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Abstract: Recycling waste products is an environmental-friendly activity that can bring benefits to
accompany, saving manufacturing costs and improving economic efficiency. For the beer industry,
recycling bottles can reduce manufacturing costs and reduce the industry’s carbon footprint. This
paper presents a model for a multi-objective collection-distribution center location and allocation
problem in a closed loop supply chain for the beer industry, in which the objective is to minimize
total costs and transportation pollution. Uncertainties in the form of randomness and fuzziness
are jointly handled in this paper to ensure a more practical problem solution, for which returned
bottle sand unusable bottles are considered fuzzy random variables. A heuristic algorithm based
on priority-based global-local-neighbor particle swarm optimization (pb-glnPSO) is applied to
ensure reliable solutions for this NP-hard problem. A case study on a beer operation company is
conducted to illustrate the application of the proposed model and demonstrate the priority-based
global-local-neighbor particle swarm optimization.

Keywords: collection-distribution center; closed loop supply chain; fuzzy random variable; particle
swarm optimization

1. Introduction

Due to resource scarcity and environmental concerns, responsible companies are beginning to
pay attention to the future of the planet and the global environment. Recycling used products for
remanufacturing is, therefore, becoming of greater importance in supply chain management, a move
that can dramatically reduce carbon emissions [1]. Closed loop supply chains (CLSC) combine the
forward supply chain with a reverse supply chain that covers the whole life cycle of the products [2],
with the manufacturing of new products and the transportation to customers via distribution centers
and retailers as the forward supply chain and recycling, sorting, disposal and remanufacturing as the
reverse supply chain. In recent years, the CLSC has received a great deal of academic and business
attention because of the need to be socially responsible, environmental concerns and government
legislation [3,4], which has motivated companies to pay more attention to recycling to reduce costs
and lessen their carbon footprint.

Facility location and allocation problems (FLAP) have been widely studied. Subramanian [5]
developed priority based simulated annealing to solve a CLSC network design problem, in which
the distribution center (DC) and the centralized return center (CC) were set. Amin [6] presented a
multi-objective facilities location model for manufacturing and remanufacturing plants and CLSC
collection centers, which included demand and return uncertainties. Subulan [7] developed a
multi-objective CLSC network design model for the lead/acid battery industry that considered
both financial and collection objectives. CLSC network design in a competitive environment with
price-dependent demand was examined by Rezapour [4], in which the DC and CC were built
separately. Zeballos [8] proposed a model for a multi-period CLSC design and planning problem
with demand uncertainty that had ten echelons in which the DC and CC were considered. Oh [9]
developed a multi-objective model for profits and carbon emissions to determine optimal production,
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transportation and inventory quantities on a CLSC network in the fashion industry. Khatami [10]
proposed a scenario-based stochastic mixed-integer linear programming model to solve a CLSC
network design problem, in which the retailers’ demand and the quantity of returned products
were considered to be uncertain and the DC and CC were set. Vahdani [11] proposed capacitated
bidirectional facilities to conduct distribution in a CLSC, in which a multi-priority queuing system
was studied. Kim [12] designed a model to minimize the manufacturer’s total cost to find the
optimal solution to the supply of raw material, the quantity of products and materials to be
recycled, the recycling facility scale and the potential benefits or downfalls of joining a recycling
association. As a growing number of companies are now engaging in recycling activities due to
economic and environmental concerns, distribution and collection activities using the same vehicle
has been found to reduce carbon emissions and transportation costs because empty loads can be
avoided. In this paper, we combine the distribution center (DC) with the collection center (CC) as a
collection-distribution center (CDC), which can benefit company operations and reduce construction
costs. In practice, as the recycled product owners are usually at the same location as the potential new
product buyer [13], a DC/CC combination requires less construction and operating expense sand can
significantly reduce environmental pollution.

Ramkumar [14] developed a multi echelon, multi period, multi product closed loop supply chain
network model which was solved using a genetic algorithm with fixed variables. Kaya and Onur [13]
presented a facilities location-inventory-pricing model without uncertainty to determine the optimal
location for facilities. Barz [15] proposed an optimization model for a two-stage capacitated facilities
location and allocation problem with the effects of additive manufacturing, in which all the variables
were certain. Jindal [16] developed a multi-objective model for a CLSC network design problem
that considered the economic and environmental factors as fuzzy uncertain and in which the DC
and CC were separate. Ramezani [17] conducted research into a CLSC network design problem that
only considered fuzzy variables. In recent years, uncertainty has attracted more research attention
[18–20]. Stochastic programming, robust optimization, and fuzzy set theory are three applicable tools
which can be used to present uncertainty in the FLAP [21,22]. Keyvanshokooh [23] proposed a novel
hybrid robust-stochastic programming (HRSP) approach to simultaneously model two different types
of uncertainties by including stochastic scenarios for transportation costs and polyhedral uncertainty
sets for demands and returns. However, they considered the DC and the CC to be separate and
the collection disposal rate was treated as a certain variable. Uncertainties exist in both the forward
supply and reverse supply chains; however, the uncertainties in the reverse flow are higher than those
in the forward supply chain [7,19], with the returned product quantity generally being considered
uncertain [10,23]. Subjective uncertainties such as decision maker’s choices and the environmental
coefficients can be dealt with using fuzziness and objective uncertainties such as unit transportation
costs, product prices and the quantity of unusable products can be dealt with using randomness.
In this paper, the return rate and disposal rate are considered fuzzy random variables to reflect the
problem. The random and fuzzy uncertainties are handled together and represented by triangular
fuzzy numbers [7]. Based on the above consideration, the model is formulated to determine the
proper number and location of the CDCs as well as the allocation strategy between the different
kinds of facilities.

