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Based upon Maxwell’s equations, it has long been established
that oscillating electromagnetic (EM) fields incident upon a metal
surface decay exponentially inside the conductor,1–3 leading to a vir-
tual EM vacuum at sufficient depths. Magnetic resonance imaging
(MRI) utilizes radiofrequency (r.f.) EM fields to produce images.
Here we present the first visualization of a virtual EM vacuum
inside a bulk metal strip by MRI, amongst several novel findings.

We uncover unexpected MRI intensity patterns arising from two
orthogonal pairs of faces of a metal strip, and derive formulae for
their intensity ratios, revealing differing effective elemental volumes
(voxels) underneath these faces.

Further, we furnish chemical shift imaging (CSI) results that
discriminate different faces (surfaces) of a metal block accord-
ing to their distinct nuclear magnetic resonance (NMR) chemical
shifts, which holds much promise for monitoring surface chemical
reactions noninvasively.

Bulk metals are ubiquitous, and MRI is a premier noninvasive
diagnostic tool. Combining the two, the emerging field of bulk
metal MRI can be expected to grow in importance. The funda-
mental nature of results presented here may impact bulk metal
MRI and CSI across many fields.

1. INTRODUCTION

MRI is a household name as a diagnostic tool in the medi-
cal field,10, 11 with an impressive resume in many other fields,
including the study of materials,12–15 corrosion of metals, mon-
itoring batteries and supercapacitors.16, 17

However, historically, MRI of bulk metals has been very rare,
limited to specialized cells using r.f. gradients (with limited
control),18 instead of the magnetic field gradients employed in
conventional MRI. In other studies involving bulk metals, the
MRI targeted the surrounding dielectric (electrolyte in elec-
trochemical and fuel cells with metallic electrodes, or tissues

with embedded metallic implants).19–30 Notwithstanding, these
studies addressed issues that can cause distortions and limit
sensitivity of the MRI images, such as bulk magnetic suscepti-
bility (BMS) effects and eddy currents (produced on bulk metal
surface due to gradient switching).

The dearth of mainstream bulk metal MRI is rooted in unique
challenges posed by the physics of propagation of r.f. EM fields
in bulk metals (MRI employs r.f. pulses to generate the MR
signal leading to the images). All along, it has been known that
the incident r.f. field decays rapidly and exponentially inside
the metallic conductor (Fig.1), a phenomenon known as skin
effect.1–3 The characteristic length of decay (δ, the skin depth),
typically of the order of several microns (Eq.(S2)), characterizes
the limited r.f. penetration into the metal. This in turn, results in
attenuated MR signal intensity for bulk metals.4, 19 Turning the
tables, Bhattacharyya et. al.,4 exploited the skin effect to sepa-
rate and quantify bulk and non-bulk metal NMR signals in Li ion
batteries to monitor the growth of dendritic metallic structures.
Subsequently, for bulk metal MRI, yet another impediment was
correctly diagnosed.5 It was found that the orientation of the
bulk metal surface, relative to B1(the r.f. magnetic field), crit-
ically affected the outcome. Using optimal alignment of the
bulk metal (electrodes), relative to B1, recent studies have suc-
cessfully demonstrated and highlighted bulk metal MRI albeit,
primarily applied to batteries and electrochemical cells.5–9

Though unanticipated at the time, the recent bulk metal MRI
findings eased the implementation of MRI of liquid electrolyte,
by helping mitigate adverse effects due to the metal in the
vicinity of lithium, zinc and titanium electrodes, yielding fresh
insights.7, 8, 31–33 Similar benefits may be expected to accrue for
MRI based radiology of soft tissues with embedded metallic
implants (pacemeakers, prosthetics, dental implants, etc.).
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Here, we present several key findings on bulk metal MRI and
CSI:

• During a systematic noninvasive thickness measurement
of bulk metal strips by MRI7 (section S2), we come across
unexpected regions of intensity, and assign them to two mutually
orthogonal pairs of faces of the strip.

• To explain the peculiar ratios of intensities from these dif-
ferent regions in bulk metal MRI and CSI, we derive formulae
from first principles, unveling a surprising underlying reason:
differing effective elemental volumes for these different regions.

• In the process, the images enable a visualization of a virtual
EM vacuum inside the bulk metal via an MRI tunnel.

• Additionally, we demonstrate that the bulk metal CSI dis-
tinguishes different faces (surfaces) of a metal block according
to their distinct NMR chemical shifts.

We attained these by employing three phantoms (samples)
P0, P1, P3, depicted schematically in Fig.S1 and described in
Methods section 6.1. All phantoms were derived from the same
stock of 0.75mm thick lithium (Li) strip. Phantom P3 is a super
strip composed of three Li strips pressed together, forming an
effective single strip three times thicker than the individual strips
in phantoms P0 and P1.

The setup of phantoms, r.f. coil and the gradient assembly
ensures that the imaging directions x, y, z fulfill the condition
that x ‖ a ‖ B1 and z ‖ B0 (the static main magnetic field),
with the possibility to reorient the phantom about the x-axis;
a, b, c are the three sides of the strips.

Since all MRI and CSI images to follow were acquired with
the given phantom’s bc faces normal (⊥, perpendicular) to B1,
these images bear the imprint of having no contribution from
these faces to the magnetic resonance (MR) signal,5–8 since B1

penetration into the metal is maximal when it is parallel (‖) to
the metal surface, and minimal when ⊥ metal surface.1, 5, 6

For details on the MRI experiments, including the nomencla-
ture, the reader is referred to Methods section 6.2.

