

2AZ
Tγ

c

),

and we remark that a(y) = arg sinh(y) = log(y +
√

1 + y2). Changing the variables x = y2 we get
(21).
Formula (22) follows by Bougerol’s identity for T|γ|c and we apply the same arguments as previously,
recalling that the density of β

T|γ|c
is 1

2c
1

cosh(my) =
1
c

1
emy+e−my (see e.g. [4]).

For other results and variants concerning properties of the random times AZ
Tγ

c
and AZ

T|γ|c
, the interested

reader is addressed to [25,26] and to the references therein.

2.2. The complex-valued Ornstein-Uhlenbeck case

Concerning the exit times from a cone for complex-valued Ornstein-Uhlenbeck processes, we
heve (see also [21,22,24]):

Corollary 5. The following relations hold:

TθV

c =
1

2λ
log
(

1 + 2λAZ
TB

c

)
; (26)

T|θ
V |

c =
1

2λ
log
(

1 + 2λAZ
T|B|c

)
. (27)

Proof. We prove e.g. (26) ((27) follows similarly). By definition and using (5), we have:

TθV

c = inf
{

t ≥ 0 : θV
t = c

}
= inf

{
t ≥ 0 : θB

αt = c
}

,

thus:
TθV

c = α−1
(

TθB

c

)
= α−1

(
AZ

TB
c

)
, (28)

with α−1(t) = 1
2λ log (1 + 2λt), which yields (26).

We can also obtain the analogue of Spitzer’s Theorem for OU processes:

Theorem 6. (Spitzer’s Theorem for OU processes)
We have that:

θV
t
t

(law)−→
t→∞

Cλ , (29)

where, Cσ stands for a Cauchy variable with parameter σ.

Proof. Equation (5) yields:
θV

t
λt

=
θB

αt

λt
=

log αt

2λt
2θB

αt

log αt
.

We remark that:
log αt

2λt
t→∞−→ 1 , (30)

and applying Spitzer’s Theorem (14), we obtain (29).
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Remark 3. In terms of the clock HV , Spitzer’s Theorem for OU processes may be also stated as:

1
λ2t2 HV(t)

(law)−→
t→∞

Tγ
1 . (31)

2.3. The planar Stable process case

We turn now our interest to planar Stable processes. Bertoin and Werner following [12] obtained
the following two Lemmas for α ∈ (0, 2) (for the proofs see [3]):

Lemma 7. The time-changed process (θU
AU(u), u ≥ 0) is a real-valued symmetric Lévy process, say ρ. It has

no Gaussian component and its Lévy measure has support in [−π, π].

Let us denote now by dz the Lebesgue measure on C. Then, for every complex number z 6= 0,
φ(z) stands for the determination of its argument valued in ( − π, π ].

Lemma 8. The Lévy measure of θAU(·) is the image of the Lévy measure ν of U by the mapping z→ φ(1+ z).
Consequently, E[(θAU(u))

2] = uk(α), where

k(α) =
α 2−1+α/2Γ(1 + α/2)

πΓ(1− α/2)

∫
C
|z|−2−α|φ(1 + z)|2dz . (32)

Concerning now U, we use the analogue of the skew product representation for planar BM which is
the Lamperti correspondence for stable processes. Hence, there exist two real-valued Lévy processes
(ξu, u ≥ 0) and (ρu, u ≥ 0), the first one non-symmetric whereas the second one symmetric, both
starting from 0, such that:

log |Ut|+ iθU
t = (ξu + iρu)

∣∣∣
u=HU

t

.

Remark 4. |Z| and ZAU(·)/|ZAU(·)| are NOT independent. Indeed, the processes |ZAU(·)| and
ZAU(·)/|ZAU(·)| jump at the same times hence they cannot be independent. Moreover, AU(·) depends
only upon |Z|, hence |Z| and ZAU(·)/|ZAU(·)| are not independent. For further discussion on the
independence, see e.g. [16], where is shown that an isotropic α-self-similar Markov process has a
skew-product structure if and only if its radial and its angular part do not jump at the same time.