Because of their structure, facilities location and allocation problems are non-convex and
non-differentiable and are strongly NP-hard problems. A collection and distribution center location
and allocation problem (CDCLAP) in a closed loop supply chain under a fuzzy random environment,
therefore, is even more complicated. Particle swarm optimization(PSO) has been shown to
be effective in solving NP-hard problems [24–26]. However, after observation, when the local
optimal solution is found, the particles’ behavior in the basic PSO is directly influenced, which
means that it frequently falls into a local optimum [27–29]. Different advanced PSOs have been
used to solve supply chain management problems. Ai and Kachitvichyanukul [30] proposed a
global-local-neighbor PSO which was more effective, based on which Xu [27] proposed a fuzzy
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random simulation-based bi-level global-local-neighbor particle swarm optimization (frs-bglnPSO).
In this paper, a priority-based global-local-neighbor particle swarm optimization (pb-glnPSO) is
applied to solve the CDCLAP.

In summary, this paper proposes a multi-objective model to solve a collection-distribution center
location and allocation problem in a closed loop supply chain that considers the economic and
environmental factors and includes fuzzy random variables for the return and disposal rates. The
remainder of this paper is organized as follows: Section 2 presents the problem statement and model
assumptions. A description of the model and its formulation are given in Section 3. The proposed
hybrid solution based on the pb-glnPSO is described in Section 4. A case study is conducted to
illustrate the model formulation and the proposed method in Section 5. Finally, Section 6 concludes
this paper.

2. Research problem statement

In this paper, a company with factories at certain locations and several retailers at different
customer zones are considered. The company is considering whereto set the integrated collection
and distribution centers (CDC), at which both the collection network for used products and the
distribution network for new products are jointly established [13]. CDCs reduce both construction
and transportation costs because the same vehicles can be used for both distribution and recycling.
Therefore, in this paper, only CDCs are considered.

 

Figure 1. The closed loop supply chain network

A general illustration of the classical CDCLAP for a closed loop supply chain is shown in Fig 1,
with the CLSC framework shown in loop1. The CLSC framework has four echelons: factories, CDCs,
retailers and disposal centers [11]. The forward supply chain begins with new production. From the
factories, the finished products are transported to the retailers via the CDCs. In the reverse supply
chain, the returned products are collected and transported to the CDCs, where the recycled products
are inspected, consolidated and sorted into those that are available for remanufacturing, which are
sent to the factories, and those that are unsuitable for remanufacturing, which are transported to
the disposal centers [23]. A CDC can supply products to multiple retailers and retailer demand is
fulfilled by only one production site. A CDC can handle products from different factories and send
the returned products to multiple factories for remanufacturing.

In this CLSC, the retailers’ demand is estimated based on pre-orders; however, the return rate
is considered fuzzy random as customers may not return the used product or the product may have
broken. In consideration of the transportation costs and the carrying loss, the availability of recycled
products is unsure. Transportation costs and transportation pollution are related to the distance
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between two facilities. Another fuzzy random variable considered in this paper is the returned
product disposal rate, which is decided on after inspection and consolidation at the CDC.

Following are the assumptions in the proposed problem investigation: (1) Only one product one
period is considered; (2) All alternative locations for the CDCs have been identified; (3) Recycling a
used product costs less than manufacturing a new one [31]; (4) Considering uncapacitated facilities
is an unrealistic assumption in many LAP problems. Many researchers assign a maximum capacity
level to facilities to model more realistic decisions. The CDCs and the factories have a capability limit
[32–34]; (5) The locations for the factories, retailers and disposal centers are known; (6) New product
and returned product storage is allowed at the CDCs [22].

The initial problem is making a decision as to where to set the CDCs from the candidate sites and
deciding on an allocation strategy at minimal total CDC costs; operating costs, transportation costs
and transportation pollution cost; while also considering the flow constraints, capability limits and
the retailers’ demand.

3. Modelling

In this section, a mathematical description is given for the CDCLAP in the CLSC, including the
notations, the research problem statement, and the mathematical formulation.

3.1. Notations

To facilitate the problem description, the notations are explained.
Sets

Ω: set of CDCs, Ω = {1, 2, 3, ..., I}.
Ψ: set of factories, and Ψ = {1, 2, 3, ..., J}
Φ: set of retailers, and Φ = {1, 2, 3, ..., K}
Υ: set of disposal centers, and Υ = {1, 2, 3, ..., N}

Indices and parameters
i: alternative location position for the CDCs, i ∈ Ω = {1, 2, 3, ..., I}.
j: known position of the factories, j ∈ Ψ = {1, 2, 3, ..., J}.
k: known position of the retailers, k ∈ Φ = {1, 2, 3, ..., K}.
n: known disposal center, n ∈ Υ = {1, 2, 3, ..., N}.
U: the upper limit of the CDCs.
Dk: the demand of retailer k.
αi: the capability of CDC i.
γj: the capability of factory j.
Pji: product quantity from factory j to CDC i.
Qik: product quantity from CDC i to retailer k.
ãk: the product return rate from retailer k.

b̃i: the product disposal rate at CDC i.
Fc

i : the fixed costs of the CDC.
Vc

i : the variable cost of the CDC for a new product unit.
RVc

i : the variable cost of the CDC triage for a returned product unit.
Cp

ij: unit transportation cost between CDC i and factory j.
Cd

ik: unit transportation cost between CDC i and retailer k.
Cw

in: unit transportation cost between CDC i and disposal center n.
βij: environmental impact of transportation between CDC I and factory j.
βik: environmental impact of transportation between CDC i and retailer k.
βin: environmental impact of transportation between CDC i and disposal center n.
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Decision variables
xi: a binary variable indicating whether point i is chosen. If point i is chosen,
then xi = 1; else, xi = 0.
yik: indicates whether retailer k is served by CDC i. If i is chosen,
then yik = 1; else, yik = 0.

