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Abstract: In the current paper, a residual generation filter with finite memory structure is proposed
for sensor fault detection. The proposed finite memory residual generation filter provides the
residual by real-time filtering of fault vector using only the most recent finite observations and
inputs on the window. It is shown that the residual given by the proposed residual generation filter
provides the exact fault for noise-free systems. The proposed residual generation filter is specified
to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate
the capability of the proposed residual generation filter, numerical examples are performed for the
discretized DC motor system having the multiple sensor faults.

Keywords: residual generation filter; finite memory structure; Kalman filter; fast detection

1. Introduction

As most dynamic process plants are becoming more complex, there has been a growing demand
for a fault detection. The fault detection is the prompt indication of incipient as well as abrupt faults
and can help avoid major plant breakdowns and take appropriate actions in order to maintain the
operation. Thus, a fault detection is an important and challenging problem in many disciplines such
as chemical engineering, nuclear engineering, aerospace engineering, and automotive systems [1]-[3].

The essential step for the fault detection is to generate a set of variables known as residuals by
using one or more residual generation filters. These residuals should ideally be zero (or zero mean)
under no-fault conditions. In practical applications, the residuals are corrupted by the presence of
noise, unknown disturbances, and uncertainties in the system model. Hence, in order to be useful
in practical applications, they should be insensitive to noise, disturbances, and model uncertainties
while maximally sensitive to faults.

As residual generation filters, Kalman filters have been adopted in the stochastic case where
noises have to be considered [4]-[9]. Due to the compact representation and the efficient manner, the
Kalman filter has been applied successfully for various areas including a fault detection. However, the
Kalman filter has an infinite memory structure that utilizes all observations accomplished by equaling
weighting and has a recursive formulation. Thus, the Kalman filter tends to accumulate the filtering
error as time goes and can show even divergence phenomenon for temporary modeling uncertainties
and round-off errors [10]-[13]. This inherent property of the Kalman filter has been shown in
applications of wireless sensor networks [14][15]. In addition, actually, long past measurements are
not useful for detection of faults with unknown times of occurrence. Moreover, it is also known that
the increase of the number of measurements for a detection decision will increase detection latency
in a system for detecting a signal with unknown time of occurrence.

Therefore, in the current paper, an alternative residual generation filter with finite memory
structure is proposed for a sensor fault detection. The proposed finite memory residual generation
filter provides the residual by real-time filtering of fault vector using only the most recent finite
observations and inputs on the window. It is shown that the residual given by the proposed residual
generation filter provides the exact fault for noise-free systems. The proposed residual generation
filter is specified to the digital filter structure for the amenability to hardware implementation. Finally,
numerical examples are performed for the discretized DC motor system having the multiple sensor
faults to illustrate the capability of the proposed finite memory residual generation filter.
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2. Problem Statements

In general, the fault model can be represented by the following discrete-time state space model
with unknown sensor faults as well as noises:

x(i + 1) = Φx(i) + Du(i) + ∆1 f (i) + Eω(i),

y(i) = Cx(i) + ∆2 f (i) + v(i) (1)

where x(i) ∈ <n the state vector, u(i) ∈ <l and y(i) ∈ <q are the input vector and the measurement
vector. The covariances of the system noise ω(i) ∈ <p and the measurement noise v(i) ∈ <q are
Qω and R, respectively. The fault vector ω(i) ∈ <q in the system under consideration are to be
represented by random-walk processes as

f (i + 1) = f (i) + δ(i)

where f (i) = [ f1(i) f2(i) · · · fq(i)]T , and δ(i) = [δ1(i) δ2(i) · · · δq(i)]T is a zero-mean white Gaussian
random process with covariance Qδ. It is noted that the random-walk process provides a general and
useful tool for the analysis of unknown time-varying parameters and has been widely used in the
detection and estimation area.

The fault model (1) can be rewritten as an augmented state model as[
x(i + 1)
f (i + 1)

]
= A

[
x(i)
f (i)

]
+ Bu(i) + G

[
ω(i)
δ(i)

]
,

y(i) = H

[
x(i)
f (i)

]
+ v(i) (2)

where

A =

[
Φ ∆1

0 I

]
, B =

[
D
0

]
, G =

[
E 0
0 I

]
, H = [C ∆2], (3)

and the covariance w(i) is the diagonal matrix with Qω and Qδ.
In general, the residual for the fault detection is defined by a signal generated based on the

measurement vector y(i) and input vector u(i). In addition, this residual is corrupted by the presence
of noises in practical applications. Therefore, a residual generation filter is required to generate robust
residuals that are insensitive to these noises, while sensitive to faults.

