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Abstract: Climate change is a global issue that draws widespread attention from the international 
society. As an important component of the climate system, the water cycle is directly affected by 
climate change. Thus, it is very important to study the influences of climate change on the basin 
water cycle with respect to maintenance of healthy rivers, sustainable use of water resources, and 
sustainable socioeconomic development in the basin. In this study, by assessing the suitability of 
multiple General Circulation Models (GCMs) recommended by the Intergovernmental Panel on 
Climate Change, Statistical Downscaling Model (SDSM) and Automated Statistical Downscaling 
model (ASD) were used to generate future climate change scenarios. These were then used to drive 
distributed hydrologic models (Variable Infiltration Capacity, Soil and Water Assessment Tool) for 
hydrological simulation of the Yangtze River and Yellow River basins, thereby quantifying the 
effects of climate change on the basin water cycle. The results showed that suitability assessment 
adopted in this study could effectively reduce the uncertainty of GCMs, and that statistical 
downscaling was able to greatly improve precipitation and temperature outputs in global climate 
mode. Compared to a baseline period (1961–1990), projected future periods (2046–2065 and 2081–
2100) had a slightly decreasing tendency of runoff in the lower reaches of the Yangtze River basin. 
In particular, a significant increase in runoff was observed during flood seasons in the southeast 
part. However, runoff of the upper Yellow River basin decreased continuously. The results provide 
a reference for studying climate change in major river basins of China. 

Keywords: climate change; water cycle; downscaling; hydrological model; Yangtze River;  
Yellow River; Tibetan Plateau 

 

1. Introduction 

The Fifth Assessment Report (AR5) [1] of the Intergovernmental Panel on Climate Change 
(IPCC) pointed out that climate change has become an indisputable fact that will greatly threaten 
global and local water resource security. In China, the tendency of climate change has been generally 
consistent with its global pattern [2–3]. The multiscale, all-dimension, multi-level influences of 
climate change on humans, the ecology and environment [4–11] are key risk factors for global 
sustainable development. Because the water cycle connects humans, the ecology and environment, 
its response to future climate change has become a focus of scientists, the general public, and 
decision-makers all over the world. 

China has a vast territory and various climate types. Because of substantial differences in 
geological environment, climate, and economic development stages in various regions, the 
influences of climate change vary. In the context of global warming, the frequency and intensity of 
climate extremes such as high temperature, low temperature, heavy precipitation and droughts in 
China had varying tendencies and regional differences [12–13]. Recently, a number of researchers 
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have conducted extensive studies of climate change and its effects on water resources in China. In 
general, it was found that over the past 100 years, hydrological climate elements changed 
substantially in major basins of the country, showing substantial temperature rises in most areas. In 
the last 50 years, there has been an uneven south-north precipitation distribution in the eastern 
monsoon region [14–17] and reduced basin runoff in the majority of northern exorheic rivers, 
aggravating water resource supply–demand conflicts in the north and pressure for flood control in 
the south [18–20]. In most regions of the country, the potential (water surface) evaporation capability 
decreased dramatically [21–24]. Future climate change might exert strong impacts on water 
resources in China [25–28], with reduced runoff in northern rivers but increased runoff in southern 
ones [29]. Annual average evaporation may be on the rise [30], as may be the case also for the 
frequency of flood and drought disasters, which would further increase the vulnerability of water 
resources and conflict between water supply and demand [29].  

Because of basin water cycle and water resource pattern changes in major river basins of China 
and prominent water issues such as flood disasters in the south and water shortages in the north, it is 
of great scientific importance and value to study the mechanism and spatiotemporal variation of the 
continental water cycle under the background of climate change. This will help assess the influence 
of such change on the basin water cycle and ensure sustainable socioeconomic development in the 
country. 

In the current study, basins of the Yangtze River and Yellow River were selected to represent 
typical southern and northern basins in China. A multi-criteria score-based method was used to 
assess the suitability of multiple General Circulation Models (GCMs) provided by the IPCC. 
Screened GCM output results were downscaled to create future climate change scenarios suitable for 
the Yangtze and Yellow River basins. These scenarios were used to drive distributed hydrological 
models to simulate the spatiotemporal variation of water cycle elements in the study area, thereby 
evaluating the response of the river basin water cycle to future climate change. 

