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Abstract: Precision agriculture is a farm management technology that involves sensing and then 
responding to the observed variability in the field. Remote sensing is one of the tools of precision 
agriculture. The emergence of small unmanned aerial vehicles (sUAV) have paved the way to 
accessible remote sensing tools for farmers. This paper describes the comparison of two popular  
off-the-shelf sUAVs: 3DR Iris and DJI Phantom 2. Both units are equipped with a camera gimbal 
attached with a GoPro camera. The comparison of the two sUAV involves a hovering test and a 
rectilinear motion test. In the hovering test, the sUAV was allowed to hover over a known object 
and images were taken every second for two minutes. The position of the object in the images was 
measured and this was used to assess the stability of the sUAV while hovering. In the rectilinear 
test, the sUAV was allowed to follow a straight path and images of a lined track were acquired.  
The lines on the images were then measured on how accurate the sUAV followed the path. Results 
showed that both sUAV performed well in both the hovering test and the rectilinear motion test. 
This demonstrates that both sUAVs can be used for agricultural monitoring. 
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1. Introduction 

For a farmer, knowing the health and current state of the year’s crop is essential for an effective 
crop management. One of the tools that a farmer can use to effectively manage his crops is precision 
agriculture. Precision agriculture is a technique in which a farmer uses observation and measurement 
with the aid of newly available technologies to know how to manage their crops in the most proficient 
way possible [1, 2]. With the acquired information, a farmer can do site specific crop management in 
which a particular section of a field can be given individualized treatment for their specific health. 
Observations and measurements of a crop can be taken in many ways, but in all cases, the findings 
would lead to the knowledge of how to best treat and manage the plants for maximum yield. 
Precision agriculture is useful for farmers due to its very straight forward and correlative outcomes 
achieved from simply observing, measuring, and analyzing the field and then managing it 
accordingly. Technologies such as yield monitoring and variable rate applications are commonly 
used precision agriculture tools [3]. Precision agriculture can not only produce better crop 
productivity by tending to each plant’s individual conditions, but also provides means to more 
efficient distribution of resources (e.g. water, fertilizer, and pesticides), leading to more profitable 
and ecofriendly farms. 

Although precision agriculture encompasses many different methods of data acquisition, 
today’s technology allows for remote sensing techniques to act as an extremely useful tool for 
farmers. Remote sensing is an approach in which information is obtained without requiring a person 
to be physically present to collect the data. Remote sensing combined with Geographic Information 
Systems (GIS) and Global Positioning Systems (GPS) provide farmers the technologies needed to 
maximize the output of their crops [4, 5]. Therefore, with use of technology data can be remotely 
collected and composed to be analyzed by means of unmanned vehicles, satellites, and sensors. This 
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manner of observation is a huge innovation for the agriculture industry by allowing farmers access 
to forms of observation and measurements, as well as an abundance of information that could not 
have been had prior to remote sensing. With the use of remote sensing, each plant’s state of health 
amongst an entire crop can more easily be recognized from large amounts of data that can be collected 
and stored and later analyzed. In addition, remote sensing technologies has the added benefit of 
reducing environmental impacts [6]. 

There are a number of ways to implement remote sensing. These include satellite imaging, 
imaging using manned or unmanned aerial vehicles (UAV), and imaging using ground-based 
systems [7]. In a day when small unmanned aerial vehicles (sUAV) are becoming much more 
common and influential in numerous industrial fields [8], it is no surprise that they can be utilized in 
agriculture applications as well [9, 10]. A comparative study between using sUAV and manned 
aircraft to image citrus tree conditions showed that sUAV produced higher spatial resolution images 
[11]. One of the most useful yet affordable remote sensing systems can now be obtained with the 
purchase of a small quadcopter or drone which can then be flown over a farmer’s desired agriculture 
fields. The drones can then take images of the farmer’s crop with a variety of camera filters to provide 
the farmer with multiple spectrums of imaging. Not only is a sUAV useful in providing current aerial 
images of their entire crop, but it also allows for the opportunity for image processing and analysis 
which can give even more information of the health their crops as well as identifying areas of the 
crop that require specific forms of attention. A study by Bulanon et al. [12] to evaluate different 
irrigation systems of an apple orchard used combination of sUAV and image processing. The small 
drones can be easily flown and maintained with little training making them a great option for 
farmer’s looking to further their farming by merging agriculture with the technology of remote 
sensing. 