3.2. Objective functions

A multi-objective DCCLAP model using the above variables is proposed to minimize total costs
and the environmental transportation effects.

Economic objective: In general, decision makers seek to minimize the total costs, which are
made up of the transportation costs, fixed costs and operating costs. The minimization objective can
be described as

min Z1 =
I

∑
i=1

J

∑
j=1

Cp
ijPji +

I

∑
i=1

K

∑
k=1

Cd
ikQik(1 + ãk) +

I

∑
i=1

N

∑
n=1

K

∑
k=1

Cw
in b̃i ãkQik +

I

∑
i=1

J

∑
j=1

K

∑
k=1

N

∑
n=1

Cp
ij ãkQik(1− b̃i)

+
I

∑
i=1

Fc
i Xi +

I

∑
i=1

J

∑
j=1

Vc
i Pji +

I

∑
i=1

K

∑
k=1

RVc
i ãk (1)

Equation (1) calculates the total cost, in which ∑I
i=1 ∑J

j=1 Cp
ijPji represents the cost of new product

transported from factories to CDC, ∑I
i=1 ∑K

k=1 Cd
ikQik(1 + ãk) calculated the transportation cost

between CDCs and retailers, ∑I
i=1 ∑N

n=1 ∑K
k=1 Cw

in b̃i ãkQik is the cost of returned product delivered from
CDCs to disposal centers as well as the returned product transportation cost from CDCs to disposal

centers is measured as ∑I
i=1 ∑J

j=1 ∑K
k=1 ∑N

n=1 Cp
ij ãkQik(1− b̃i). The fixed cost of opening a new CDC

is presented as ∑I
i=1 Fc

i Xi. ∑I
i=1 ∑J

j=1 Vc
i Pji shows the variable cost of new product. ∑I

i=1 ∑K
k=1 RVc

i ãk
calculates the operation cost of returned product.

It is very difficult to handle the objective function with fuzzy random factors. Kruse and Meyer
[35] point out that the fuzzy expected value may be represented by a single fuzzy number. Without
a loss of generality, based on the theory proposed by Heilpern [36], the expected value operator is
used to enable the conversion of the uncertain model into the deterministic. Now the fuzzy random
objective function can be transformed into their crisp equivalences as shown in Eq. (2):

min Z1 =
I

∑
i=1

J

∑
j=1

Cp
ijPji +

I

∑
i=1

K

∑
k=1

Cd
ikQik(1 + EV[ãk]) +

I

∑
i=1

N

∑
n=1

K

∑
k=1

Cw
inEV[b̃i]EV[ãk]Qik

+
I

∑
i=1

J

∑
j=1

K

∑
k=1

N

∑
n=1

Cp
ijEV[ãk]Qik(1− EV[b̃i]) +

I

∑
i=1

Fc
i Xi +

I

∑
i=1

J

∑
j=1

Vc
i Pji +

I

∑
i=1

K

∑
k=1

RVc
i EV[ãk] (2)

Note the EV[ãk] or EV[b̃i] above represents two expected values: the first one being the fuzzy random
variables converted into fuzzy numbers based on the theory proposed by Kruse and Meyer in 1987,
and the second being used to transform the fuzzy numbers into deterministic numbers based on the
theory proposed by Heilpern in 1992.

Environmental objective: The second objective is to minimize the environmental transportation
effect in terms of the carbon emissions in the CLSC operation, an area which has attracted recent
research attention [37]. The following expression represents the transportation carbon emissions
between the CDCs and the factories, the CDCs and the retailers and the CDCs and the disposal
centers.
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min Z2 =
I

∑
i=1

J

∑
j=1

βijPji +
I

∑
i=1

K

∑
k=1

βikQik(1 + EV[ãk]) +
I

∑
i=1

N

∑
n=1

K

∑
k=1

βinEV[b̃i]EV[ãk]Qik

+
I

∑
i=1

J

∑
j=1

K

∑
k=1

N

∑
n=1

βijEV[ãk]Qik(1− EV[b̃i]) (3)

∑I
i=1 ∑J

j=1 βijPji refers to the environment pollution caused by transportation activities from

factories to CDCs. ∑I
i=1 ∑K

k=1 βikQik(1 + EV[ãk]) is the summation of carbon footprints when

transporting products between CDCs and retailers. ∑I
i=1 ∑N

n=1 ∑K
k=1 βinEV[b̃i]

EV[ãki]Qik is the total carbon footprint from CDCs to disposal centers. And

∑I
i=1 ∑J

j=1 ∑K
k=1 ∑N

n=1 βijEV[ãk]Qik(1− EV[b̃i]) express the carbon footprints from CDCs to factories
when delivering returned products.

3.3. Constraints

Note that the CDC has its own capacity limit and it cannot service any goods beyond its capacity.
Thus we need capacity restriction. The constraint can be written as follows:

K

∑
k=1

EV[ãk]Qik +
J

∑
j=1

Pji ≤ αi ∀i ∈ Ω (4)

ãki is a fuzzy random variable indicating the return rate of the used product to transport from retailer
k to CDC i. Qik shows product quantity from CDC i to the retailer k. Pji indicates the quantity of
product to transport from factory j to CDC i. αi refers to the capacity of the the capability of the CDC
i.

As for capability constraint, the factory can manufacturing the new products that the retailers
need and the returned products send back by CDCs.