2. Materials and Methods  

2.1. GCM suitability assessment method 

Taking the degree of fit of statistical values from GCM output and those from field-measured 
data as objective functions, the performance of each such function was scored, thereby evaluating 
the comprehensive performance of GCMs. 

The mean value, coefficient of variability (= standard deviation / mean value), and normalized 
root mean square error (NRMSE) were used to characterize closeness between the mean value and 
deviation of GCM output variables and those of measured variables. NRMSE was defined as the 
ratio of root mean square error to the corresponding standard deviation. 

Pearson correlation coefficients in both chronological (multiyear average monthly sequence) 
and spatial (mean value of climate elements at stations) sequences were used to characterize the 
closeness between GCM simulation and measured values, thereby evaluating the simulated 
variables' intraannual change and spatial degree of fit. 

The rank-based nonparametric Mann-Kendall method was used to detect long-term tendencies 
(MK Zc) and magnitudes (MK Slope) of every variable. If areas where the MK Zc of GCM output 
variables matched measured values did not reach 95%, MK Slope was not included in the scoring.  

Empirical orthogonal functions (EOFs) were used to qualitatively and quantitatively 
characterize variable spatiotemporal variation. Preliminary analysis showed that the first and 
second EOF characteristic vectors of nearly 20 variables were able to explain most of the deviations. 
Hence, these two vectors were included in rank scoring. 

Two statistics of the probability density function, Brier score (BS) and skill score (Sscore), were 
used to evaluate the effectiveness of GCM simulation of that function. BS is the mean square 
deviation of probabilistic prediction, and Sscore is used to describe the overlap between the 
computed and measured probability distribution. 
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A total of 11 statistics were included, i.e., mean, coefficient of variability, NRMSE, temporal 
correlation coefficient, spatial correlation coefficient, trend analysis rank statistics, trend analysis 
variation magnitude, first and second EOF characteristic vectors, and BS and Sscore of the 
probability density function. Performance of each of the statistics was considered as one of the 
objective functions. A multi-criteria rank score (RS) value was computed for every objective function 
by assigning a value of 0–10, based on GCM performance. The calculation was 

       

min
max

max min

[ *10],i
ii

x xInt x x
x x

RS − <
−

=
                       (1) 

where xi is relative error in a statistic between simulated and measured values. The smaller the value 
is, the lower the score is. For a specific GCM output variable, the final total score was calculated by 
averaging the scores of all statistics. The better the simulation results, the lower the score. The score 
represents the degree of fit between GCMs outputs and measured values. It could be used to 
compare and analyze different GCMs, but it does not indicate the actual simulation accuracy of a 
given GCM. 

2.2. Downscaling model 

The Statistical Downscaling Model (SDSM) has both of deterministic transfer functions and 
stochastic components [31](Wilby, R.L., C.W. Dawson and E.M. Barrow, SDSM—A decision support 
tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 
2002. 17(2): p. 145-157.). It has been widely applied in the statistical downscaling studies for both 
climate variables and air quality variables, and has been recommended by the Canadian Climate 
Impacts and Scenarios (CCIS) project (http://www.cics.uvic.ca). 

An automated regression-based statistical downscaling model  (ASD), [32] (Hessami, M., 
Gachon, P., Ouarda, T.B.M.J. and St-Hilaire, A., (2008) Automated regression-based Statistical 
Downscaling tool, Environmental Modelling and Software, 23, 813-834.), inspired by the existing 
SDSM was developed within the Matlab environment, which is an easy to use graphical user 
interface for the statistical downscaling of GCM outputs to regional or local variables and already 
been successfully applied in major river basins of the east monsoon region in China [33] (Xu ZX, Liu 
P, Liu WF. Automated statistical downscaling in several river basins of the Eastern Monsoon region, 
China. Proceedings of H01, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 2013 (IAHS Publ. 
359, 2013), 80-85). 