With the price of remote sensing sUAVs becoming much more affordable and thus a realistic 
application for today’s farmers, the research done in this paper strives to test, analyze, and compare 
two of today’s popular  off-the-shelf ready-to-fly sUAVs in multiple aerial competence tests and 
evaluate their suitability for agricultural use. The objectives of this paper are: 

1. To compare the flight performance of two off-the-shelf sUAVs: 3DR Iris and DJI 
Phantom 2, 

2. To develop image processing algorithms to evaluate the performance of the two sUAVs 
3. To demonstrate an agricultural application of the sUAV. 

2. Materials and Methods 

2.1. Small Unmanned Aerial Vehicles 

Unmanned aerial vehicles (UAV) can be classified according to size. The classification includes 
micro UAV, small UAV, medium UAV, and large UAV [13]. The micro UAVs are extremely small in 
size and applies to sizes of about an insect to 30-50 cm long. The small UAV (sUAV) are UAVs with 
dimension greater than 50 cm and less than 2 m. The Federal Aviation Agency defines sUAV as an 
aircraft that weighs more than 0.25 kg but less than 25 kg [14]. The medium UAVs have dimension 
ranging from 5 m to 10 m and can carry payloads of up to 200 kg, while large UAVs applies to the 
UAVs used mainly for combat operations by the military. In this paper the focus is on sUAV and its 
application to agriculture. While most people are able to build their own sUAV using do-it-yourself 
kits, off-the-shelf ready-to-fly sUAV are also available. The advantages of the off-the-shelf sUAV are 
they are ready to fly and there is not much tuning involved as compared with DIY kits. In addition, 
these off-the-shelf sUAV comes with camera gimbals that could then be easily used for agricultural 
surveying. Two of the most popular sUAV in the market were used in this study: 1) 3DR Iris [15] and 
2) DJI Phantom 2 [16]. Some specifications of the two drones is provided in the Table 1. An image of 
the 3DR Iris is shown in Figure 1 and is noticeably wider than the DJI Phantom 2 which is pictured 
in Figure 2. The greater width of the Iris makes it so that the distance between the front and back 
props is less than the distance from side to side. The DJI Phantom 2 in contrast provides prop 
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locations that are symmetrically set in a square around the center of the drone. Both of the drones 
used functionally similar gimbals to operate a Go-Pro camera for in flight imaging. 

Table 1: Iris and Phantom 2 Specifications 
 IRIS Phantom 2 

Motors 4 4 
Max Payload 400g 300g 
Flight Time 16-22min 14-25min 

Max Flight Speed 22.7m/s 15m/s 
Motor to Motor Dimensions 550mm 350mm 

Flight Controller Pixhawk NASA-MV2 
Software (Ground Station) Mission Planner DJI Ground Station 

Flight Modes Manual Manual 
 Hover Hover 
 Auto Auto 

Battery 5100mAh 5200mAh 
Gimbal Tarot Go-Pro Gimbal DJI Go-Pro Gimbal 

 

 

Figure 1. 3DR Iris and DJI Phantom 2 quadcopter drones. 

2.2 Image Acquisition for Agricultural Application 

The image acquisition system used for both sUAV was a modified GoPro Hero 3 camera. The 
GoPro Hero 3 can shoot both videos and pictures. In this paper, the camera was used to acquire 
images. The camera was set to capture 11 megapixels resolution and the white balance was set to 
5500K. The camera was modified from an RGB camera to a near-infrared, green, and blue (NGB) 
camera and this enabled the capture of near-infrared, green, and blue bands in the same image. The 
camera modification steps included the removal of the infrared-blocking filter of the GoPro and 
replacing the filter with a Schott BG3 filter, which blocks the red band but passes near-infrared, green, 
and blue. Figure 2 shows the modified camera and the resulting images. The modified images shows 
the plants having a reddish hue as compared with the normal greenish hue that we observe in the 
RGB image. For the RGB image, the green color of the plants are caused by the leaves’ pigments 
reflecting the green light and absorbing the red and blue lights. For the modified image, the high 
amount of red reflection from the plants in the modified image is due to the fact that plants with more 
chlorophyll will reflect more near-infrared energy. The modified camera was used for the comparison 
tests. 
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Figure 2. Modified GoPro Camera and resulting images. 