K

∑
k=1

Dk +
I

∑
i=1

K

∑
k=1

N

∑
n=1

Cp
ijEV[ãk]Qik(1− EV[b̃i]) ≤

J

∑
j=1

γj (5)

Dk refers to the demand of retailer k and γj is the capability of the factory j.

∑I
i=1 ∑K

k=1 ∑N
n=1 Cp

ijEV[ãk]Qik(1 − EV[b̃i]) calculates the returned product transported to factory
j for remanufacture.

Considering the products in the retailers are all from the CDCs, the recycled products are less
than the product transported from factory to the CDC And it can be described as follows:

J

∑
j=1

Pji ≥
K

∑
k=1

EV[ãk]Qik (6)

Pji is a variable indicating the quantity of new product transported from the factory j to CDC i. ãkQik

refers to the quantity of returned product transported from retailer k to CDC i.
The product provided to the retailer should at least meet the retailer’s demand.

I

∑
i=1

Qik ≥
K

∑
k=1

Dk (7)

Qik indicates the product quantity CDC i to the retailer k. the stochastic variable Dk is the demand of
the retailer k according to the order.
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The returned products transported to the CDCs are more than the products transported to the
disposal centers.

K

∑
k=1

EV[ãk]Qik ≥
N

∑
n=1

K

∑
k=1

EV[b̃i]EV[ãk]Qik (8)

EV[ãk]Qik is the expression of returned product quantity from the retailer k to CDC i, EV[b̃i]EV[ãk]Qik
presents the product quantity transported from CDC i to retailer k.

The CDC should be at least one but no more than the upper limit.

1 ≤
I

∑
i=1

xi (9)

I

∑
i=1

xi ≤ U (10)

U is the upper limit of the CDCs, which is decided by the demand, the returned product quantity and
the fixed capability.

It should make sure that each retailer is served by one CDC.

I

∑
i=1

yik = 1 (11)

Since xi and yik are binary variables, the following constraints are needed:

xi = {0, 1}, ∀i ∈ Ω, (12)

yik = {0, 1}, ∀i ∈ Ω, ∀k ∈ Φ (13)

xi is a binary variable indicating whether a CDC is opened at point i . If location i is chosen to open a
CDC, then xi = 1; otherwise, xi = 0. yik is a binary variable indicating whether retailer k is served by
CDC i. If yik = 1, then retailer k is served by CDC i; otherwise, yik = 0.

3.4. Global model

From the formulation above, a multi-objective model for the CDCLAP with capacity, flow and
quantity constraints is developed with the aims of minimizing total costs and total transportation
pollution. In the CLSC, both new and returned products are considered. The product can be
reproduced to save raw materials and reduce waste and pollution. In our model, all costs involved
in the CDCLAP are considered as well as the influence of the transportation activity pollution. Fuzzy
random theory is used to deal with the real world complex uncertainties and ensure more scientific
decisions. Therefore, this CDC situation is closer to the real situation as it can deal with complicated
practical problems. Finally, the global model is given:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2016                   doi:10.20944/preprints201610.0037.v1

http://dx.doi.org/10.20944/preprints201610.0037.v1


8 of 17

min Z1 =
I

∑
i=1

J

∑
j=1

Cp
ijPji +

I

∑
i=1

K

∑
k=1

Cd
ikQik(1 + EV[ãk]) +

I

∑
i=1

N

∑
n=1

K

∑
k=1

Cw
inEV[b̃i]EV[ãk]Qik

+
I

∑
i=1

J

∑
j=1

K

∑
k=1

N

∑
n=1

Cp
ijEV[ãk]Qik(1− EV[b̃i]) +

I

∑
i=1

Fc
i Xi +

I

∑
i=1

J

∑
j=1

Vc
i Pji +

I

∑
i=1

K

∑
k=1

RVc
i EV[ãk]

min Z2 =
I

∑
i=1

J

∑
j=1

βijPji +
I

∑
i=1

K

∑
k=1

βik(Qik + EV[ãk]) +
I

∑
i=1

N

∑
n=1

βinEV[b̃i] +
I

∑
i=1

J

∑
j=1

K

∑
k=1

N

∑
n=1

βij(EV[ãk]− EV[b̃i])

s.t.



K
∑

k=1
EV[ãki]Qik +

J
∑

j=1
Pji ≤ αixi ∀i ∈ Ω ∀j ∈ Ψ ∀k ∈ Φ

K
∑

k=1
Dk + ∑I

i=1 ∑K
k=1 ∑N

n=1 Cp
ijEV[ãk]Qik(1− EV[b̃i]) ≤

J
∑

j=1
γj ∀j ∈ Ψ ∀k ∈ Φ ∀n ∈ Υ

J
∑

j=1
Pji ≥

K
∑

k=1
EV[ãki] ∀i ∈ Ω ∀j ∈ Ψ ∀k ∈ Φ

K
∑

k=1
EV[ãk]Qik ≥

N
∑

n=1

K
∑

k=1
EV[b̃i]EV[ãk]Qik ∀i ∈ Ω ∀k ∈ Φ ∀n ∈ Υ

I
∑

i=1
Qik ≥

K
∑

k=1
Dk ∀i ∈ Ω ∀k ∈ Φ

1 ≤
I

∑
i=1

xi ∀i ∈ Ω

I
∑

i=1
xi ≤ U ∀i ∈ Ω

yik ≤ xi ∀i ∈ Ω, ∀k ∈ Φ
I

∑
i=1

yik = 1 ∀i ∈ Ω ∀k ∈ Φ

xi = {0, 1} ∀i ∈ Ω,
yik = {0, 1} ∀i ∈ Ω, ∀k ∈ Φ

(14)