2. MRI

Fig.2 furnishes stackplots (intensity along the vertical axis)
of 7Li 2d MRI (without slice selection) of phantom P3. Panel
(a) displays MRI(xy). Panel (b) displays MRI(yz).

It is straightforward to infer that the walls of high intensity
regions in either image emanate from ac faces of the P3 strip,5–7

as we did while measuring the thickness of metal strips (Figs.S2
and S3, section S2). In either image, contributions along the
non imaged axis sum up to yield the high intensity walls.

However, the unexpected intensity between the two ac faces
of the super strip, in both the images, is perplexing. The 2d
MRI(xy) in Fig.2a exhibits a low intensity plateau spanning the
walls. The 2d MRI(yz) in Fig.2b displays low intensity ridges
bridging the walls.

2.1. Visualizing a virtual eletromagnetic vacuum by MRI
To understand better these unexpected regions of intensity,

we acquired 7Li 3d MRI(xyz) of phantom P3, shown in Fig.3.
In addition to the ac faces (separated along y), the ab faces
(separated along z) are revealed for the first time.

As noted earlier, bc faces (being ⊥ to B1) are absent. The
hollow region in MRI(xyz) arises from the skin depth phe-
nomenon,1–6 restricting the EM fields to effectively access only
a limited subsurface underneath the ac and ab faces (section
S1 and Fig.1). The presence of faces ‖ B1, coupled with the
conspicuous absence of faces ⊥ B1, in combination with the
hollow region, imparts the 3d image an appearance of an MRI
tunnel, supplying a compelling visualization of a virtual EM
vacuum in the interior of a metallic conductor (hitherto depicted
only schematically in literature (for e.g. Ref.4)).

With the aid of 3d MRI in Fig.3, the intensity regions in 2d
MRI(xy) and 2d MRI(yz) images of Fig.2, can be easily inter-
preted as simply regions resulting respectively from projections
along z and x axes of the 3d image. It is convincingly clear that
the intensity between ac faces (either the plateau or the ridges),
is due to the pair of ab faces of the superstrip P3.

Yet, the basis for the relative intensity values remains elusive
at this stage.

For the 2d MRI(xy) in Fig.2a, it can be argued that, for the
ac face the entire length of side c =7 mm (Fig.S1) contributes
to the signal, while for the ab face, only a subsurface depth
δeff ≈ 9.49 µm contributes (Eq.(S2), Eq.(S7), section S1 and
Fig.1). This would lead to a ratio of the corresponding inten-
sities, Sac/Sab, to be of the order of c/(2δeff) ≈ 368 (Fig.4a),
in obvious and jarring disagreement with the observed ratio (of
maxima of Sac and Sab) of 6.6.

For the 2d MRI(yz) in Fig.2b, the expected intensity pattern
in a stack plot would be one with equal intensities from ab and
ac faces, since they share the same side, a, along x (non imaged)
axis (Fig.4b). This again, is in stark contrast with the observed
ratio (of maxima of Sac and Sab) of 10.

For the MRI(xyz), naively, uniform intensity would be ex-
pected from both ab and ac faces, resulting in a ratio of unity.
Instead, the observed ratio (of maxima of Sac and Sab) is found
to be 3.8.

Thus, the MRI images bear peculiar intensity ratios from
comfortably identified (from 3d MRI) regions of the bulk metal.
We will return to this topic later.

3. CSI

The 7Li NMR spectrum of phantom P3 (Fig.5 inset) contains
two distinct peaks in the Knight shift region for metallic 7Li
(see Methods section 6.2), centered at δ1= 256.4 and δ2= 266.3
ppm. At first sight it might seem odd that a metallic strip, of
regular geometry and uniform density, that is entirely composed
of identical Li atoms, gives rise to two NMR peaks instead of
the expected single peak.
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To gain additional insight as to the spatial distribution of the
Li metal species with different NMR shifts, we turn to CSI,
which combines an NMR chemical shift (CS) dimension with
one or more imaging(I) dimensions.12, 34–36

The 2d CSI(y) shown in Fig.S4 comprises of two bands sep-
arated along y located at δ2, along the CS dimension, while a
low intensity band spans them along y at a CS of δ1, strongly
hinting at, the two bands (at δ2) being associated with ac faces.

This observation called for adding an additional imaging di-
mension along z, leading to 3d CSI(yz), which is realized in
Fig.5, where y and z are the imaging dimensions, accompanied
by the CS dimension. The bands separated along z, occur at δ1.
The bands separated along y, occur at δ2. In conjunction with
the 3d MRI image in Fig.3, it is evident that the pairs of bands
at δ1 and δ2 arise from ab and ac faces respectively, completing
the spatio-chemical assignment.

These assignments readily carry over to 2d CSI(y) in Fig.S4,
with the pair of bands at δ2 and the low ridge spanning them at δ1,
being respectively identified with ac and ab faces. Similarly, in
the NMR spectrum, the short and tall peaks respectively at δ1,2
are assigned to ab and ac faces, consistent with the reported4, 6

experiments and simulations.

That different types of faces of the bulk metal strip suffer
different NMR (Knight) shifts according to their orientations
relative to B0, is consistent with previous observations and sim-
ulations,4, 6 and has been traced to bulk magnetic susceptibility
(BMS) effect.4–6, 9, 37–39

Interestingly, the 3d CSI sheds new light on previous bulk
metal NMR studies. For instance, in an earlier study,4 a similar
shift difference between NMR peaks was observed at ‖ and ⊥
orientations (relative toB0) of the major faces of a thinner metal
strip, by carrying out two separate experiments. Here, phantom
P3 furnishes these two orientations in a single experiment, via
ac and ab faces (Fig.S1). The present work provides physical
insight into another previous6 observation. It was found that the
intensity of NMR peak arising from ab faces, unlike that from
the ac faces, was invariant under rotation about z ‖ c ‖ B0 axis.
Our 3d MRI (Fig.3) and 3d CSI (Fig.5), directly demonstrate
that such a rotation leaves the orientation of B1 relative to ab
face (but not the ac face) the same (signal intensity from a given
face depends on its orientation relative to B1

5, 6). Note that
the shifts themselves remain unshifted since they depend on the
orientation of the faces relative to B0, which does not change
under this rotation (ac and bc faces remain ‖ B0, whilst ab faces
remain ⊥ B0).