2.3. Distributed hydrological models 

The Taihu basin, located in the Yangtze River Delta region, is selected as the typical area for 
hydrological modeling in this study, which is characterized by a flat terrain, a complex river 
network, and various polder areas, without a clear outlet. Based on a 90-m DEM, it is difficult to 
extract the basin river network and simulate runoff yield and concentration over the entire basin. 
Therefore, the distributed Variable Infiltration Capacity (VIC) model based on grids was used to 
directly obtain gridded runoff depth in the basin. The VIC model considers physical exchange 
processes of atmosphere–vegetation–soil, primarily reflected by the variation of water and heat 
conditions and water and heat transfer in those three components. The model has been widely used 
to study the effects of climate change on hydrologic processes [34–39]. VIC can either 
simultaneously simulate atmospheric–hydrological energy balance and water balance, or just 
calculate water balance, export runoff depth, and evaporation at each grid. Through a runoff 
concentration model, it transforms grid runoff depth into water flow at the basin outlet, eliminating 
the shortcomings of traditional hydrological models in the description of thermal processes.  

The upper reaches of the Yellow River basin were selected to investigate the influences of 
climate change on the basin water cycle in this study. The reasons for this selection were: (1) The 
upper reaches are the origin of the Yellow River, and runoff variation there affects the entire basin; 
(2) future runoff change in the upper reaches can be used to validate basin-wide runoff change; (3) 
results of sub-basin estimation can provide accurate and detailed information for future runoff 
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variation tendencies. In the upper reaches of the Yellow River basin, there is strong terrain 
fluctuation, an extractable river network, and abundant hydrologic data for the basin outlet. The 
Soil and Water Assessment Tool (SWAT) model [40-41] was used for distributed hydrological 
simulation. Parameter sensitivity was analyzed by use of the built-in sensitivity analysis module. 

2.4. Dataset 

2.4.1. GCM output 

To include as many GCMs as possible from different countries and ensure the integrity and 
reliability of GCM outputs, we selected GCMs recommended by the IPCC (Table 1). The climate 
elements included 15 meteorological variables, i.e., average temperature, relative humidity, 
longitudinal and latitudinal wind speeds, geopotential heights at the 500, 700 and 850 hPa levels, 
and two surface climate elements (temperature and precipitation). The time scale was one month. 
All data were from the IPCC data center. Details of the GCMs are on the website 
http://ipcc-ddc.cru.uea.ac.uk. All GCM output data were normalized to 2.5° × 2.5° by interpolation. 
Data series were from the period 1950 to 1999/2000. 

Table 1. Information on GCMs 

GCMs Abbreviation 
Developing research 

institute Country Resolution 
Study 
period 

BCCR:BCM20 BCCR Bjerknes Centre for 
Climate Research 

Norway 1.9° × 1.9° 1961–
2000 

PCM PCM National Center for 
Atmospheric Research 

United 
States 2.8° × 2.8° 1961–

1999 

CCSM3 CCSM3 
National Center for 

Atmospheric Research 
United 
States 1.4° × 1.4° 

1961–
2000 

CGCM2.3.2 MRI Meteorological Research 
Institute 

Japan 2.8° × 2.8° 1961–
2000 

CGCM3.1_T47 CGCM47 Canadian Centre for 
Climate Modelling and 

Analysis 
Canada 

2.8° × 2.8° 1961–
2000 CGCM3.1_T63 CGCM63 1.9° × 1.9° 

CNRM:CM3 CNRM 
National Centre for 

Meteorological Research France 1.9° × 1.9° 
1961–
1999 

CSIRO:MK30 CSIRO30 Atmosphere Research, 
Commonwealth Scientific 
and Industrial Research 