4. The heuristic algorithms based on Pgln-PSO

Particle swarm optimization (PSO) is a recent evolutionary algorithm which simulates social
behavior such as birds flocking and fish schooling [38]. The PSO searches the feasible zone to
seek solutions using a fixed population of individuals, which are updated to achieve the optimal
solution. The particles [39] are characterized by their position and velocity, which are decided
on by their flying experience or discoveries or those of their companions. They fly through the
problem spaces following the current optimum particles to find the best solution between the
populations and the best solution for each population. The PSO has been widely used to solve
NP-hard problems [38]. However, in the basic PSO, it was found that the particles in the swarm
were weak and clustered rapidly toward the global best particle [25]. Global-local-neighbor particle
swarm optimization (glnPSO) proposed by Ai and Kachitvichyanukul [30] improves the weakness
of the basic PSO. Xu and Yan [40] proposed a global-local-neighbor particle swarm optimization
with exchangeable particles (GLNPSO-ep), which was even more advanced. In this section, a
priority-based global-local-neighbor particle swarm optimization (pb-glnPSO) is proposed to solve
the multi-objective CDCLAP in the CLSC.

4.1. Notations for the Pb-glnPSO

The basic elements of the PSO are particles, population, velocity, inertia weight, individual best
and global best. The notations needed for the pb-glnPSO are as follows:
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τ: iteration index, and τ = 1, 2, ...T.
d: dimension index, and d = 1, 2, ...D.
l: particle index, and l = 1, 2, ...L.
ωτ : inertia weight in τ − th iteration.
vld(τ): velocity of the lth particle at the dth dimension in the τth iteration.
pl

d(τ): position of the lth particle at the dth dimension in the τth iteration.
pbest

ld : personal best position.
pbest

gd : global best position.
pLbest

ld : local best position.
pNbest

ld : near neighbor best position.
cp: personal best position acceleration constant.
cg: global best position acceleration constant.
cl : local best position acceleration constant.
cn: near neighbor best position acceleration constant.
Pmax: maximum position value.
Pmin: minimum position value.
Pl : velocity vector of l-th particle.
Vl : position vector of l-th particle.
Pbest

l : vector personal best position of l-th particle.
Pbest

g : vector global personal best position.
PLbest

l : vector local best position of l-th particle.
r1, r2, r3, r4: uniform distributed random number within [0,1].
Fitness(Pl): fitness value of Pl .

4.2. Encoding and decoding algorithm

The decoding process is based on the priority-based encoding developed by Gen and Cheng
and the priority-based decoding and encoding proposed by Gen and Altiparmak [41]. The priorities
of the CDCs and the retailers are equal to the total number of retailers and CDCs. At each step, the
CDC(retailer) with the highest priority is selected and connected to a retailer (CDC) under a minimum
transportation cost constraint. Table 1 shows the decoding algorithm for the priority-based encoding
and its trace table, with the priority-based encoding considered random. The CDCLAP is solved in
two stages [15]. In the first stage, the location for the CDCs is chosen and the transportation between
the CDCs and the retailers calculated, while the second stage deals with the allocations between the
factories and CDCs.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2016                   doi:10.20944/preprints201610.0037.v1

http://dx.doi.org/10.20944/preprints201610.0037.v1


10 of 17

Table 1. Decoding for the location and allocation problem

Procedure 1: Decoding of the priority for the location and allocation problem
Input: Ω: set of CDCs, i ∈ Ω = {1, 2, 3, ..., I}, Φ: set of retailers, and k ∈ Φ = {1, 2, 3, ..., K},

Dk: demand of retailer k, k ∈ Φ,
αi: the capability of the CDCs i, i ∈ Ω, EV[ãk]: the return rate of retailer k, k ∈ Φ,
Cd

ik: unit transportation cost between the CDC i and retailer k, i ∈ Ω, k ∈ Φ,
p(i + k): the priority settled, i ∈= {1, 2, 3, ..., I}, k ∈ Φ,

Output: Qik: the product quantity transported from CDC i to the retailer k.
Qik: the product quantity transported from retailer k to CDC i.

Step 1. Qik ←− 0, i ∈ Ω, k ∈ Φ, Qki ←− 0, i ∈ Ω, k ∈ Φ,
Step 2. t←− arg maxp(l), l ∈ |Ω|+ |Φ|; select a node
Step 3. If t ∈ Ω, then i∗ ←− t; select a CDC,

k∗ ←− arg minCd
ik|p(k) 6= 0, k ∈ Φ; select a retailer with the lowest cost

else, k∗l; select a retailer
i∗ ←− arg minCd

ik|p(i) 6= 0, i ∈ Φ; select a CDC with the lowest cost
Step 4. Qik ←− minDk(1 + EV[ãk]), αi; assign the available amount of units

Update the availabilities on CDC (i∗) and retailer (k∗)
Dk∗ = Dk∗ −Qi∗k∗ αi = αi −Qi∗k∗

Step 3. If Dk∗=0 then pk∗ = 0
If αi∗ = 0 then pi∗ = 0

Step 5. If p(|i|+ k)=0, k ∈ Φ, then calculate transportation cost, find the chosen CDC and return,
else goto Step 1.

4.3. Update

Based on the above notations and the glnPSO proposed by Ai and Kachitvichyanukul [30], the
inertia weight, velocity and position are updated using the following Equation.