Thus, bulk metal CSI supplies direct evidence, that the bulk
metal chemical (Knight) shifts resulting from BMS are corre-
lated with the differing orientations (relative to B0) of different
parts of the bulk metal.

Like for MRI, the basis for the ratio of intensities from the
ac and ab faces (Sac/Sab ≈ 2.8), is not immediately intuitively
obvious and will be explored next.

4. INTENSITY RATIO FORMULAE FOR BULK
METAL MRI AND CSI

The peculiar intensity ratios in MRI and CSI, of signals Sab
and Sac, arising respectively from ab and ac faces of phantom
P3 (Fig.2, sections 2 and 3), could be due to gradient switching
involved in the MRI experiments (the resultant eddy currents
could be different for ab and ac faces). However, as shown in
section S3, this can be ruled out on the basis of 2d MRI(yz)
and MRI(zy) at mutually orthogonal orientations (related by a
rotation about x ‖ a ‖ B1), shown in Fig.S5.

And yet, it is possible to derive, from elementary considera-
tions and first principles, and arrive at expressions for the ratios
of MRI and CSI intensities from ab and ac faces.

For the 2d MRI(xy), in Fig.2a, the signal intensity from the
ab faces can be written as (see Eq.(S8))

Sab(x, y) ∝ dx dy
∫
dz = dx dy 2δeff (1)

with dx dy dz denoting elemental volume of the metal, and
δeff is the effective subsurface depth that would account for the
MR signal in the absence of B1 decay (see Eq.(S7) and Fig.1).
Above, the integral over z, is replaced by δeff underneath the
two ab faces separated along z.

Similarly, for the signal intensity from either of the ac faces,

Sac(x, y) ∝ dx dy
∫
dz = dx δeff c (2)

since the subsurface now is ⊥ y.
Eq.(1) and Eq.(2), reveal differing effective elemental vol-

umes(voxels) underneath these faces:

dV ab
eff = dx dy δeff (3)

dV ac
eff = dx δeff dz (4)

From Eq.(1) and Eq.(2),

Sac
Sab

=
c

2∆y
(5)

where we have replaced dy by ∆y, the resolution along y ‖ b.
Consulting the Methods section 6.2 and Fig.S1, c = 7 mm,
∆y=0.25 mm and Eq.(5) yields a calculated ratio of Sac/Sab=
14 (as illustrated in Fig.6a), within an order of magnitude of the
observed ratio (section 2, Fig.2a) and a 25 fold improvement
relative to the expected ratio (Fig.4a).

Also, Eq.(5) reveals that Sac/Sab increases with increasing
resolution along y, as shown in the three images in Fig.S6, with
relative resolutions increasing by factors of 1, 2 and 4, yielding
calculated Sac/Sab ratios of 7, 14 and 28 respectively. The cor-
responding observed ratios (of maxima of Sac and Sab) of 3.3,
6.6, and 11.6, are within an order of magnitude of the calculated
values. Remarkably, these observed ratios themselves increase
by factors of 1, 2 and 3.5, mimicking closely the corresponding
factors of resolution increase.
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Continuing in the same vein, for the 2d MRI(yz), in Fig.2b,

Sab(y, z) ∝ dy dz
∫
dx = a dy δeff (6)

while,
Sac(y, z) ∝ dy dz

∫
dx = a δeff dz (7)

leading to
Sac
Sab

=
∆z

∆y
(8)

once again, replacing dy, dz by ∆y, ∆z, the respective resolu-
tions along y, z. Using the values of ∆y,∆z= 0.0357, 1 mm
in Eq.(8), ensues a calculated ratio of Sac/Sab ≈ 28 (as illus-
trated in Fig.6b), within an order of magnitude of the observed
ratio (section 2, Fig.2b), and 3.5 fold better than the expected
ratio (Fig.4b). More importantly, the expected intensity pattern
is even qualitatively (visually) different from the experiment,
unlike the derived pattern.

Similarly, for the 2d MRI(zy) in Fig.S5b, of phantom P3 in
horizontal orientation, it can be easily shown that,

Sac
Sab

=
∆y

∆z
(9)

Using the values of ∆z,∆y= 0.0357, 1 mm in Eq.(9), results
in a calculated ratio of Sac/Sab ≈ 28, within an order of mag-
nitude of the observed ratio (section S3).

Proceeding along the same lines, for the MRI(xyz) in Fig.3,

Sab(x, y, z) ∝ dx dy dz = dx dy δeff (10)

while,
Sac(x, y, z) ∝ dx dy dz = dx δeff dz (11)

As usual by now, replacing dy, dz by ∆y, ∆z, the respective
resolutions along y, z, we obtain again Eq.(8). Consulting the
Methods section 6.2, ∆y,∆z= 0.25, 1mm, respectively. Using
these values in Eq.(8) yields a calculated ratio of Sac/Sab= 4,
within an order of magnitude of the observed ratio (section 2).