Organization 

Australia 

1.9° × 1.9° 
1961–
2000 CSIRO:MK35 CSIRO35 1.9° × 1.9° 

ECHAM4 ECHAM4 
Meteorological Research 

Center 
Germany 

2.8° × 2.8° 
1961–
2000 

ECHAM5 ECHAM5 
Max Planck Institute für 

Meteorologie 1.9° × 1.9° 
1961–
2000 

FGOALS:g10 FGOALS 

State Key Laboratory of 
Numerical Modeling for 

Atmospheric Sciences and 
Geophysical Fluid 

Dynamics (LASG) / 
Institute of Atmospheric 

Physics 

China 2.8° × 2.8° 1961–
1999 

GFDL:CM20 GFDL20 U.S. Department of 
Commerce / National 

Oceanic and Atmospheric 
Administration / 

United 
States 

2.0° × 2.5° 
1961–
2000 GFDL:CM21 GFDL21 2.0° × 2.5° 
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Geophysical Fluid 
Dynamics Laboratory 

GISS:AOM GISSAOM National Aeronautics and 
Space Administration 

(NASA) / Goddard 
Institute for Space Studies 

(GISS) 

United 
States 

3° × 4° 

1961–
2000 

GISS:EH GISSEH 4° × 5° 

GISS:ER GISSER 4° × 5° 

HadCM3 HadCM3 Met Office Hadley Centre 
for Climate Science and 

Services 

United 
Kingdom 

2.5° × 3.75° 1961–
1999 HadGEM1 HadGEM1 1.3° × 1.9° 

INM:CM30 INM 
College of Computational 

Mathematics Russia 4° × 5° 
1961–
2000 

IPSL:CM4 IPSL 
Pierre-Simon marquis de 

Laplace France 2.5° × 3.75° 
1961–
2000 

MIROC3.2_hires MIROC-h Climate System Research 
Center, Tokyo University; 

National Environment 
Research Institute; 

Frontier Research Center 
for Global Change 

(JAMSTEC) 

Japan 

1.1° × 1.1° 

1961–
2000 MIROC3.2_medres MIROC-m 2.8° × 2.8° 

2.4.2. ERA-40/NCEP reanalysis data  

ERA-40 and NCEP reanalysis data were taken as the measured data of the meteorological 
variables to assess the suitability of GCM outputs. 

2.4.3. Surface observational data 

Gridded data of monthly average temperature and monthly precipitation from the China 
Meteorological Administration (http://ncc.cma.gov.cn) were used, which were resampled to 2.5° × 
2.5° grids. Then, the data were used to assess GCM surface output results. 

3. Results and discussion 

3.1. GCM suitability assessment results  

3.1.1. The Yangtze River basin 

The Yangtze is the longest river in China (6393 km) and has a total basin area of 1.8 million km2, 
accounting for 18.75% of the national area. Mountains and hills take up to 84.7% of the entire basin 
area, plains 11.3%, and rivers and lakes 4%. There is a mild and humid climate, with abundant 
rainfall and average annual precipitation 1100 mm. The average annual water volume flowing into 
the sea reaches 960 billion m3. The Yangtze River basin supports water and energy resources for the 
most populated area in China. It is very important to study the response of the water cycle in the 
basin to climate change for the development of water resources and national economy. Figure 1 
shows the GCM grids used in this study. 
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Figure 1. Grids of Yangtze River basin 

Comprehensive assessment results indicate that FGOALS, ECHAM4, ECHAM5, HadCM3, 
HadGEM1 and MRI had better performance in the Yangtze River basin than other GCMs (Figure 2). 
Zhang et al. [42] investigated spatiotemporal and circulation characteristics of the water vapor 
budget in the basin, and emphasized the influence of latitudinal water vapor transport originating 
from the Bay of Bengal on basin relative humidity. The simulation results of longitudinal and 
latitudinal wind speed strongly affected the spatiotemporal distribution of basin relative humidity. 
In the present study, four GCMs that effectively simulated relative humidity (ECHAM4, FGOALS, 
HadCM3 and HadGEM1) also showed good simulation of longitudinal and latitudinal wind speeds, 
consistent with previous studies. Temperature simulation results were better than other variables 
(including relative humidity), also demonstrated in previous studies. Xu et al. [43] simulated climate 
change in East Asia based on five climate models, including temperature, precipitation, diurnal 
range and water vapor data. Their assessment results indicated that ECHAM4 and HadCM2 had 
best performance in China. In the present study, these two models also demonstrated promising 
outcomes. However, during assessment of GCM suitability in the Murray-Darling Basin of 
Australia, Maxino et al. [44] obtained larger GCM-computed values of temperature than measured 
values for most GCMs. In contrast, in an assessment of GCM suitability in the Yellow River basin by 
Cao et al. [45], the computed temperature was consistently cooler. In the present study, the 
computed temperature was warmer in most GCMs than measured. This might have resulted from a 
large difference of regional climate and circulation characteristics in the basins, as well as different 
GCM responses to climate characteristic variation. Therefore, it is necessary to assess GCM 
suitability across different basins. 
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Figure 2. Comprehensive scoring of GCMs in Yangtze River basin 