ω(τ) = ω(T) +
τ − T
1− T

[ω(1)−ω(T)] (15)

vl
d(τ + 1) = ω(τ)vl

d(τ) + cpr1[pbest
ld (τ)− pl

d(τ)] + cgr2[pbest
gd (τ)− pl

d(τ)] + clr3[pbest
gd (τ)− pl

d(τ)]

+ cnr4[pbest
gd (τ)− pl

d(τ)] (16)

pl
d(τ + 1) = pl

d(τ) + vl
d(τ + 1) (17)

The glnPSO has been widely used in solving NP-hard facilities location and allocation problems.
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Figure 2. The heuristic algorithms based on pb-glnPSO

4.4. Overall process of the pb-glnPSO

In this paper, the glnPSO presented above is used to solve the location and allocation problem.
Due to uncertainties and environmental changes, a priority-based global-local-neighbor particle
swarm optimization (pb-glnPSO) is proposed to solve this model. As the company pays close
attention to the economic costs, the environmental factor is dealt with as a constraint which has upper
limits. The algorithmic details are as follows.

Step 1: Initialize P particles as a swarm: l = 1, ...L, (the particle is the priority).
Step 2: Constraints check. If in the feasible region, goto step 3; otherwise, return to step 1.
Step 3: Calculate the fitness according to the decoding algorithm in Table 1.
Step 4: Update the particle positions and velocities.

Step 4.1: Acquire the expected value for Z from the above algorithm.
Step 4.2: For l = 1, 2, ...L, decode each particle to an installment group. Calculate the fitness

value of each particle and set as the position of the l-th particle as its personal best. The global best
position is chosen from these personal best positions.

Step 4.3: Update pbest: For l = 1, 2, ...L, if Fitness(Pl) < Fitness(Pbest
l ), Pbest

l = Pl .
Step 4.4: Update gbest: For l = 1, 2, ...L, if Fitness(Pl) < Fitness(Pbest

g ), Pbest
g = Pl .

Step 4.5: Update lbest: For l = 1, 2, ...L, among all pbest of M neighbors around the l-th
particle, set the personal best which has the best fitness value as PLbest

l .
Step 4.6: Generate nbest: For l = 1, 2, ...L, and d = 1, 2, ...D, find the pod ensuring that the FDR

takes a maximum value, and set pod as PNbest
ld .

Step 4.7: Update the position and the velocity of each l-th particle using Equation (18).
Step 4.8: Check whether the particles are beyond the mark. If pld > Pmax, the pld = Pmax;

otherwise, if pld < Pmin, thenn pld = Pmin.
Step 5: Based on the above calculation, replace the ranking vector using the new numbers.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2016                   doi:10.20944/preprints201610.0037.v1

http://dx.doi.org/10.20944/preprints201610.0037.v1


12 of 17

Step 6: If the stopping criterion is met, stop; otherwise, τ = τ + 1 and return to step 2.
The overall process can be clearly seen in Fig 2.

5. Case Study

5.1. Case presentation

This model is motivated by a beer company in a developing country that bottles beer in plastic
or glass bottles. The supply chain intends to allow customers to return the bottles to the retailers after
the beer has been consumed, after which the returned bottles are sent to the CDCs where they are
inspected, consolidated and sorted. After processing and disinfecting, the bottles are filled with beer
and sold again. Now the company is considering the construction of several CDCs to allow for bottle
recycling as producing a new bottle is far more expensive than recycling a used bottle.

Table 2. CDCs information (unit:1× 102RMB)

Node location capability fixed cost NPV cost RPV cost b̃i Parameters ρ

1 (23,23) 900 12300 0.01 0.05 (0.18,ρ1,0.25) ρ1 ∼ N(0.21,0.02)
2 (25,35) 550 12100 0.02 0.06 (0.23,ρ2,0.28) ρ2 ∼ N(0.25,0.02)
3 (34,29) 1050 15600 0.01 0.05 (0.14,ρ3,0.24) ρ3 ∼ N(0.18,0.04)
4 (32,25) 650 11300 0.01 0.07 (0.16,ρ4,0.22) ρ4 ∼ N(0.18,0.03)
5 (35,37) 1050 17800 0.01 0.05 (0.25,ρ5,0.30) ρ5 ∼ N(0.28,0.02)
6 (36,31) 1050 22400 0.01 0.06 (0.17,ρ6,0.26) ρ6 ∼ N(0.22,0.03)
7 (29,28) 1050 16300 0.02 0.07 (0.15,ρ7,0.23) ρ7 ∼ N(0.20,0.02)
8 (18,21) 800 14900 0.01 0.06 (0.19,ρ8,0.28) ρ8 ∼ N(0.24,0.03)
9 (29,23) 1100 26500 0.01 0.06 (0.12,ρ9,0.22) ρ9 ∼ N(0.17,0.04)
10 (35,26) 1050 22000 0.02 0.05 (0.17,ρ10,0.23) ρ10 ∼ N(0.20,0.02)

To illustrate the validity of the model and the usefulness of the solution method, the data needed
to examine the CLSC performance for the four objectives is presented here. Based on the market
analysis, ten coordinates for the CDC alternatives are given: location, capability, fixed costs and
new product variable costs (NPV cost) and recycled product variable costs (RPV cost). These are
shown in Table 2. Supermarkets and restaurants are considered to beer tailers with flexible demand.
Table 3 presents the information regarding the retailers, factories and disposal centers. It can be seen
from that Table 3, k1 to k30 represents 30 different retailers, while j1 to j4 are the 4 different factories
at different locations with variable capabilities and n1 indicates the location and capability of the
disposal center. Therefore, 30 retailers, 4 factories and 1 waste disposal center are considered in this
study. The unit transportation costs and pollution are related to the distances between the facilities.
The retailers’ return rates are shown in Table 4, which are considered to be fuzzy random variables.