Fig.S7 shows (in stack plot representation, with vertical axis
denoting intensity) xy slices (along z) from the 3d MRI(xyz).
The central slice contains no signal between the walls of inten-
sity (from ac faces) as expected. However, the slice from the top
ab face exhibits a plateau of intensity between the ac faces, vi-
sually demonstrating that Sab 6= Sac in the non-hollow regions
of the 3d image, in place of the expected uniform intensity.

Similarly, for the 3d CSI(yz) in Fig.5, it can be shown that the
ratio Sac/Sab is given by Eq.(8), which along with the relevant
experimental parameters for this image, yields a calculated value
of 2, within an order of magnitude of the observed ratio (of
maxima of Sac and Sab) of 2.8.

On the other hand, for the 2d CSI(y), in Fig.S4, it can be
shown that the ratio Sac/Sab is given by Eq.(5), from which
we obtain a calculated value of 14, using the experimental pa-
rameters in section 6.2. The measured ratio (of maxima of Sac
and Sab) of 9.5, is again within an order of magnitude of the

calculated value.

Thus, the Sac/Sab ratios calculated from Eqs.(5), (8) and (9),
agree with the observed values within an order of magnitude
for 2d MRI(xy), 2d MRI(yz), 2d MRI(zy), 3d MRI(xyz), 3d
CSI(yz) and 2d CSI(y). In fact, discrepancies between observed
and derived Sac/Sab ratios range only by factors of 0.7 to 2.8
across various MRI and CSI images (see Table.1). More im-
portantly, the derived patterns resemble the observed patterns,
unlike the expected patterns, which differ even visually from
the observed patterns (for e.g., see Figs.2, 4 and 6).

TABLE 1
The observed, derived (from Eqs.(5), (8), (9)), and expected

(from skin depth arguments alone) Sac/Sab ratios.

Sac/Sab

Experiment Observed Derived Expected

MRI(xy)
Fig.S6a 3.3 7 368
Fig.S6b 6.6 14 368
Fig.S6c 11.6 28 368

MRI(yz) 10 28 1
MRI(zy) 10 28 1

MRI(xyz) 3.8 4 1
2d CSI(y) 9.5 14 368

3d CSI(yz) 2.8 2 1

In summary, the formulae unveil the underlying reason for
the significant departure of observed Sac/Sab from expected
values: differing effective elemental volumes underneath these
faces, as revealed by Eqs.(3) and (4).

On a practical note, these formulae can guide experimen-
tal strategies to relatively enhance MRI and CSI signals from
different regions of the bulk metal.

5. CONCLUSIONS

In conclusion, the unexpected findings presented here may
impact bulk metal MRI and CSI studies in general, via fresh
insights for data collection, analysis and interpretation. The
bulk metal MRI and CSI (correlating different bulk metal sur-
faces with distinct chemical shifts) results in this study have the
noninvasive diagnostic potential in other fields such as structure
of metals and alloys,40, 41 metallurgy (metal fatigue, fracture,
strain),42–44 catalysis,45, 46 bulk metal surface science and sur-
face chemistry,47–49 metallic medical implants, dielectric MRI
in the vicinity of bulk metals etc. (section 1).

The findings may also lead to as yet unforeseen applications
(section 1) since, (i) they are of a fundamental nature, (ii) there
are no inherent limitations to the approach employed (scala-
bility, different metals, systems other than batteries, etc., are
all possible), (iii) the study utilizes only standard MRI tools
(hardware, pulse sequences, data acquisition and processing),
ensuring ease of implementation and reproducibility. Thus it is
likely to benefit from advances made in the mainstream (medi-
cal) MRI field.
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6. METHODS
6.1. Phantoms

All phantoms were assembled and sealed in an argon filled
glove box. All three phantoms, P0, P1 and P3, shown in Fig.S1
(of dimensions a× b× c), were derived from a (0.75mm thick)
stock Li strip (Alfa Aesar 99.9%). The Li strips were mounted
on a 2.3mm thick teflon strip and the resulting sandwich bound
together with Kapton tape. Each phantom was placed in a flat
bottom glass tube (9.75 mm inner diameter (I.D.), 11.5 mm
outer diameter (O.D.) and 5 cm long), with the longest side, a,
‖ to the tube axis and to the axis of the home built horizontal
loop gap resonator (LGR) r.f. coil (12 mm I.D., 15 mm O.D.),
thus guaranteeing B1 ‖ a. The phantom containing glass tubes
were wrapped with Scotch tape to snugly fit into the r.f. coil.

In Fig.S1, x, y, z specify the imaging (gradient) directions,
with z ‖ B0 (the main magnetic field). For our horizontal LGR
r.f. coil (the MR resonator) and the gradient assembly system,
B1 ‖ x, resulting in B1 ‖ x ‖ a.

• P0: Pair of Li strips separated by a teflon strip; for each Li
strip, a× b× c = 20 x 0.75 x 7 mm3.
• P1: Single Li strip. a× b× c = 15 x 0.75 x 7 mm3.
• P3: Three Li strips pressed together to yield a single com-

posite super strip. a× b× c = 15 x 2.25 x 7 mm3.

6.2. MRI and CSI
Magnetic resonance experiments were conducted on a

B0=21T magnet (corresponding to 7Li Larmor frequency of
350 MHz) operating under Bruker Avance III system with Top-
spin spectrometer control and data acquisition, and equipped
with a triple axes (x, y, z) gradient amplifier assembly, using a
multinulcear MRI probe (for a triple axes 63 mm I.D. gradient
stack by Resonance Research Inc.), employing the LGR r.f. coil
(resonating at 350 MHz) desribed above.

