Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network

Cheng-Ming Lee a and Chia-Nan Ko b,*

a Department of Digital Living Innovation, Nan Kai University of Technology, Tsaotun, Nantou 542, Taiwan; t104@nkut.edu.tw

b Department of Automation Engineering, Nan Kai University of Technology, Tsaotun, Nantou 542, Taiwan

* Correspondence: t105@nkut.edu.tw

Abstract: A reinforcement learning algorithm is proposed to improve the accuracy of short-term load forecasting (STLF) in this article. The proposed model integrates radial basis function neural network (RBFNN), support vector regression (SVR), and adaptive annealing learning algorithm (AALA). In the proposed methodology, firstly, the initial structure of RBFNN is determined by using SVR. Then, an AALA with time-varying learning rates is used to optimize the initial parameters of SVR-RBFNN (AALA-SVR-RBFNN). In order to overcome the stagnation for searching optimal RBFNN, a particle swarm optimization (PSO) is applied to simultaneously find promising learning rates in AALA. Finally, the short-term load demands are predicted by using the optimal RBFNN. The performance of the proposed methodology is verified on the actual load dataset from Taiwan Power Company (TPC). Simulation results reveal that the proposed AALA-SVR-RBFNN can achieve a better load forecasting precision as compared to various RBFNNs.

Keywords: short-term load forecasting; radial basis function neural network; support vector regression; particle swarm optimization; adaptive annealing learning algorithm

1. Introduction

Load forecasting is a crucial issue in power planning, operation and control [1-4]. A short-term load forecasting (STLF) can be used for power maintenance scheduling, security
assessment, and economic dispatch. Thus, in order to strengthen the performance of the power system, improving the load forecasting accuracy is very important [5]. An accurate forecast can reduce cost and maintain security of a power system.

In recent years, various mathematical and statistical methods have been applied to improve the accuracy of STLF. These models are roughly classified as traditional approaches and artificial intelligence (AI) based methods. Traditional approaches include exponential smoothing [6], linear regression methods [7], Box-Jenkins ARMA approaches [8], and Kalman filters [9]. In general, the traditional methods cannot correctly indicate the complex nonlinear behavior of load series. Gouthamkumar et al. [10] proposed a non-dominated sorting disruption-based gravitational search algorithm to solve fixed-head and variable-head short-term economical hydrothermal scheduling problems. With the development in AI techniques, fuzzy logic [11], PSO [12], SVM [13], and singular spectrum analysis and nonlinear multi-layer perceptron network [14] have been successfully used for STLF. AI methods have the excellent approximation ability on nonlinear functions. Therefore, it can deal with nonlinear and complex functions in the system. However, a single method cannot predict STLF efficiently.

Hybrid methods are developed to utilize the unique advantages of each approach. Adaptive ANNs for short-term load forecasting is proposed in [15], in which PSO algorithm is employed to adjust the network’s weights in the training phase of the ANNs. A modified version of the ANN already proposed for the aggregated load of the interconnected system is employed to improve the forecasting accuracy of the ANN [16]. A strategy using support vector regression machines for short-term load forecasting is proposed in [17]. A STLF algorithm based on wavelet transform, extreme learning machine (ELM) and modified artificial bee colony (MABC) algorithm is presented in [18].

As RBFNN has a single hidden layer and fast convergence speed, RBFNN has been successfully used for STLF [19, 20]. When using RBFNN, one must determine the hidden
layer nodes, the initial kernel parameters, and the initial network weights. A systematic approach must be established to determine the initial parameters of RBFNN. Typically, these parameters are obtained according to the designer experience, or just a random choice. However, such kind of improper initialization usually results in slow convergence speed and poor performance of the RBFNN. An SVR method with Gaussian kernel function is adopted to determine the initial structure of the RBFNN for STLF [21].

In the training procedure, learning rates serve as an important role in the procedure of training RBFNN. The learning rate would depend on the characteristic state of inputs and outputs, in which the learning rate would be increased or decreased to match training data. Through trial and error, the learning rate is chosen to be a time-invariant constant [22, 23]. However, there also exist several unstable or slow convergence problems. Many researches have been dedicated to improving the stability and convergence speed of the learning rates [24-27]. But, the deterministic methods for exploring appropriate learning rates are often tedious.

Recently, efficient learning algorithms for RBFNN have been developed [28-33]. Besides, researchers have proposed sequential learning algorithms for resource allocation networks to enhance the convergence of the training error and computational efficiency [34-41]. In these literatures, the self-adaptive algorithms for reduction of the training data sequence with significant information generate the less computation time of minimal network and achieve better performance. Ko [42] proposed an adaptive annealing learning algorithm (AALA) to push forward the performance of RBFNN.