Table 3. Rtailers, factories and disposal center

Node location demand Node location demand Node location demand
k1 (27,28) 50 k11 (26,39) 60 k21 (25,31) 70
k2 (30,19) 60 k12 (38,26) 40 k22 (29,35) 90
k3 (32,22) 40 k13 (38,34) 50 k23 (18,29) 50
k4 (37,16) 80 k14 (36,25) 70 k24 (18,14) 60
k5 (23,29) 30 k15 (41,19) 40 k25 (35,11) 80
k6 (27,17) 40 k16 (27,33) 30 k26 (23,33) 50
k7 (33,26) 80 k17 (25,39) 20 k27 (36,37) 60
k8 (34,32) 40 k18 (38,37) 40 k28 (28,26) 40
k9 (37,22) 100 k19 (36,27) 50 k29 (25,24) 30
k10 (17,22) 90 k20 (39,28) 60 k30 (32,19) 80
j1 (13,22) 920 j2 (31,44) 530 j3 (32,15) 850
j4 (42,31) 940 n1 (18,47) 800
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Table 4. Retailers’ return rates and CDCs’ disposal rate

Node ãk Parameters ς Node ãk Parameters ς

1 (0.28,ς1,0.33) ς1 ∼ N(0.31,0.02) 16 (0.74,ς16,0.79) ς16 ∼ N( 0.77,0.04)
2 (0.52,ς2,0.62) ς2 ∼ N(0.56,0.02) 17 (0.70,ς17,0.75) ς17 ∼ N(0.73,0.04)
3 (0.32,ς3,0.38) ς3 ∼ N(0.36,0.03) 18 (0.75,ς18,0.80) ς18 ∼ N(0.78,0.02)
4 (0.62,ς4,0.73) ς4 ∼ N( 0.67,0.04) 19 (0.68,ς19,0.75) ς19 ∼ N( 0.72,0.03)
5 (0.55,ς5,0.62) ς5 ∼ N( 0.58,0.02) 20 (0.55,ς20,0.65) ς20 ∼ N(0.61,0.02)
6 (0.65,ς6,0.72) ς6 ∼ N(0.69,0.02) 21 (0.35,ς21,0.45) ς21 ∼ N(0.39,0.04)
7 (0.73,ς7,0.81) ς7 ∼ N( 0.78,0.03) 22 (0.35,ς22,0.42) ς22 ∼ N(0.38,0.03)
8 (0.72,ς8,0.78) ς8 ∼ N(0.75,0.03) 23 (0.55,ς23,0.60) ς23 ∼ N(0.58,0.03)
9 (0.75,ς9,0.82) ς9 ∼ N(0.8,0.04) 24 (0.52,ς24,0.62) ς24 ∼ N(0.56,0.04)

10 (0.34,ς10,0.38) ς10 ∼ N(0.36,0.02) 25 (0.62,ς25,0.72) ς25 ∼ N(0.66,0.04)
11 (0.42,ς11,0.48) ς11 ∼ N(0.46,0.02) 26 (0.69,ς26,0.75) ς26 ∼ N(0.72,0.03)
12 (0.46,ς12,0.50) ς12 ∼ N( 0.48,0.04) 27 (0.29,ς27,0.35) ς27 ∼ N(0.32,0.03)
13 (0.65,ς13,0.70) ς13 ∼ N( 0.67,0.04) 28 (0.40,ς28,0.46) ς28 ∼ N(0.43,0.02)
14 (0.62,ς14,0.68) ς14 ∼ N( 0.64,0.03) 29 (0.42,ς29,0.48) ς29 ∼ N(0.45,0.03)
15 (0.72,ς15,0.78) ς15 ∼ N( 0.75,0.04) 30 (0.50,ς30,0.58) ς30 ∼ N(0.54,0.04)

5.2. Sensitivity analysis on the parameters

To find the best solution to the proposed model, a series of experiments were conducted, all of
which were performed using a MATLAB 7.0 on a workstation with an Intel(R) Corei5, a Pentium 4,
1.83GHz clock pulse with 4GB memory and Windows 10 operating system. A sensitivity analysis
was performed to exhibit the effectiveness and behavior of the proposed algorithm, as shown in
Table 5. Several parameters were changed, including the population size N, maximum generation
T and acceleration constant cp, cg, cl and cn. After trying various values for the population size and
maximum generations, the results were found to be better when T was from 200 to 400 and N was
from 30 to 50. The different fitness values obtained using the pb-glnPSO with the different parameters
N T c1 and c2 are shown in Table 5.

Table 5. Sensitivity analysis (unit:1× 102RMB)

T=200 T=300 T=400 T=200 T=300 T=400 T=200 T=300 T=400
0.5 88049.270 85447.261 86943.479 89889.371 88266.237 84859.596 86479.923 84830.640 88233.839
1 87056.401 84125.454 84428.258 88679.314 87459.033 84199.470 85596.767 83448.794 85614.352
1.5 86601.808 84465.348 84315.569 85486.560 86564.333 84041.957 84698.625 83257.776 82930.618
2 85614.087 82308.935 83058.532 82914.087 82434.420 83681.801 82884.954 81920.133 82585.367
2.5 85844.692 83102.944 87782.377 85170.526 83198.452 86792.664 83448.789 84469.925 83177.298

As can be seen from Table 5, when the parameters cp, cg, cl and cn increase, the fitness value
improves except for cp=cg=cl=cn=2.5 with the same generation and popsize, with the fitness value
increasing from cp=cg=cl=cn=2 tocp=cg=cl=cn=2.5. Therefore, when cp=cg=cl=cn=2, the result is
optimal. For T, given the same cp, cg, cl and cn and population size, the results shows that when
T is 300, the fitness value is better than for any other generation. Finally, for N, the results improve as
the population size increases and is optimal when N is 50. The most effective and efficient results are
gained with T at 300, N at 50 and cp=cg=cl=cn=2.