Specifically, we chose the Taihu basin to investigate the influences of climate change on the 
water cycle in the Yangtze River basin and evaluate GCM suitability. This basin is in the southern 
Yangtze River Delta. Associated administrative regions include southern Jiangsu, Jiaxing, Huzhou, 
part of Hangzhou in Zhejiang, and most of Shanghai, one of the most economically developed and 
populated regions in China. The basin water cycle is extremely sensitive to climate change. 

Figure 3 shows RS scores in increasing order. The lower the score is, the better the GCM 
performance for climate simulation is. Thus, it is seen that the BCCR model had the best 
performance overall. Therefore, it was used to assess the impacts of climate change. The simulated 
daily climate data were exported to the A1B scenario including two components, the current period 
(1961–2000, 20c3m scenario) and future periods (2046–2065 and 2081–2100). A1B is characterized by 
balanced economic development and greenhouse gas emissions, and is therefore suitable for future 
planning of coordinated water–economic–environment development in the Taihu basin. 

 

 

Figure 3. Comprehensive scoring of GCMs in Taihu basin 

3.1.2. The Yellow River basin 

We selected 25 grids of GCM data over the Yellow River basin (Figure 4). All GCM data were 
interpolated to a resolution of 2.5° × 2.5°. The comprehensive results showed that the top ten climate 
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models were the MRI, HadGEM1, INM, CSIRO30, MIROC-M, HadCM3, BCCR, GFDL20, CGCM47, 
and GFDL21 (Figure 5). 

 

  
Figure 4. Grids of Yellow River basin 

 
Figure 5. Comprehensive scoring of GCMs in Yellow River basin 

While studying summer water vapor transport in the Asian monsoon zone and effects on 
precipitation in China, Zhou et al. [46] observed the important role of longitudinal and latitudinal 
water vapor transport by the Indian monsoon to relative humidity of the basin in China. Also, it was 
reported that relative humidity was to a large extent affected by the simulation performance of 
longitudinal and latitudinal wind speeds. In the present study, the GCMs with favorable simulation 
of relative humidity (MRI, HadGEM1 and GFDL20) also showed good performance in simulation of 
those wind speeds. This is consistent with the finds of Zhou et al. [46]. 

 To analyze uncertainty caused by multiple GCMs and different scenarios and 
comprehensively consider the consistency and integrity of scenario data in different models, we 
compared A2 and B1 scenario data in MRI, CSIRO30 and INM, which had the best performance in 
the Yellow River basin. 
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3.2.  Impacts of climate change on water cycle 

3.2.1. The Yangtze River basin 

• Construction of future climate change scenario  
In a previous study by the authors [47], we conducted a comparison of statistical downscaling 

models for the Taihu basin. Specifically, the SDSM and ASD model were used to construct future 
climate change scenarios for that basin. The results indicated that ASD optimized the selection of 
predictors, and the simulation results were superior to those of SDSM. Therefore, the ASD model 
was used herein to construct future climate change scenarios. 

ASD downscaling results revealed that the variation of future precipitation was complex and 
substantial compared to that of future temperature. Figure 6 shows that in the two future periods 
(2046–2065 and 2081–2100), the majority of months showed an increasing tendency in precipitation. 
The increase was large in spring and summer (except August), but smaller in other months. 
Compared to precipitation in 1961–1990, precipitation ranged between −0.3 and 83.6 mm and −5.3 
and 89.5 mm in 2046–2065 and 2081–2100, respectively. In general, precipitation in the two future 
periods will not change significantly. Intra-annual variation was consistent, with reduced 
precipitation in January, August and December, and increased precipitation in March, May and July. 