2.3 Performance Evaluation Tests 

The application of sUAV for agricultural surveying involves taking a single picture at a certain 
altitude or taking multiple pictures following a waypoint path generated by the user. Based on these 
applications, two performance evaluation tests were conducted to compare the two off-the-shelf 
sUAVs. These tests were the hovering test and rectilinear motion test. In both of these tests, a GoPro 
camera is attached to the sUAV camera gimbal and the camera then takes images. Then the images 
are used to evaluate the flight performance of the sUAV using image processing and analysis. A 
similar test to evaluate the performance of an autonomous helicopter while hovering was conducted 
by Xiang and Tian [17]. However, instead of using image processing, they used the onboard sensors. 

2.3.1 Hovering Test 

In the hovering test, the sUAV was flown over a 2-meter square PVC pipe at three different 
altitudes: 5 m, 15 m, and 25 m. At each altitude, the sUAV was allowed to hover for two minutes and 
images were taken every 0.5 second. The pixel resolution for each altitude are the following: 116 
pixels/m (5m), 71 pixels/m (15m), and 51 pixels/m (25 m). The two sUAV were tested at the same time 
with a wind speed of 2 miles per hour (ESE). The time-lapse images of the PVC square were used to 
measure stability of the sUAV while hovering. Figure 3 shows one of the hovering test for the DJI 
Phantom. 

 

 

Figure 3. Hovering test for the DJI Phantom. 
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2.3.2 Rectilinear Motion Test 

In the rectilinear motion test, the sUAV was programmed to fly a straight path over the running 
track at Northwest Nazarene University (NNU). The waypoint path of the sUAV was based on the 
straight line markings of the running track, which constrains the straight line motion of the sUAV. 
The wind condition during this test was 4 miles per hour (ESE). Similar to the hovering test, the 
camera was also programmed to acquire images as it moved over the track every 0.5 second. The 
acquired images were then used to measure the stability in straight line motion. Figure 4 shows one 
of the tests for the 3DR Iris. 

 

 
Figure 4. Rectilinear motion test for the 3DR Iris. 

2.4 Image Processing for Performance Evaluation 

2.4.1 Hovering Test 

To evaluate the hovering test using image processing [18], the center of area of the PVC square 
inside the image was used as the stability parameter. The stability was measured based on the change 
of the center of area. Figure 5 demonstrates this concept. The solid black line is the segmented PVC 
square from the first acquired image and this was used as the set point. The gray lines are the 
segmented PVC square from the subsequent images. The position of the center of area for each 
subsequent image were then compared with the set point image, and this was used to evaluate 
stability in the hovering test. 

 
Figure 5. Concept of hovering test evaluation using image processing. 
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2.4.2 Rectilinear Motion Test 

Figure 6 shows the concept of the rectilinear motion test evaluation. The black sUAV is the start 
position and the square enclosing the sUAV represents the field of view (FOV) of the camera. As the 
sUAV follows the programmed straight path, the actual position of the sUAV is different from the 
directed path and these are shown by the gray sUAVs with their respective FOVs. The features in the 
running track were then used to measure the deviation from the programmed straight path by 
comparing the line positions from the image acquired from the start position. 

2.5 Monitoring an Experimental Fruit Orchard 

The sUAVs were used to monitor an experimental fruit orchard to demonstrate its surveying 
capability. The orchard is located at the Parma Research and Extension Center at the University of 
Idaho. Two different images of the whole orchard were acquired. The first set was a single shot of the 
whole orchard taken at 91 m to show the hovering capability. In the second set, a flight plan was 
created to acquire multiple images and then the images were mosaicked to create a single image of 
the field. This second set demonstrated the capability of the sUAV to follow the flight path (rectilinear 
motion).  
 

 

 

Figure 6. Concept of rectilinear motion test evaluation using image processing. 

3. Results and Discussion 

3.1. Hovering Test 

Figure 7 shows the original image of the PVC square and the segmented image. The high contrast 
between the PVC and the grass facilitated the segmentation of the PVC from the background. This 
image was used as the set point image and the position of the PVC square from the subsequent image 
was compared to this image.  
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Figure 7. Set point image for hovering test. 

Figure 8 shows the comparison between the set point image and a subsequent image. The 
overlaid images show that the position of the PVC square changed, which means that the sUAV is 
moving even though it is in hover mode. The overlaid images demonstrated that a simple image 
processing approach could be used to evaluate the stability of the sUAV in hover mode. 

 

 

Figure 8. Comparison between set point image and subsequent image. 