The MRI and CSI data were acquired using spin-echo imag-
ing pulse sequence without slice selection12, 34 (yielding sum
total of signal conributions from the non imaged dimensions).
Frequency encoding gradient was employed for the directly de-
tected dimension and phase encoding gradients for the indirect
dimensions.12, 34 The CSI experiments were carried out with the
NMR chemical shift as the directly detected dimension, with
phase encoding gradients along the indirectly detected imaging
dimensions. The r.f. pulses were applied at a carrier frequency
of 261 ppm (to excite the metallic 7Li nuclear spins in the Knight
shift region4, 50), typically with a strength of 12.5 kHz, with a
recycle (relaxation) delay of 0.5 s. The gradient dephasing
delay and phase encoding gradient duration were 0.5 ms.

Throughout this manuscript, the first axis label (x, y, z) de-
scribing an MRI experiment stands for frequency encoding di-
mension and the remaining ones correspond to phase econded
dimensions. For e.g., MRI(xyz) implies frequency encoding
along x axis, and phase encoding along the remaining direc-
tions.
Gx, Gy, Gz and Nx, Ny, Nz denote respectively the gradient

strengths in units ofT/m and number of data points ink-space (∗

denoting complex number of points acquired in quadrature),12, 34

along x, y, z axes. Lx, Ly, Lz and ∆x,∆y,∆z are respectively
the resultant nominal field of view (FOV) and resolution, in
units of mm, along x, y, z axes.12, 34

Also, n is the number of transients accumulated for signal
averaging and SW is the spectral width (in units of kHz) for
the directly detected dimension in MRI and CSI.

1d MRI(y):
n = 64, SW = 50
Gy = 0.42, N∗y = 200, Ly = 7.143, ∆y = 0.0357
2d MRI(xy):
n = 32, SW = 100
Gx = 0.24, N∗x = 200, Lx = 25, ∆x = 0.125
Ly = 10
(1) Gy = 0.12, Ny = 20, ∆y = 0.500 (Figs.S2a,S6a)
(2) Gy = 0.24, Ny = 40, ∆y = 0.250 (Figs.S2b,S3b,2a, S6b)
(3) Gy = 0.48, Ny = 80, ∆y = 0.125 (Fig.S6c)
2d MRI(yz):
n = 32 SW = 50
Gy = 0.42, N∗y = 200, Ly = 7.143, ∆y = 0.0357
Gz = 0.06, Nz = 16, Lz = 16, ∆z = 1.000
2d MRI(zy):
n = 32, SW = 50
Gz = 0.42, N∗z = 200, Lz = 7.143, ∆z = 0.0357
Gy = 0.06, Ny = 16, Ly = 16, ∆y = 1.000
MRI(xyz):
n = 16, SW = 100
Gx = 0.24, N∗x = 200, Lx = 25, ∆x = 0.125
Gy = 0.24, Ny = 40, Ly = 10, ∆y = 0.250
Gz = 0.06, Nz = 16, Lz = 16, ∆z = 1.000
2d CSI(y):
n = 8, SW = 100, number of data points(complex)=1024
Gy = 0.24, Ny = 40, Ly = 10, ∆y = 0.250
3d CSI(yz):
n = 24, SW = 100, number of data points(complex)=1024
Gy = 0.12, Ny = 20, Ly = 10, ∆y = 0.500
Gz = 0.06, Nz = 16, Lz = 16, ∆z = 1.000

All data were processed in Bruker’s Topspin, with one zero
fill prior to complex fast Fourier Transform (FFT) along each
dimension either without any window function or with sine-bell
window function. All data were ’normalized’ (to ≈ 10, for
plotting convenience) to aid comparing relative intensities from
different regions within a given image. For the purpose of deter-
mining the ratios of signal intensities associated with different
regions of the bulk metal, the intensity values were measured
directly from the processed images either in Topspin or Matlab
(for e.g., ’datatip’ utility in Matlab, yields the coordinates and
the ’value’ (intensity) of a data point by clicking on it, in 1d, 2d
and 3d plots).
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FIG. 1. Skin depth δ, and effective subsurface depth δeff.
(a) Exponential decay of magnitude of B1(y), as a function of the depth from the metal surface (see Eq.(S1) in section S1).
(b) Effective subsurface depth δeff, without B1decay, that would account for the MR signal (see Eq.(S7) in section S1).

FIG. 2. Surprising regions of intensity in bulk metal MRI.
7Li 2d MRI (sans slice selection) stack plots of phantom P3 (Fig.S1 and section 6). Vertical axis denotes intensity, resulting from the sum total of spin density
along non imaged dimension.
(a) 2d MRI(xy); same data as in blue, labeled P3, regions of Fig.S3b.
(b) 2d MRI(yz).
In either image, there is no contribution from the bc faces to the MR signal since they are ⊥B1(section 1).
In either image, the high intensity walls are easily associated with the ac faces. (see Figs.S2, S3 and section S2).
The intensity between the two ac faces of the metal strip is evident in both images. Note the low intensity plateau and the ridges between the walls, respectively
in the MRI(xy) and MRI(yz) images. Regarding these novel regions of intensity, see section 2. See also Fig. 4.
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FIG. 3. Peering at a virtual electromagnetic vacuum through an MRI tunnel.
7Li 3d MRI(xyz) of phantom P3 (Fig.S1). In addition to the already identified ac faces in previous images (Figs.2, S2 and S3), the ab faces are revealed for the
first time, accounting for the low intensity regions in Fig.2. The bc faces are conspicuous by absence, being⊥B1. The resulting MRI tunnel supplies a compelling
visual of peering at a virtual EM vacuum in the interior of a metallic conductor (see section 2).