In the current paper, an alternative residual generation filter is designed with finite memory
structure. The proposed finite memory residual generation filter provides the residual r(i) by
real-time filtering of fault vector f (i) using only the most recent finite measurements Y(i) and inputs
U(i) on the window [i−M, i] as follows

r(i)
4
= f̂ (i)

4
= H

[
Y(i)−ΩU(i)

]
(4)

where f̂ (i) is the filtered estimate of f (i) andH is the filter gain matrix. The term Y(i)−ΩU(i) in (4)
with the most recent finite measurements Y(i) and inputs U(i) can be represented by the following
regression form on the window [i−M, i]:

Y(i)−ΩU(i) = Γ

[
x(i)
f (i)

]
+ ΛW(i) + V(i) (5)
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where

Y(i)
4
=

[
yT(i−M) yT(i−M + 1) · · · yT(i− 1)

]T
, (6)

and U(i), W(i), V(i) have the same form as (6) for u(i), w(i), v(i), respectively, and matrices Ω, Γ, Λ
are as follows:

Ω
4
= −


HA−1B HA−2B · · · HA−MB

0 HA−1B · · · HA−M+1B
...

...
...

...
0 0 · · · HA−1B

 , Γ
4
=


HA−M

HA−M+1

...
HA−1

 , (7)

Λ
4
= −


HA−1G HA−2G · · · HA−MG

0 HA−1G · · · HA−M+1G
...

...
...

...
0 0 · · · HA−1G

 . (8)

The noise term ΛW(i) + V(i) in (5) is zero-mean white Gaussian with covariance Π given by

Π
4
= Λ

[
diag(

M︷ ︸︸ ︷
Q Q · · · Q)

]
ΛT +

[
diag(

M︷ ︸︸ ︷
R R · · · R)

]
. (9)

Now, to get the residual generation filter from the regression form (5), the following weighted
least square cost function must be minimized:{

Y(i)−ΩU(i)− Γ

[
x(i)
f (i)

]}T

Π−1
{
[Y(i)−ΩU(i)− Γ

[
x(i)
f (i)

]}
. (10)

Taking a derivation of (10) with respect to [xT(i) f T(i)]T and setting it to zero, the filter gain matrixH
for the residual generation filter r(i) = f̂ (i) is given by

H =
[(

ΓTΠ−1Γ
)−1ΓTΠ−1

]
q

(11)

where the subscript q means the lower q rows of
[(

ΓTΠ−1Γ
)−1ΓTΠ−1

]
. Therefore, the proposed finite

memory residual generation filter for r(i) is given by the simple matrix form withH and Y(i)−ΩU(i)
as follows:

r(i) =


r1(i)
r2(i)

...
rq(i)


=

[(
ΓTΠ−1Γ

)−1ΓTΠ−1
]

q

[
Y(i)−ΩU(i)

]
. (12)

Each residual rs(i) in the residual r(i) can be obtained by

rs(i) = Hs

[
Y(i)−ΩU(i)

]
(13)

where s = 1, 2, · · · , q andHs is the sth row of theH.
The proposed finite memory residual generation filter for r(i) in (12) is shown to have several

inherent properties. As shown in the following Theorem, the residual r(i) given by the proposed
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residual generation filter on the window [i − M, i] provides the exact fault f (i) when there are no
noises.

Theorem 3.1. When M ≥ n, the residual r(i) given by the proposed finite memory residual generation
filter on the window [i−M, i] provides the exact fault f (i) for noise-free systems.
Proof:

When there are no noises on the window [i − M, i] for the discrete-time state space model (2)
with measurement delay as follows:[

x(i + 1)
f (i + 1)

]
= A

[
x(i)
f (i)

]
,

y(i) = H

[
x(i)
f (i)

]
, (14)

the measurements Y(i) is determined from (5) as follows:

Y(i)−ΩU(i) = Γ

[
x(i)
f (i)

]
.

Therefore, the following is true:[
x̂(i)
f̂ (i)

]
= H

[
Y(i)−ΩU(i)

]
=

[(
ΓTΠ−1Γ

)−1ΓTΠ−1
][

Y(i)−ΩU(i)
]

=
[(

ΓTΠ−1Γ
)−1ΓTΠ−1Γ

] [ x(i)
f (i)

]

=

[
x(i)
f (i)

]
.

This means that r(i) = f̂ (i) = f (i).

Theorem 1 means that the residual r(i) tracks exactly its actual fault f (i) at every time for
noise-free systems although the proposed finite memory residual generation filter has been designed
assuming that the system (14) has additive system and measurement noises, w(i) and v(i) as the fault
model (1). This property indicates finite convergence time and fast tracking ability of the residual
given by the proposed residual generation filter. Thus, it can be expected that the proposed residual
generation filter might be appropriate for fast detection.