5.3. Result analysis

In this section, the pb-glnPSO is performed to solve the model using the above data. The
parameters for the problem were set as follows: Population size: popsize=50; Maximum generation:
maxGen=300; Inertia weight: ω(1)=1 and ω(T)=0.1; Acceleration constant: cp=cg=cl=cn=2. After
running the program 20 times, the best satisfactory solution was found. Figure 4 shows the specific
objective values found by the Pb-glnPSO in different iterations and shows the reductions in the total
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Figure 3. The distribution strategy

costs. The results are presented in Table 6 and Figure 3. From the calculation, at least 3 CDCs could
satisfy all markets. The result show that alternative CDC positions4, 5 and 8 should be chosen as CDC
4 can send products to markets 2, 3, 4, 6, 7, 9, 14, 15, 25, 30, CDC 5 can transport products for 1, 8, 11,
12, 13, 16, 17, 18, 19, 20, 21, 22, 27 and retailers 5, 10, 23, 24, 26, 28, 29 can be serviced by CDC 8. The
total cost is 81.936million RMB, in which the fixed costs are 44 million RMB, the transportation costs
are 37.759 million RMB and the operating costs are 17.7 million RMB.

Table 6. Results

Factories DR-centers Markets Factories DR-centers Markets
Node location Node location Node location Node location Node location Node location

1 (13,22) 8 (18,21)

5
10
23
24
26
28
29

(23,29)
(17,22)
(18,29)
(18,14)
(23,33)
(28,26)
(25,24)

2 (31,44) 5 (35,37)

1
8

11
12
13
16
17

(27,28)
(34,32)
(26,39)
(38,26)
(38,34)
(27,33)
(25,39)

3 (32,15) 4 (32,25)

2
3
4
6
7
9
14
15

(30,19)
(32,22)
(37,16)
(27,17)
(33,26)
(37,22)
(36,25)
(41,19)

4 (42,31)

4

5

(32,25)

(35,37)

25
30
18
19
20
21
22
27

(35,11)
(32,19)
(38,37)
(36,27)
(39,28)
(25,31)
(29,35)
(36,37)

5.4. Algorithm comparison

To better illustrate the effectiveness of the proposed algorithm, a brief comparison between
the pb-glnPSO, glnPSO and an immune algorithm(IM) is given in this section. The glnPSO is
a well-respected evolutionary algorithm and has been successfully implemented in a variety of
engineering and combinatorial problems.The IM has also being widely used to solve facilities location
problems.

To establish the solution quality for the pb-glnPSO, it is compared with the glnPSO and the IM.
Each run time for the pb-glnPSO, glnPSO and the IM was around 80s. The pb-glnPSO, glnPSO and
IM were run 20 times using the same data. For a fair comparison between the groups, each population
with the same number was initialized with the population size set at50 and the maximum generation
at 300. In the glnPSO, an acceleration constant was designed as cp=cg=cl=cn=2 and the inertia weight
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wasω(1)=1 and ω(T)=0.1. For the IM algorithm, the crossover probability was1 and the mutation
probability was 0.1.
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Figure 4. The iterative process of pb-glnPSO,glnPSO and IM

From Figure 4, it can be seen that the pb-glnPSO outperformed both the glnPSO and the IM,
and as the glnPSO converged faster, it had a better result than the IM. This demonstrates that a better
solution can be obtained using the glnPSO, and especially using the pb-glnPSO. The blue profile
shows the convergence for the best in history for the pb-glnPSO. It can be seen from Figure 4 that
as the programs ran, the results become stable for the pb-glnPSO and glnPSO after about the 160th
generation, while the IM became stable after the 180th generation. As is shown in Figure 4, the best
solution for the pb-glnPSO was superior to, more stable than and had the smallest CPU run time than
the other algorithms( Table 7), with the IM having the highest run time.

Table 7. Results of the pb-glnPSO, glnPSO, and IM

Item Pb-glnPSO glnPSO IM
Best result 81920.133 82884.954 83315.569
Worst result 83102.944 84826.640 85585.473
Average result 82431.119 83877.688 84179.884
Difference between the best and the worst 1182.811 1941.686 2269.904
Difference between the average and the best 510.986 992.734 864.315
Standard deviation 317.467 553.194 680.326
CPU time 88.7969 124.9844 161.5000

6. Conclusion

Economic development has caused many environmental pollution problems,the seriousness of
which has encouraged people to recycle and reuse products. To examine this problem and seek
appropriate solutions, a multi-objective collection-distribution center location and allocation problem
in a closed loop supply chain under a fuzzy random environment was presented in this paper for the
beer industry in China. For this problem, a new model was formulated, in which the decision makers
sought to minimize costs and pollution underflow, capability and quantity limit constraints. To more
accurately represent actual production situations, the return rate and disposal rate were considered
fuzzy random variables. A heuristic algorithm, the pb-glnPSO, was then applied to solve the problem.
Based on the proposed priority, the distribution and collection activity was shown to satisfy retailer
demand, and reduce costs and pollution after the CDCs started operations. After calculation, the
best solution was determined and the advantages of the algorithm illustrated. The proposed model
and method can be applied for the location and allocation of CDCs in the beer industry, assisting in
improving effective supply chain management. The model was shown to assist in generating retailer
demand and dealing with the returned products first, which could benefit company recycling and
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reuse policies. At the same time, the transportation costs and pollution were reduced because of the
reduction in losses from empty loads.
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