FIG. 4. Expected relative intensities in bulk metal MRI.
Illustration of expected relative intensities from different pairs of faces in bulk metal 7Li 2d MRI of phantom P3 as stack plots (intensity along vertical axis): (a)
2d MRI(xy). (b) 2d MRI(yz).
In either illustration, there is no contribution from the bc faces to the MR signal since they are ⊥B1(section 1).
For MRI(xy) in panel (a), the expected ratio of signal intensities from ac and ab faces (Sac/Sab ≈ 368) is in obvious disagreement with experiment (Fig.2a).
For MRI(yz) in panel (b), one would naively expect that Sac = Sab, which again is in striking departure from the experiment (Fig.2b). See section 2.
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FIG. 5. Chemical shift imaging of a bulk metal strip.
7Li 3d CSI(yz) of phantom P3: chemical shift, y and z axes comprise the three dimensions.
Despite being composed of identical Li atoms, 7Li NMR spectrum (inset) of phantom P3 exhibits two peaks, instead of the expected single peak (section 3). Short
and tall peaks are centered respectively at δ1= 256.4 and δ2= 266.3 ppm.
In the CSI, bands separated along z, occur at CS δ1. The bands separated along y, occur at CS δ2.
In conjunction with the 3d MRI (Fig.3) and P3 schematics (Fig.S1), the pair of bands at δ1 are assigned to ab faces, and pair of bands at δ2 are assigned to ac
faces (thus completing the assignment of both the 2d CSI(y) in Fig.S4, and the NMR spectrum itself).

FIG. 6. Predicted relative intensities in bulk metal MRI.
Illustration of predicted (from the derived formulae) relative intensities from different pairs of faces in bulk metal 7Li 2d MRI of phantom P3 as stack plots
(intensity along vertical axis).
(a) 2d MRI(xy) based on Eq.(5): Sac/Sab = 14.
(b) 2d MRI(yz) based on Eq.(8): Sac/Sab = 28.
In either illustration, there is no contribution from the bc faces to the MR signal since they are ⊥B1(section 1).
Compare and contrast with the corresponding experimental images in Fig.2, and the illustration of expected images in Fig.4. See sections 2 and 4.
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S1. EFFECTIVE SUBSURFACE DEPTH, δEFF

The r.f. EM fields, upon encountering bulk metal, face the
phenomenon of skin effect. Of particular interest to this work,
is the fact that the magnitude of the r.f. magnetic field (B1)
decays exponentially inside the metal according to1–3

B1(y) = B1(0)e−y/δ (S1)

at a depth y beneath the surface as shown in Fig.1a. The char-
acteristic length δ (the skin depth), is determined by:

δ =

√
2

µσωr.f.
(S2)

where, σ is the conductivity of the conductor (metal), µ, its
magnetic permeability, with,

µ = µ0 µr; σ = 1/ρ; ωr.f. = 2πνr.f. (S3)

where, ρ is the resistivity of the metal, µr is the relative magnetic
permeability of the metal relative to µ0, the free space permit-
tivity, and νr.f. is the (radio) frequency of the applied field.
µ0= 4π 10−2mkgA−2s−2.51 For Li, ρ= 92.8

nΩ m, µr=1.4.51 νr.f.= 350 MHz, is the frequency of the
applied r.f. field, set to the resonance (Larmor) frequency for
7Li in a magnetic field of strength 21 T . When used in Eq.(S2),
these values yield δ ≈ 6.9µm.

Consider a face ‖ B1. Using Eq.(S1), the subsurface be-
neath this face, per unit surface area, contributes to the signal
according to,4

S ∝
∫ ∞
0

dy sin(θ0 e
−y/δ) (S4)

where,
θ0 ≡ θ(0) = γB1(0) τ (S5)

is the r.f. flip angle12, 34, 50, 52 at the metal surface (y=0),4 γ,
the gyromagnetic ratio for 7Li nucleus, τ , the duration of the
applied r.f. pulse. Eq.(S4) may be readily recast as:

S ∝ δ
∫ θ0

0

dy sinc(y) ≡ δ Si(θ0) (S6)

where, sinc(y) = sin y/y. The well known "Sine" integral Si
can be evaluated by numerical integration (for e.g., using the
function "sinint" of popular mathematical software MatLab).

In particular, for flip angle θ0=π2 ,4 using Eq.(S6), the signal
contribution, from the subsurface per unit surface area is

S ∝ 1.3708 δ ≡ δeff (S7)

where, δeff is the effective subsurface depth contributing to the
signal, in the absence of exponential decay of B1(Fig.1b). We
can generalize the proportionality above to an arbitrary elemen-
tal surface area (⊥ y):

S ∝ dx dz δeff (S8)

For our case, from Eq.(S7), δeff ≈ 9.49µm (Fig.1b).

S2. METAL STRIP THICKNESS FROM MRI
S2.1 Phantom P0 with 2 Li strips

The now familiar5–7 bulk metal two dimensional (2d)
MRI(xy), for phantom P0 (Fig.S1) is shown in Fig.S2a. The
extent of image intensity bands along the direction of separation
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(y), arises from each (b=0.75mm thick) conducting metal strip,
and is mainly determined by the image resolution (0.5 mm)
along y (Methods section 6.2). It is difficult to deduce the strip
thickness accurately (each band yielding 1.8mm for each strip).

The situation is quite different at twice the resolution along
y, as shown in Fig.S2b. For the higher resolution image, each
conducting metal strip gives rise to two bands, from the ac faces
‖ B1, since the magnitudes of strip thickness, skin depth and
resolution collude together to resolve the faces of each strip.6, 7

The strip thickness is thrice the resolution and is far greater (79
x) than δeff (= 9.49µm for our case, as shown in section S1;
the two effective subsurfaces beneath the ac faces are separated
by 731 µm). The intra strip band separation yields a measured
thickness of 0.80 and 0.79 mm respectively for top and bottom
strips (a ratio of 0.99). By contrast, for the image in panel (a),
the signals from the two faces of a given strip coalesce into a
single band due to inadequate resolution.