 

  
(a)                                             (b) 

      
(c)                                              (d) 

    
(e)                                              (f) 

Figure 6. Daily maximum temperature (a–b), minimum temperature (c–d), precipitation (e–f) and 
their variations in the Taihu basin during two future periods predicted by ASD downscaling model 
(a, c, and e are comparisons between three elements and their measured values; b, d, and f are 
monthly changes compared to baseline period) 
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• Response to climate change of water cycle 
The authors successfully constructed VIC for the Taihu basin [48], which was used in the 

present study. For meteorological data series under the A1B scenario during the baseline period 
(1961–1990) generated by the ASD model, including daily precipitation, daily maximum and 
minimum temperatures, the Thiessen polygon method was used to interpolate the data to 5 km × 5 
km grids, thereby creating climate forcing data. Based on soil and vegetation parameters of the 
constructed VIC model of the Taihu basin [48], the model was run on 1452 grids of the basin, 
exporting daily runoff depth data at every grid for the period 1961–1990. 

Similarly, based on meteorological data series in the future periods (2046–2065 and 2081–2100) 
generated by ASD, including daily precipitation, daily maximum and daily minimum temperatures, 
daily runoff depth data at every grid were exported. 

Figure 7 shows monthly changes of runoff depth on each grid for 2046–2065, compared to the 
baseline period. It is seen that in most areas of the basin, there was a decreasing tendency in monthly 
runoff depth in the future, of varying magnitude. Areas with large reductions of runoff depth were 
western Zhejiang and Zhangzhou–Jiaxing–Huzhou; the other areas showed lesser reductions. 
Particularly, Shanghai showed an increasing tendency during most of the year (January–April and 
September–December). Western Zhejiang demonstrated a slight increase in runoff depth during 
flood season. 

 

 
Figure 7. Spatial distribution of monthly runoff depth variation during 2046–2065 under A1B 
scenario 
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Figure 8 shows monthly changes of runoff depth at every grid between 2081–2100 and the 
baseline period. It is seen that in most areas of the basin, there was a decreasing tendency of monthly 
runoff depth in the future, with varying magnitude. The runoff depth in the western Zhejiang area 
tended to decrease compared to the baseline period, but the magnitude of decrease was less than 
that during 2046–2065. The Yangchengdian area had the largest reduction in runoff depth during 
March and May, whereas the Hangzhou–Jiaxing–Huzhou area showed a relatively large reduction 
in winter. Similar to the earlier period of 2046–2065, there was an increasing tendency in Shanghai 
during most of the year (January–April and October–December). 

 

 
Figure 8. Spatial distribution of monthly runoff depth variation during 2081–2100 under A1B 
scenario 

3.2.2. The Yellow River basin 

• Construction of future climate change scenario 
Based on results of GCM suitability assessment, output data of three GCMs (MRI, CSIRO30, 

and INM) in the A2 and B1 scenarios were used and underwent interpolation to form 2.5° × 2.5° 
grids. The three simulation periods were the same as above. The SDSM model was used for 
downscaling. Twelve daily predictors were chosen, covering 25 grids in the Yellow River basin. The 
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observation data contained daily precipitation, average temperature, and maximum and minimum 
temperatures at 79 stations in the basin from 1961 to 1990. 

Figure 9 displays the simulation results of monthly maximum and minimum temperatures 
from six conditions (three GCMs, each using the A2 and B1 scenarios). It is seen that both monthly 
maximum and minimum temperatures had increasing tendencies in most months of the year for all 
six conditions. 