Figure 9 shows the deviation of the 3DR Iris while it is in hover mode at the three different 
altitudes. This deviation is the difference between the center of area from the set point image and the 
subsequent images for both the x and y axes. The hovering results of the 3DR Iris shows that the 
maximum deviation is 0.45 m while hovering at the lowest height of 5 m and the deviation is 0.4 m 
while hovering at 25 m. The deviation decreased as the height is increased because the image 
resolution of the PVC square decreased. A similar trend can be observed from the hovering results 
of the DJI Phantom (Figure 10), which showed a maximum deviation of 0.75 m while hovering at 5 
m and a deviation of 0.35 m at a hovering height of 25 m. Although, the lower altitude showed the 
highest deviation, the images had higher spatial resolution. These results will be very useful when 
performing image mosaicking, which is a process of stitching images to form an image with a much 
larger field of view. Based from these results, when performing image mosaicking, the image 
overlaps should take into account the altitude the images are taken at. Larger image overlaps will be 
accounted for lower heights and smaller overlaps for the higher altitudes.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 October 2016                   doi:10.20944/preprints201610.0040.v1

http://dx.doi.org/10.20944/preprints201610.0040.v1


 8 of 14 

 

 
Figure 9. 3DR Iris deviation during hovering test using image processing. 
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Figure 10. DJI Phantom 2 deviation during hovering test using image processing. 
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3.2. Rectilinear Motion Test 

Figure 11 shows an example of the image processing for evaluating the rectilinear motion test. 
The first step is to segment the feature that will be used for evaluation. In this case, the feature used 
was the green bleacher. Thresholding was used to segment the green bleacher because of the high 
color contrast. After segmentation, a size filter was passed to remove the salt and pepper noise. 
Following the filtering was an operation to fill the holes and the extraction of the large object in the 
image which was the bleacher. The position of the bleacher was then used to measure the deviation 
of the sUAV from the start position. 

 

 

Figure 11. Example image processing for rectilinear motion evaluation. 

Figure 12 shows the path of the sUAV calculated using image processing for both sUAV. It can 
be noted that both sUAVs deviated from the center line and moved with a sinusoidal characteristic, 
which is typical for a position control system trying to correct itself. For the time that the sUAVs were 
tested, the maximum deviation from the center line is less than 1 m, which is less than the reported 
position error for both sUAV. It is also observed that the deviation values for both sUAV are similar 
to the hover test values. These results show the advancement of the control system of the off-the-shelf 
sUAV and this demonstrates their capabilities in surveying tasks for agricultural field observation.  
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Figure 12. Estimated path of sUAV for rectilinear motion test using image processing. 

3.3 Apple Orchard Monitoring 

Both sUAVs were used to acquire an image of an experimental apple orchard. A single shot of 
the whole orchard is shown by Figure 13, which was taken by the DJI Phantom. This image was taken 
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at an altitude of approximately 91 m. Another set of images were taken to show that the sUAV could 
be used to follow a flight plan, acquire multiple images with 50% overlap, and then mosaic the 
images. Figure 14 shows the mosaicked image. Comparing the single shot and the mosaicked image 
shows that both sUAV can be used for monitoring agricultural fields. 

 

 

Figure 13. Single shot of apple orchard. 

 
Figure 14. Mosaicked image of apple orchard. 

4. Conclusions 

Two of the popular sUAVs in the market: 3DR Iris and DJI Phantom 2 were compared and 
evaluated using image processing. The comparison included the hovering test and the rectilinear 
motion test. For the hovering test, the sUAV took images of an object and the change of position of 
the object in the images were used to evaluate the stability of the sUAV. The rectilinear motion test 
evaluated the performance of the sUAVs as it follows a straight line path. Image processing 
algorithms were developed to evaluate both tests. Results showed that for the hovering test, both 
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sUAV deviated ± 1 meter while hovering, while the same deviation was observed in the straight line 
motion test. The sUAVs were also used to survey an experimental apple orchard and results showed 
that both sUAVs can be used for agricultural surveying. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
DIY: Do it yourself 
GIS: Geographical Information System 
GPS: Global Positioning System 
NGB: Near-infrared, Green, Blue 
NNU: Northwest Nazarene University 
PVC:Polyvinyl Chloride 
RGB: Red, Green, Blue 
sUAV: Small Unmanned Aerial Vehicle 
UAV: Unmanned Aerial Vehicle 
VI: Vegetation Index 
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