In this research, AALA is adopted to train the initial structure of RBFNN using an SVR method. In AALA, PSO approach is applied to simultaneously determine a set of suitable learning rates to improve the training RBFNN performance of STLF.

2. Architecture of RBFNN
Generally, an RBFNN has a feed forward architecture, has three layers, input layer, hidden layer, and output layer. The basic structure of an RBFNN is shown in Figure 1. The output of the RBFNN can be expressed as follows

\[\hat{y}_j(t+1) = \sum_{i=1}^{L} G_i \omega_{ij} \exp \left(-\frac{\|x - x_i^c\|^2}{2w_i^2} \right) \quad \text{for} \quad j = 1, 2, \ldots, p \quad (1) \]

where \(x(t) = [x_1(t) \cdots x_m(t)]^T \) is the input vector, \(\hat{y}(t) = [\hat{y}_1(t) \cdots \hat{y}_p(t)]^T \) is the output vector of RBFNN, \(\omega_{ij} \) is the vector of the synaptic weights in the output layer, \(G_i \) is the vector of the Gaussian function, denote the RBFNN activation function of the hidden layer, \(x_i^c \) and \(w_i \) are the vector of the centers and widths in \(G_i \), respectively, and \(L \) is the number of neurons in the hidden layer.

![Figure 1. The structure of RBFNN.](image_url)

In the training procedure, the initial values of parameters in (1) must be selected first. Then a training method is used to adjust these values iteratively to obtain their optimal combination. However, there is no way to systematically select the initial value of parameters. In the following section, an SVR is applied to perform this work.

3. AALA-SVR-RBFNN for STLF

3.1. SVR-based initial parameters estimation of RBFNN

An SVR-based algorithm is able to approximate an unknown function from a set of data,
\((x^{(k)}, y^{(k)})\), \(k = 1, 2, \ldots, N\).

In SVR, the Gaussian function is adopted as the kernel function [43, 44]. Therefore, approximating function can be rewritten as

\[
f(x, \lambda) = \sum_{i=1}^{N_{SV}} \lambda_i \exp \left(-\frac{\|x - x_i\|^2}{2\sigma_i^2} \right) + b \tag{2}\]

where \(N_{SV}\) is the number of support vectors (SVs) and \(x_i\) are SVs. Comparing (2) with (1), \(N_{SV}, I, \lambda_i, \sigma_i, \) and \(x_i\) in (2) can be considered to be the \(L, i, \omega_i, w_i, \) and \(x_i^+\) in (1), respectively. From the above derivation, the parameters of RBFNN in (1) can be obtained through the above \(\varepsilon\)-SVR method.

3.2. AALA-based SVR-RBFNN

When computing the initial parameters of the SVR-RBFNN, one must establish a learning algorithm to get the optimal parameters of SVR-RBFNN. Based on time-varying learning rates, an AALA is used to train the SVR-RBFNN for conquering the drawbacks of low convergence and local minimum faced by the back-propagation learning method [44]. A cost function for the AALA is defined as

\[
\Gamma_j(h) = \frac{1}{N} \sum_{k=1}^{N} \rho\left[e^{(k)}_j(h); \xi(h) \right] \text{ for } j = 1, 2, \ldots, p \tag{3}\]

where

\[
e^{(k)}_j(h) = y^{(k)}_j - \hat{f}_j(x^{(k)}) = y^{(k)}_j - \sum_{i=1}^{I} \omega_i \exp \left(-\frac{\|x^{(k)} - x^+_i\|^2}{2w_i^2} \right) \tag{4}\]

\(h\) denotes the epoch number, \(e^{(k)}_j(h)\) denotes the error between the \(j\)th desired output and the \(j\)th output of RBFNN at epoch \(h\) for the \(k\)th input-output training data, \(\xi(h)\) denotes a deterministic annealing schedule acting like the cut-off point, and \(\rho(\cdot)\) denotes a logistic loss function given by
The root mean square error (RMSE) is adopted to assess the performance of training RBFNN, given by

\[
RMSE = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (e^{(k)}_j)^2} \quad \text{for } j = 1, 2, \ldots, p.
\]

(6)

According to the gradient-descent learning algorithms, the synaptic weights \(\omega_j \), the centers of \(x^c_i \), and the widths of \(w_i \) in Gaussian function are adjusted as

\[
\Delta \omega_j = -\gamma_{\omega} \frac{\partial \Gamma_j}{\partial \omega_j} = -\frac{\gamma_{\omega}}{N} \sum_{k=1}^{N} \phi_j(e^{(k)}_j; \xi) \frac{\partial e^{(k)}_j}{\partial \omega_j}
\]