 

 

(a)                                             (b) 

 

(c)                                                     (d) 

Figure 9. Changes of simulated monthly maximum (a and b) and minimum (c and d) temperature 
under scenarios A2 and B1 during the period of 2046-2065 and 2081-2100 respectively 

The variation of precipitation was substantially different between conditions (Figure 10). 
Overall, the CSIRO30 model showed a minimal reduction (monthly variation < 25%) in precipitation, 
whereas MRI produced the greatest precipitation increase. 
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          (c)                                              (d) 

          

         (e)                                             (f) 

Figure 10. Simulation results of precipitation from three GCMs (a–b: CSIRO30; c–d: INM; e–f: MRI) 
under various scenarios (a, c, and e: A2; b, d and f: B1) 

• Response to climate change of water cycle 
(1) Construction of distributed hydrological model 
The upper reaches of the Yellow River are on the Qinghai-Tibetan Plateau, bordering the Bayan 

Har Mountains in the south, Qaidam Basin in the north, Kunlun mountains in the west, and Loess 
Plateau in the east. The geomorphology is alpine grassland. The segment above Lanzhou (hereafter 
referred to as the upper reaches) has a total length of 2119 km and catchment area of 224,749 km2, 
accounting for 28% of that in the entire basin. Figure 11 shows the location of the river basin. 
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Figure 11. Upper reaches of Yellow River 

The SWAT model with the built-in parameter sensitivity analysis module was calibrated and 
validated during 1971–1985 and 1986–2000, respectively. Figure 12 shows a comparison between 
discharge simulation and measured values at the Lanzhou hydrological station during the 
calibration and validation periods. In general, model indexes were satisfactory. The Nash-Sutcliffe 
efficiency and determination coefficients were 0.667 and 0.773 in the calibration period, and 0.626 
and 0.709 in the validation period. Hence, the model showed good performance in simulating water 
balance in the basin. 

 

 

(a) 
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(b) 

Figure 12. Fitted curve of monthly discharge simulation to measured values at Lanzhou hydrological 
station (a: calibration period; b: validation period) 

(2) Response of runoff to future climate change in upper Yellow River basin 
Figures 13–15 present the spatial distribution of mean annual runoff depth during 2046–2065 

and 2081–2100 compared to the baseline period, for every sub-basin and downscaling scenarios of 
the three GCMs. The runoff depth variation of the CSIRO model was –35.8 to 43 mm. In most areas, 
the variation was between −5 and −20 mm. Overall, the tendency of basin runoff was consistent 
between different scenario combinations, with runoff decreases in the majority of sub-basins. The 
area of runoff depth reduction was less under the B1 scenario than that under the A2 scenario. 
Runoff depth decreased greatly in the Hongyuan, Jiuzhi and Ruoergai areas, generally between −35 
and −21 mm. In general, in the downscaling scenario of the CSIRO model, basin runoff depth tended 
to decrease in most sub-basins.  

 

 

(a)                                            (b) 
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(c)                                          (d) 

Figure13. CSIRO-estimated spatial distribution of mean annual runoff depth in sub-basins for 2046–
2065 (a and b) and 2081–2100 (c and d) compared to baseline period 

For various scenario combinations of the INM model, changes of runoff depth were between 
−33.9 and 61 mm, with decreases in most sub-basins. The tendency of runoff depth with different 
scenario combinations was relatively consistent, showing decreasing tendencies (in excess of 20 mm) 
in southern sub-basins, and mixed increases and decreases in northern sub-basins. under the A2 
emission scenario of INM, the area of sub-basins with reduced runoff during 2081–2100 was larger 
than that in 2046–2065. Under the B1 scenario, the area was smaller in 2081–2100. The Hongyuan, 
Jiuzhi, and Ruoergai areas had large reductions in runoff depth, between −31 and −21 mm. 

 

 

(a)                                               (b) 
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(c)                                               (d) 

Figure 14. INM-estimated spatial distribution of mean annual runoff depth in sub-basins for 2046–
2065 (a and b) and 2081–2100 (c and d) compared to baseline period 

For different scenario combinations of the MRI model, runoff depth was between −32.9 and 69 
mm, with over half the area of sub-basins showing a decreasing tendency in average runoff depth. In 
the period 2046–2065, the area of sub-basins with increasing runoff under the A2 scenario was larger 
than that under the B1 scenario, as was the area with reductions of 16–20 mm. For 2081–2100, the 
area of sub-basins with increasing runoff under the B1 scenario was larger than that under the A2 
scenario, as was the area with reductions of 16–20 mm. The MRI model produced a decreasing 
tendency in runoff depth over half the basin area. In addition, that depth decreased greatly in 
Hongyuan, Jiuzhi and Ruoergai, generally between −35 and −21 mm. 