S2.2 Phantoms P1 and P3
Fig.S3 displays an overlay of 7Li 1d MRI(y) in panel (a),

and 2d MRI(xy) in panel (b), from phantoms P1 and P3. The
nominal resolutions along y, for 1d MRI(y) and 2d MRI(xy),
are respectively 0.0357 and 0.25 mm. Each phantom gives rise
to two bands emanating from its pair of ac faces. The separaton
(along y) amongst the intra-strip bands yields the strip thickness.

It is evident that the super strip of phantom P3, composed of 3
Li strips pressed together behaves as a single strip. Mere visual
inspection of the images, by virtue of the equal spacing between
the 4 bands along y, suggests that P3 is thrice the thickness of
P1.

The thickness for P3 and P1 are respectively, 2.163 and 0.73
mm from the 1d images, and 2.51 and 0.83 mm from the 2d
images, verifying that P3 is ≈ 3x thicker than P1.

Thus, the drawback of limited r.f. penetration and attenuated
signal in bulk metals, due to skin-effect, can be turned into an
opportunity to undertake noninvasive thickness measurements.7

S3. PECULIAR INTENSITY RATIOS IN BULK METAL
MRI AND CSI

In section 4 we proposed that gradient switching during MRI
experiments could be responsible for the observed intensity dif-
ferences of MRI and CSI signals from ab and ac faces of phan-
tom P3. Here we examine this in detail.

Eddy currents,1, 2, 53 produced by the gradient switching could
adversely affect the MRI signal7, 12, 34 from the ab and ac faces
by differing amounts. The transient magnetic fields (‖B0) pro-
duced during the gradient switching, induce eddy currents in
closed loops on a ⊥ surface, which in turn produce opposing
magnetic fields according to Lenz’s Law.1–3 It is the induced, in-
stead of the instigating, magnetic fields that are of interest, since
the eddy currents can persist long after the gradient switching.
The induced magnetic fields can alter the precession frequen-
cies of the spins in the transverse (⊥ to B0) plane leading to

phase variations, diminished signal, and image distortions. The
ac face is ‖ to the transient magnetic fields of the gradient, and
hence unable to support a closed current loop to exist on its
surface,54 while the ab face can. Thus, in general, the ac and ab
faces can have different signal intensities.

To test this hypothesis, we compared the 7Li 2d MRI(yz) in
vertical (ac ‖ B0, ab ⊥ B0), and the MRI(zy) in horizontal
(ab ‖ B0, ac ⊥ B0) orientations, shown in Fig.S5.

In the vertical orientation, signal intensity from the ac face
should not be affected by the eddy currents while that from the
ab face would be. In the horizontal orientation, it would be vice
versa.

But, the MRI(yz) in vertical orientation and MRI(zy) in hor-
izontal orientation (Fig.S5), show this not to be the case. They
were acquired under completely equivalent conditions (Meth-
ods section 6.2), resulting in a virtual dead heat regarding the
relative intensities from the ab and ac faces in these two orien-
tations.
(For MRI(yz) the ratio of signal intensities from ac and ab
faces is 10 (section 2), while for MRI(zy) it is 10.1. Also, the
corresponding NMR spectra, shown as insets, confirm our as-
signments of downfield and upfield peaks respectively to faces
‖ and⊥ to B0 as described in section 3, and are consistent with
the reported experiments and simulations.4, 6)
By the same token, the eddy currents produced by the r.f. B1

55

would not affect ab and ac faces, which are always ‖ B1 for
our case (indirectly corroborated by prior studies,4–6, 9, 38, 39 that
correctly accounted for NMR signal from metal strips). On the
other hand, face bc ⊥ B1, and the resultant eddy current annihi-
lates B1

1, 2 and MR signal for this face,5, 6 as borne out time and
again by the MRI and CSI images throughout this manuscript.

It should be noted that modern gradient systems have built
in active shielding technology to largely suppress the formation
of eddy currents to mitigate the deleterious effects on the MR
signal,12, 34, 56 rendering the vertical and horizontal orientations
(Fig.S5) equivalent in this regard.

One might ask if the intenstiy differences from ab and ac sub-
surfaces in the MRI and CSI images are due to differences inB1

amplitude (B1 inhomogeneity) at the two orthogonal faces. But
the 2d MRI(xy) images as a function of resolution in Fig.S6, do
not suuport such an argument since for all three images, the B1

differences (if any) at the ab and ac faces should be the same
and should not have resulted in changes. On the other hand,
the existence of B1 differences at the ab and ac faces should
have resulted in different Sac/Sab for the two images in the
equivalence experiment in Fig.S5, contrary to the observation.
Further, we can examine if the B1 inhomogeneity could par-
tially account for the descrepancy between observed and derived
Sac/Sab values. Consider the 2d MRI(yz) in vertical orienta-
tion shown in Fig.S5a. If Bxy1 and Bxz1 denote the differing B1

amplitudes at the ab and ac faces, resulting in corresponding
effective subsurface depths δeff

xy and δeff
xz , Eq.(8) is replaced
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by
Sac
Sab

=
∆z

∆y

δeff
xz

δeff
xy (S9)

Similarly, for the 2d MRI(zy) in horizontal orientation shown
in Fig.S5b, Eq.(9) is replaced by

Sac
Sab

=
∆y

∆z

δeff
xy

δeff
xz (S10)

But, the experimental setup guarantees that the resolution ratios
in both Eq.(S9) and Eq.(S10) is 28. Hence, the ratio of the
intensity ratios should be [δeff

xz/δeff
xy]2 (=1, experimentally),

leading to the conclusion that B1 inhomogeneity does not play
a prominent role in this study. (By the numbers: Using the

experimental intensity ratio in Eq.(S9), δeff
xz/δeff

xy = 10/28.
Using this value in Eq.(S10), we see that the intensity ratio
should have been 78.4, in contradiction with the experimental
value of 10, supporting the claim that B1 inhomogeneity does
not have an appreciable contribution.)