(7)

\[
\Delta x^c_i = -\gamma_{c} \frac{\partial \Gamma_j}{\partial x^c_i} = -\frac{\gamma_{c}}{N} \sum_{j=1}^{p} \sum_{k=1}^{N} \phi_j(e^{(k)}_j; \xi) \frac{\partial e^{(k)}_j}{\partial x^c_i}
\]

(8)

\[
\Delta w_i = -\gamma_{w} \frac{\partial \Gamma_j}{\partial w_i} = -\frac{\gamma_{w}}{N} \sum_{j=1}^{p} \sum_{k=1}^{N} \phi_j(e^{(k)}_j; \xi) \frac{\partial e^{(k)}_j}{\partial w_i}
\]

(9)

\[
\phi_j(e^{(k)}_j; \xi) = \frac{\partial \rho(e^{(k)}_j; \xi)}{\partial e^{(k)}_j} = \frac{e^{(k)}_j}{1 + \left(\frac{e^{(k)}_j}{\xi(h)}\right)^2}
\]

(10)

where \(\gamma_{\omega} \), \(\gamma_{c} \), and \(\gamma_{w} \) are the learning rates for the synaptic weights \(\omega_j \), the centers \(x^c_i \), and the widths \(w_i \), respectively; and \(\phi(\cdot) \) is usually called the influence function. In ARLA, the annealing schedule \(\xi(h) \) has the capability of progressive convergence [45, 46].

In annealing schedule, complex modifications to the sampling method have been proposed, which can use a higher learning rate to reduce the simulation cost [47-50]. Based on this concept, the non-uniform sampling rates of AALA are used to train BRFNN in this work. According to the relative deviation of the late epochs, the annealing schedule \(\xi(h) \) can be adjusted. The annealing schedule is updated as
where Ψ is a constant, S is the standard deviations, and \overline{RMSE} is the average of $RMSE$ (6) for m late epochs.

When the learning rates keep constant, choosing an appropriate learning rates γ_o, γ_c, and γ_w is tedious; furthermore, several problems of getting stuck in a near-optimal solution or slow convergence still exist. Therefore, an AALA is used to overcome the stagnation in the search for a global optimal solution. At the beginning of the learning procedure, a large learning rate is chosen in the search space. Once the algorithm converges progressively to the optimum, the evolution procedure is gradually tuned by a smaller learning rate in later epochs. Then, a nonlinear time-varying evolution concept is used in each iteration, in which the learning rates γ_o, γ_c, and γ_w have a high value γ_{max}, nonlinearly decrease to γ_{min} at the maximal number of epochs, respectively. The mathematical formula can be expressed as

$$\gamma_o = \gamma_{\text{min}} + (\text{epoch} (h))^\rho_o \Delta \gamma$$

$$\gamma_c = \gamma_{\text{min}} + (\text{epoch} (h))^\rho_c \Delta \gamma$$

$$\gamma_w = \gamma_{\text{min}} + (\text{epoch} (h))^\rho_w \Delta \gamma$$

$$\Delta \gamma = (\gamma_{\text{max}} - \gamma_{\text{min}})$$

$$\text{epoch}(h) = \left(1 - \frac{h}{\text{epoch}_{\text{max}}} \right)$$

where $\text{epoch}_{\text{max}}$ is the maximal number of epochs and h is the present number of
epochs. During the updated process, the performance of RBFNN can be improved using suitable functions for the learning rates of γ_w, γ_c, and γ_u. Furthermore, simultaneously determining the optimal combination of $p\omega$, pc, and pw in (14) to (16) is a time-consuming work. An PSO algorithm with linearly time-varying acceleration coefficients will be used to obtain the optimal combination of $(p\omega, pc, pw)$.

3.3. Procedure of hybrid learning algorithm

The flowchart of AALA-SVR-RBFNN using PSO is illustrated in Figure 2. The solution of the average optimal value of $(p\omega, pc, pw)$ is determined using PSO through M times independently. Then, the optimal structure of the proposed AALA-SVR-RBFNN is obtained.