The window length M can be a useful design parameter for the proposed finite memory residual
generation filter. Thus, the important issue here is how to choose an appropriate window length
M to make the residual performance as good as possible. The noise suppression of the proposed
residual generation filter might be closely related to the window length M. It can have greater noise
suppression as the window length M increases, which improves the residual performance. However,
as the window length increases, the convergence time of a filtered residual becomes long. This
illustrates the proposed finite memory residual generation filter’s compromise between the noise
suppression and the tracking ability. Since M is an integer, fine adjustment of the properties with
M is difficult. Moreover, it is difficult to determine the window length using systematic ways. In
applications, one way to determine the window length is to take the appropriate value that can
provide enough noise suppression. Therefore, it can be stated from above discussions that both the
window length M can be considered as a useful parameters to make the residual performance of the
proposed finite memory residual generation filter as good as possible.
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3. Specified Residual for Hardware Implementation

In practice, it should be required that a fault detection system can be implemented with
discrete-time analog or digital hardware. In this case, the fault detection system should be specified
to an algorithm or structure that can be realized in the desired technology. Thus, the proposed finite
memory residual generation filter is specified to the well known digital filter structure in [16] for the
amenability to hardware implementation.

The filter gain matrixHs for the sth residual rs(i) in (13) can be defined by

Hs
4
=

[
hs(M− 1) hs(M− 2) · · · hs(0)

]
. (15)

Then, the proposed residual generation filter for the sth residual rs(i) is given by

rs(i) =
M−1

∑
j=0

hs(j)y(i− j)−
M−1

∑
j=0

[
HsΩ

]
ju(i− j) (16)

where
[
HsΩ

]
j is the (j + 1)th l elements of

[
HsΩ

]
. Applying the z-transformation to the residual (16)

yields the following digital filter structure:

rs(z) =
M−1

∑
j=0

hs(j)z−jy(z)−
M−1

∑
j=0

[
HsΩ

]
jz
−ju(z) (17)

where hs(j) and −
[
HsΩ

]
j become filter coefficients. It is noted that the digital filter structure (17) is a

well known moving average process whose functional relation between inputs y(z), u(z) and output
rs(z) is nonrecursive. The block diagram of the proposed finite memory residual generation filter (12)
for a hardware implementation can be represented as Fig. ??.

Figure 1. Block diagram representation of the finite memory residual generation filter
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4. Computer Simulations

To illustrate the capability of the proposed finite memory residual generation filter for a fault
detection, numerical examples are performed for the following discrete-time DC motor system with
the sensor fault:

x(i + 1) =

[
−0.0005 −0.0084
0.0517 0.8069

]
x(i) +

[
0.1815
1.7902

]
u(i) +

[
0.0006
0.0057

]
w(i),

y(i) =

[
1 0
0 1

]
x(i) +

[
1 0
0 1

]
f (i) + v(i).

Through computer simulations, the performance of the proposed finite memory residual
generation filter is evaluated and compared with the Kalman filtering based residual generation filter
with infinite memory structure in [4]-[9]. A fault is modeled for two scenarios as shown in Fig. 2.
For the 1st scenario, the fault is modeled as an incipient soft bias-type fault. In contrast, for the 2nd

scenario, the fault is modeled as an abrupt bias-type fault. The 2nd scenario might be more feasible
than the 1st scenario. In these numerical examples, the window length is taken as M = 10. Noise
covariances are taken by Qω = 0.012, Qδ = diag(0.022 0.022) and R = diag(0.22 12).

The proposed finite memory residual generation filter is compared with the Kalman filtering
based approach with infinite memory structure for both scenarios. Fig. 3 and 4 show plots for
residuals of both residual generation filters. As shown in Figure 2 for the 1st scenario, the proposed
finite memory residual generation filter can be comparable to the Kalman filtering based approach for
the incipient soft bias-type fault. In contrast, as shown in Figure 3 for the 2nd scenario, the tracking
of the proposed finite memory residual generation filter is much faster than the Kalman filtering
based approach when the abrupt bias-type fault occurs and disappears. One possible explanation for
this is the finite convergence time and fast tracking ability of the proposed finite memory residual
generation filter..

5. Concluding Remarks

This paper has proposed a residual generation filter with finite memory structure for sensor fault
detection. The proposed finite memory residual generation filter provides the residual by real-time
filtering of fault vector using only the most recent finite measurements and inputs on the window.
It has been shown that the residual given by the proposed residual generation filter provides the
exact fault for noise-free systems. The proposed residual generation filter has been specified to the
digital filter structure for the amenability to hardware implementation. Through numerical examples
for the discretized DC motor system having the sensor fault. the capability of the proposed residual
generation filter has been verified.
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Figure 2. Two kinds of simulated faults
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Figure 3. Residuals for the 1st scenario
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Figure 4. Residuals for the 2nd scenario
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