Bertoin and Werner in [3] obtained the analogue of Spitzer’s asymptotic Theorem 3 for isotropic stable
Lévy processes of index α ∈ (0, 2):

Theorem 9. The family of processes (
c−1/2θU

exp(ct), t ≥ 0
)

converges in distribution on D([ 0, ∞ ) ,R) endowed with the Skorohod topology, as c → ∞, to(√
r(α)βt, t ≥ 0

)
, where (βs, s ≥ 0) is a real valued Brownian motion and

r(α) =
α 2−1−α/2

π

∫
C
|z|−2−α|φ(1 + z)|2dz . (33)

Proof. We refer to two different proofs:

1. Bertoin and Werner (1996) [3], using an "Ornstein-Uhlenbeck type" process and ergodicity
arguments, and

2. Doney and Vakeroudis (2012) [7], using the continuity of the composition function ρHU(·) (see
[27]).
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Remark 5. Bertoin and Werner in [3] showed also that the clock HU(t) satisfies the following a.s.
convergence:

1
log t

HU(t) a.s.−→
t→∞

2−α Γ(1− α/2)
Γ(1 + α/2)

. (34)

For discussions concerning the small time asymptotic behavior (t → 0) of the windings of a
Stable process, we address the interested reader to [7] for the case where our process is issued from
a point different from the origin and to [14] when it is issued from the origin. For the latter, one can
either apply classical scaling arguments, or use a novel method appealing to tools from the theory
of self-similar Markov processes involving path transformations and time changes. This approach
may give access to windings of some conditioned versions of stable processes and to the so-called
one-dimensional windings, that is the upcrossings of stable processes over the origin.

3. Applications to the pricing of Asian options

3.1. Asian options and exponential functionals of Brownian motion

In this Subection, we return to the initial Financial Mathematics problem, that is the
characterisation of the distribution of

At =
∫ t

0
exp(2βu)du,

in order to compute E
[(

1
t At − K

)+]
. To that end, one may use the previously stated results to access

the distribution of At via Williams’ so called ‘pinching method’ [17,28]. Loosely speaking, when
Williams studied windings of Brownian motion, instead of working out directly the asymptotics
of the winding process θ, he studied the asymptotic behaviour of this process taken at a random
time, depending on θ (for similar results but with the use of a random time independent of θ, see
e.g. [22]). Next, one simply remarks that the difference between the initial winding process and
the subordinated process is finite, and renormalising appropriately, this difference converges to 0.
Hence, the asymptotic study of the renormalised subordinated process yields similar results for the
renormalised initial one. We propose here to mimic this method for our benefit, by invoking the time
changes discussed in the previous Sections.

Proposition 10. The following convergence in law holds

1
t

log AZ
t

(law)−→
t→∞

2|β|Tγ
1

(law)
= 2|C1|, (35)

where C1 is a standard Cauchy random variable.

Proof. First, remark that

log

AZ
Tγ

t

AZ
t

 = log

∫ Tγ
t

0 exp(2βu)du∫ t
0 exp(2βu)du

 ,

which is a random variable that exists (and which seems to be of no other interest here).
Renormalising by t, we get

1
t

(
log AZ

Tγ
t
− log AZ

t

)
=

1
t

log

AZ
Tγ

t

AZ
t

 (P)−→
t→∞

0.
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Hence, studying asymptotically t−1 log AZ
Tγ

t
as t → ∞ would yield similar results for t−1 log AZ

t .

Following [26], by applying the scaling property of Brownian motion and changing variables we

have that (recall that Tγ
t

(law)
= t2Tγ

1 )

AZ
Tγ

t
=
∫ Tγ

t

0
e2βv dv

(law)
= t2

∫ Tγ
1

0
e2tβu du.

Taking now logarithms and dividing both parts by t we get

1
t

log AZ
Tγ

t

(law)
=

1
t

log

(
t2
∫ Tγ

1

0
e2tβu du

)

=
2 log t

t
+ log

(∫ Tγ
1

0
e2tβu du

)1/t

,

where, using the fact that the p-norm converges to the ∞-norm when p→ ∞, the latter converges for
t→ ∞ towards 2 sup0≤u≤Tγ

1
βu. We recall that invoking the reflexion principle (see e.g. [19])

2 sup
0≤u≤Tγ

1

βu
(law)
= |β|Tγ

1

(law)
= |C1|.

Hence,
1
t

log Tγ
t

(law)−→
t→∞

2|C1|

and the result for AZ
t follows immediately.

The distribution of At may also be characterized by the following result due to Dufresne [8].

Proposition 11. For every x ≥ 0 and with a(u) = arg sinh(u),

E

 1√
2πAZ

t

exp
(
− x

2AZ
t

) =
1√
2πt

1√
1 + x

exp
(
− (a(

√
x))2

2t

)
.

Proof. We appeal again to Bougerol’s identity in law: for every t > 0 fixed,

sinh(βt)
(law)
= β̂At(β),

and we identify the densities of the two parts, i.e.

on the LHS: 1√
2πt

1√
1+y2

exp
(
− (a(y))2

2t

)
,

and on the RHS: E
[

1√
2πAZ

t
exp

(
− y2

2AZ
t

)]
.

The proof finishes by changing variables: x = y2.