4. Case studies

The 24-hour-ahead forecasting performance of the proposed AALA-SVR-RBFNN is verified on a real-word load dataset from Taiwan Power Company (TPC) in 2007. Three different patterns of load data, such as the working days (Monday through Friday), the weekends (Saturday), and holidays (Sunday and national holiday), are utilized to evaluate the effectiveness of the proposed algorithm. Table 1 lists the periods of the training and testing load data on TPC. The forecasting performance is also compared to those of DEKF-RBFNN [19], GRD-RBFNN [19], SVR-DEKF-RBFNN [19], and ARLA-SVR-RBFNN. All our simulations are carried out in Matlab 2013a using a personal computer with Intel i3-6100 and 4G RAM, windows 7 as operating system.

The initial parameters in the simulations must be specified first. For the PSO parameters, the population size is set to be 40 and the maximal iteration number is set to be 200. Meanwhile, the number of generating different optimal sets of $(p\omega, pc, pw)$ is set to 10 ($M = 10$). The values of $(p\omega, pc, pw)$ in learning rate functions (14) to (16) are all set to
real numbers in the interval $[0.1, 5]$. Furthermore, the value of γ_{max} is chosen to be 2.0 and the value of γ_{min} is chosen to be 0.05.

Table 1. The periods of the training and testing load data on TPC in 2007.

<table>
<thead>
<tr>
<th>Case</th>
<th>Data type</th>
<th>Training data</th>
<th>Testing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weekdays</td>
<td>February 2- March 15</td>
<td>March 16</td>
</tr>
<tr>
<td>2</td>
<td>Weekends</td>
<td>May 12- October 27</td>
<td>November 3</td>
</tr>
<tr>
<td>3</td>
<td>Holidays</td>
<td>July 1- December 9</td>
<td>December 16</td>
</tr>
</tbody>
</table>

In order to evaluate the forecasting performance of the models, two forecast error measures, such as mean absolute percentage error (MAPE), and standard deviation of absolute percentage error (SDAPE), which are utilized for model evaluation, and their definitions are shown as follows:

$$MAPE = \frac{1}{N} \sum_{k=1}^{N} \left| \frac{A^{(k)} - F^{(k)}}{A^{(k)}} \right| \times 100$$ \hspace{1cm} (19)

$$SDAPE = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left(\frac{A^{(k)} - F^{(k)}}{A^{(k)}} \times 100 - MAPE \right)^2}$$ \hspace{1cm} (20)

where N is the number of forecast periods, $A^{(k)}$ is the actual value and $F^{(k)}$ is the forecast value. Moreover, the RMSE in (6) is employed to verify the performance of training RBFNN.

Case 1: Load prediction of weekdays

The training hourly actual load data are shown in Table 1 and Figure 3. After 1000 training epochs, the initial parameters of RBFNN are determined by using SVR. The value of L in (1) is found to be 5 for parameters $C = 1$ and $\varepsilon = 0.05$ in SVR. Meantime, the average optimal learning rate set of (p_ω, p_c, p_v) is determined by PSO, which is found to be $(2.1711, 1.4654, 3.6347)$.

Perform the adaptive annealing learning algorithm (AALA)

Initialize the population of position and velocity particles randomly: $j = 0$

Construct an initial structure of RBFNN using SVR; $K = 0$

Determine the local best and global best according to the fitness values of each population

Calculate the fitness values for each population using (6)

Update the learning rate functions (14) through (16) using PSO method

Perform the adaptive annealing learning algorithm (AALA)

Calculate the fitness values for each population using (6)

Determine the global best according to the fitness values of each population

$j > \text{iter}_{\text{max}}$

Yes

$K = K + 1$

Output the average optimal value of (p_w, p_c, p_{ω}) in (14) through (16)

Obtain the proposed AALA-SVR-RBFNN

Figure 2. The flowchart of AALA-SVR-RBFNN
Figure 3. The training hourly actual load data in Case 1.

Figure 4. The forecasting results of the proposed AALA-SVR-RBFNN in Case 1.

Table 2 lists the comparison results of $RMSE$ in (6) between ARLA and AALA. In Table 2, it can be observed that AALA is superior to ARLA. After training, the proposed approach is evaluated on 24-hour-ahead load forecasting in March 16, 2007. From Figure 4, it can be observed that the predicted values of the proposed AALA-SVR-RBFNN are close to the actual values.

The comparisons of $MAPE$ and $SDAPE$ using the five prediction models are shown in
Table 3 and Figure 5. From the comparisons, the value of MAPE of the proposed method is the smallest among the prediction approaches and has get the improvements of 48.10%, 51.19%, 31.67% and 4.65% the over DEKF-RBFNN [19], GRD-RBFNN [19], SVR-DEKF-RBFNN [19] and ARLA-SVR-RBFNN, respectively. Moreover, the SDAPE value of the proposed AALA-SVR-RBFNN is 0.34%, less than those obtained by the four methods.