We note that prior studies,4–6, 9, 38, 39 relying on skin depth ar-
guments, correctly accounted for the NMR signal from metal
strips, without invoking B1 inhomogeneity. Present study ex-
tends the established approach to MRI and CSI of bulk metals,
by following the same principles. Identifying other mecha-
nisms at play that could account for the remaining discrepancy
between observed and derived intensity ratios, warrants further
future research.
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FIG. S1. Schematics of MRI phantoms.
Phantoms comprising of Li strips (of dimensions a× b× c), derived from a 0.75 mm thick stock Li strip.
Phantom P0: Pair of Li strips separated by a teflon strip; For each Li strip, a× b× c = 20 x 0.75 x 7 mm3.
Phantom P1: Single Li strip. a× b× c = 15 x 0.75 x 7 mm3.
Phantom P3: Three Li strips pressed together to yield a single composite super strip. a× b× c = 15 x 2.25 x 7 mm3.
The static (main) magnetic field B0 specifies the z direction. Also, x, y, z denote the MRI gradient (imaging) directions.
The setup of phantom, r.f. coil and the gradient assembly guarantees that x ‖ a ‖ B1, with a rotational degree of freedom about the x-axis, to reorient the
phantom. See sections 1 and 6.1.

FIG. S2. Resolution and strip thickness in bulk metal MRI.
7Li 2d MRI(xy) from phantom P0 comprising of two Li strips (separated by a teflon strip) of identical thickness, at (a) 0.5 mm (b) 0.25 mm resolution, along y.
For the lower resolution image in panel (a), the extent of image intensity bands along y is mainly determined by the image resolution. It is difficult to infer the
strip thickness with any confidence.
On the other hand, for the higher resolution image in panel (b), each conducting strip gives rise to two bands, from the ac faces ‖ B1; the relative magnitudes of
strip thickness, skin-depth and resolution conspire and combine to resolve the faces of each strip. The intra strip band separation yields the thickness of that strip.
See section S2.1.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 November 2016 doi:10.20944/preprints201610.0042.v2

http://dx.doi.org/10.20944/preprints201610.0042.v2


15

FIG. S3. Comparing thickness of strips from bulk metal MRI.
Superpositon of 7Li MRI from phantoms P1 and P3. (a) 1d MRI(y). The resolution along y, is 0.0357 mm. (b) 2d MRI(xy). The resolution along y, is 0.250
mm.
x, y, z are the imaging directions (Fig.S1). Each phantom gives rise to two bands emanating from its pair of ac faces. Thickness of a given strip is given by the
separation, along y, between bands arising from it. Mere visual inspection of the panels, by virtue of the equal spacing between the 4 bands along y, suggests that
P3 is thrice the thickness of P1. See section S2.2.

FIG. S4. 7Li 2d CSI(y) of phantom P3.
Stack plot representation (intensity along the vertical axis). See also Fig.5 and Fig.S1. Chemical shift along one axis, and image along y, comprise the 2
dimensions. Along y, the CS at δ2 gives rise to a pair of separated bands, while an extended, low intensity band spanning them is obtained with a CS of δ1. See
section 3.
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FIG. S5. Bulk metal MRI of phantom P3, at mutually orthogonal orientations.
Comparison of 7Li 2d MRI stack plots (vertical axis denotes intensity) of phantom P3 in two different orientations.
(a) 2d MRI(yz) in vertical orientation. (b) 2d MRI(zy) in horizontal orientation. The corresponding NMR spectra are shown as insets.
These images declare a virtual dead heat, between the two orientations, regarding the relative intensities from the two pairs of ac and ab faces.
This puts to rest the possibility that the differences in the intensities from the ab and ac faces, arises due to the differing extents to which the eddy currents (arising
from the gradient switching in MRI experiments) may affect the signals from the ab and ac faces.
See sections 4, 6.2 and S3.

FIG. S6. Resolution, and relative signal intensities from ab and ac faces.
7Li 2d MRI(xy) stack plots (intensity along the vertical axis) of phantom P3, at differing resolutions along y, providing experimental verification that the ratio of
signals from ac and ab faces, increases with increasing resolution (Eq.(5) in section 4).
(a), (b), (c) are respectively at resolutions of 0.5, 0.25 and 0.125 mm along y (Methods section 6.2).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 November 2016 doi:10.20944/preprints201610.0042.v2

http://dx.doi.org/10.20944/preprints201610.0042.v2


17

FIG. S7. 2d(xy) slices from MRI(xyz) of a bulk metal strip.
Visualization of Sab 6= Sac (the signal intensities from ab and ac faces) via 2d (xy) slices (along z) from 7Li 3d MRI(xyz), of phantom P3 (Fig.S1).
(a) 3d MRI(xyz); same data as in Fig.3. (b) Slice from the top ab face. (c) Central slice.
The slices are displayed as stack plots (intensity along vertical axis). In a given slice, intensities at all points (x, y) are for the same z value in panel (a).
In either slice, the walls of intensity arise from ac faces. The plateau spanning them in panel (b), emanates from the top ab face.
See section 4.
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