Remark 6. These results may easily be generalized for

AZ,(ν)
t =

∫ t

0
exp(βs + νs)ds.
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Indeed, following [1] or [23], we have access to its distribution by the following relation:
with ν, µ two real numbers, for every t fixed (β, B and δ are three independent Brownian motions),

sinh(Y(ν,µ)
t )

(law)
=

∫ t

0
exp(βs + νs)d(Bs + µs) = δ∫ t

0 exp(2(βs+νs))ds, (36)

where (Y(ν,µ)
t , t ≥ 0) is a diffusion with infinitesimal generator:

1
2

d2

dy2 +

(
ν tanh(y) +

µ

cosh(y)

)
d

dy
,

starting from y = arg sinh(x). Here, without loss of generality we may consider µ = 0. Then, one can
mimic the approach where also ν = 0 which was presented above.

3.2. Asian options and exponential functionals of Lévy processes

We turn now our interest to the case of Asian options in relation with Lévy processes, that is the
case where the exponential functional of interest is AU

t ≡
∫ t

0 exp(αξs)ds. Recall from Subsection 2.3
that U is an isotropic planar Stable process, and ξ, ρ are two real-valued Lévy processes, the first one
non-symmetric and the second one symmetric. Hence, we have:

TθU

c = inf{t : θU
t = c},= (HU)−1

u

∣∣∣
u=Tρ

c
=
∫ Tρ

c

0
ds exp(αξs) ≡ AU

Tρ
c
, (37)

and similarly

T|θ
U |

c = AU
T|ρ|c

. (38)

We state the following Proposition only for AU
Tρ

c
but a similar results holds also for AU

T|ρ|c
. One can now

mimic the approach of the previous Subsection in order to extend the result to AU
t .

Proposition 12. For a > 0, the following convergence in law holds

1
t

log AU
Tρ√

at

(law)−→
t→∞

τ
(1/2)√

a/r(α)
, (39)

where r(α) is given by (33) and, with β denoting again a real Brownian motion, for any x > 0, τ
(1/2)
x ≡ inf{t :

βt = x} which is a 1
2−stable subordinator.

Proof. Following [7], for every a > 0 we use (39) and Theorem 9 and we have

1
t

log AU
Tρ√

at
=

1
t

log
(

TθU√
at

)
=

1
t

log
(

inf
{

u : θU
u >

√
at
})

u=exp(ts)
=

1
t

log
(

inf
{

ets :
1√

t
θU

exp(ts) >
√

a
})

= inf
{

s :
1√

t
θU

exp(ts) >
√

a
}

(law)−→
t→∞

inf
{

s : βr(α)s >
√

a
}

= inf
{

s :
√

r(α)βs >
√

a
}
≡ τ

(1/2)√
a/r(α)

,

which finishes the proof.
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Appendix. Comparative table between 2-dimensional Brownian motion, Ornstein-Uhlenbeck
and Stable processes

We note that
(d)
=⇒ denotes weak convergence in distribution in the sense of Skorohod whereas

(law)
=⇒ is used for convergence in distribution in the common sense (see e.g. [5] for further details).

Table 1: Spitzer’s Asymptotic Theorem and Clock HW , W = Z, V, U

Planar BM (Z) Complex-valued OU (V) Planar Stable Process (U)
(α = 2) (α ∈ (0, 2))

Clock HW HZ(t) =
∫ t

0
ds
|Zs |2

HV(t) =
∫ α(t)

0
ds
|Bs |2

, HU(t) =
∫ t

0
ds
|Us |α

α(t) = (2λ)−1(exp(2λt)− 1)
B: planar BM

Spitzer’s law 2
log t θZ

t
(law)−→
t→∞

C1
1
t θV

t
(law)−→
t→∞

Cλ
1√
log t

θU
t

(d)−→
t→∞

√
r(α)N,

N ∼ N (0, 1)

t→ ∞ 4
(log t)2 HZ(t)

(law)−→
t→∞

T1 , 1
λ2t2 HV(t)

(law)−→
t→∞

T1 , 1
log t HU(t) a.s.−→

t→∞
2−α Γ(1−α/2)

Γ(1+α/2)

T1 = inf{t : βt = 1} T1 = inf{t : βt = 1}

Comments

1. We recall that Spitzer’s theorem for BM can be extended in order to get convergence only in the
sense of finite-dimensional distributions but not in the sense of Skorohod [10], contrary to what
happens in the Stable case.

2. Following Bertoin and Werner [3], U is transient hence the difference between θU and the winding
number around an arbitrary fixed point different from 1 is bounded and converges as time goes
to infinity. Thus, we can obtain easily a multidimensional version of Spitzer’s analogue (that is
the so-called windings around several points), contrary to the BM case. For the latter, one needs
to decompose θZ in small and big windings (see e.g. Pitman and Yor [18]).

3. For windings of 3-dimensional BM around certain curves, see e.g. Le-Gall and Yor [15].
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