 

 

(a)                                             (b) 
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(c)                                              (d) 

Figure 15. MRI-estimated spatial distribution of mean annual runoff depth in sub-basins for 2046–
2065 (a and b) and 2081–2100 (c and d) compared to baseline period 

4. Conclusions 

As an important component of the climate system, the water cycle is extremely sensitive to 
climate change. This has been a frequent topic and emphasis in the investigation of the effects of 
climate change on the basin water cycle and water resources [49]. In the present study, taking the 
typical basins of the Yangtze and Yellow River basins as objects, we conducted suitability 
assessments of GCMs and downscaling. Through coupling of GCMs and distributed hydrological 
models, the influence of climate change on the basin water cycle was quantified. The conclusions are 
as follows. 

(1) Based on rank scoring, the degree of fit between statistical values of GCM output and those 
of reanalysis data was taken as the objective function. Scores were given according to the 
performance of every objective function, thereby obtaining comprehensive scores for the 
performance of each GCM in their simulation of the Yangtze and Yellow River basins. Specifically, 
the top three models were the MRI, HadGEM1 and INM for the Yangtze River, and FGOALS, 
ECHAM4 and ECHAM5 for the Yellow River. This indicates a substantial difference between the 
southern and northern regions of China with respect to the effects of climate change. 

(2) Future precipitation and temperature data under the A1B scenario were generated by the 
ASD downscaling model, which were used to drive the VIC model on 5 km × 5 km grids. Simulation 
of hydrologic processes in the Taihu basin on the lower reaches of the Yangtze River showed that 
areas with substantial reduction in runoff depth during 2046–2065 compared to a baseline period 
were western Zhejiang and Hangzhou–Jiaxing–Huzhou. The western Zhejiang area showed a slight 
increase in runoff depth during flood season. Runoff depth in western Zhejiang tended to decrease 
in 2081–2100 compared to the baseline period, but this decrease was less than that during 2046–2065. 

(3) The SWAT model gave relatively promising results for the upper reaches of the Yellow 
River basin. Under the A2 and B1 scenarios, basin runoff tended to decrease in future periods. In 
particular, the decrease was greater in 2081–2100 than in 2046–2065. Under different scenario 
combinations, multiyear average runoff in 2046–2065 and 2081–2100 was 27.507 and 25.737 billion 
m3, respectively, reductions of 16.9% and 22.2% compared to the baseline period. Under various 
scenario combinations, spatial runoff variation in the upper basins of the Yellow River was 
consistent. In most areas there was a decreasing tendency in runoff depth. Specifically, the decrease 
was largest in Hongyuan, Jiuzhi and Ruoergai, in excess of 20 mm. Maximum runoff decrease did 
not vary much with the scenario combination, and was about −30 mm. However, the magnitude of 
increase was substantially different, between 12.7 and 69 mm. 
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In view of the complexity and uncertainty of climate change and the basin water cycle, future 
work should focus on the following aspects on the basis of the most recent AR5 outcome. 

(1) Detection and attribution of continental water cycle, multi-element spatiotemporal 
variation, to reveal the mechanism of water cycle response to climate change. 

(2) Development of probability prediction theory and methods of future hydrologic scenario 
change, quantitative analysis of uncertainty of the effects of climate change on water resources, and 
risk management and decision-making for water resources. 

(3) Development of new-generation, large-scale, distributed continental water cycle simulation 
systems, thereby achieving atmospheric-hydrologic coupling and revealing the mechanism of 
interaction between climate change, human activity, and the water cycle. 

(4) Evaluation theory and methods for water resource vulnerability to climate change, thereby 
providing a basis for regulating adaptive countermeasures for climate change. 
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