Case2: Load prediction of weekends

The training hourly load data are shown in Table 1 and Figure 6. After 1000 training epochs, the initial parameters of RBFNN are obtained by using SVR. The value of \(L \) in (1) is found to be 7 for parameters \(C = 1 \) and \(\varepsilon = 0.06 \) in SVR. Meantime, the average optimal learning rate set of \((p_\omega, p_c, p_w) \) is determined by PSO, which is found to be (2.6007, 0.7976, 4.0978).

![Figure 5. MAPE(%) and SDAPE(%) results for prediction methods in Case1.](image-url)
Table 2. Results of RMSE in (6) of the ARLA (0.002 ≤ γ ≤ 2) and AALA after 1000 training epochs for three cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>ε</th>
<th>AALA</th>
<th>ARLA(γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.0072774</td>
<td>0.010025</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.0109520</td>
<td>0.015183</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.0097116</td>
<td>0.012594</td>
</tr>
</tbody>
</table>
Table 3. MAPE(%) and SDAPE(%) results for prediction methods in Case 1.

<table>
<thead>
<tr>
<th>Method</th>
<th>MAPE</th>
<th>SDAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEKF-RBFNN [19]</td>
<td>0.79</td>
<td>0.6</td>
</tr>
<tr>
<td>GRD-RBFNN [19]</td>
<td>0.84</td>
<td>0.6</td>
</tr>
<tr>
<td>SVR-DEKF-RBFNN [19]</td>
<td>0.6</td>
<td>0.37</td>
</tr>
<tr>
<td>ARLA-SVR-RBFNN</td>
<td>0.43</td>
<td>0.34</td>
</tr>
<tr>
<td>AALA-SVR-RBFNN</td>
<td>0.41</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Figure 6. The training hourly actual load data in Case 2.

Table 2 shows the RSME in (6) ARLA and AALA. As seen from Table 2, the AALA can obtain an encouraging result than ARLA. After training, the proposed approach is evaluated on 24-hour-ahead load forecasting. Figure 7 shows that the predicted values of the proposed method are very close to the actual values.
Figure 7. The forecasting results of the proposed AALA-SVR-RBFNN in Case 2.

The comparison results of MAPE and SDAPE using the five prediction models are shown in Table 4 and Figure 8. From the comparisons, the proposed AALA-SVR-RBFNN has the minimum value of MAPE. The proposed approach is 58.76%, 62.63%, 44.33%, and 24.53% better than DEKF-RBFNN [19], GRD-RBFNN [19], SVR-DEKF-RBFNN [19], and ARLA-SVR-RBFNN. Moreover, the value of SDAPE of the proposed algorithm is smaller than those of other four methods.

Figure 8. MAPE(%) and SDAPE(%) results for prediction methods in Case 2.
Table 4. MAPE(%) and SDAPE (%) results for prediction methods in Case 2.

<table>
<thead>
<tr>
<th>Method</th>
<th>MAPE</th>
<th>SDAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEKF-RBFNN [19]</td>
<td>0.97</td>
<td>0.6</td>
</tr>
<tr>
<td>GRD-RBFNN [19]</td>
<td>1.07</td>
<td>0.54</td>
</tr>
<tr>
<td>SVR-DEKF-RBFNN [19]</td>
<td>0.72</td>
<td>0.44</td>
</tr>
<tr>
<td>ARLA-SVR-RBFNN</td>
<td>0.53</td>
<td>0.5</td>
</tr>
<tr>
<td>AALA-SVR-RBFNN</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Case 3: Load prediction of Holidays

The training hourly load data are shown in Table 1 and Figure 9. After 1000 training epochs, the initial parameters of RBFNN are determined by using SVR. The value of \(L \) in (1) is found to be 11 for \(C=1 \) and \(\varepsilon=0.05 \) in SVR. Meanwhile, the average optimal learning rate set of \((p_\omega, p_c, p_w)\) is determined by PSO, which is found to be \((1.9640, 0.8327, 4.9085)\).

![Figure 9. The training hourly actual load data in Case 3.](image-url)
Figure 10. The forecasting results of the proposed AALA-SVR-RBFNN in Case 3.

Table 2 illustrates the comparison results of $RSME$ in (6) between ARLA and AALA. As seen from Table 2, the AALA can produce superior results than AALA. After training, the proposed approach is tested on 24-hour-ahead load forecasting. Figure 10 shows that the predicted values of the proposed AALA-SVR-RBFNN are quite close to the actual values.

Table 5. MAPE(%) and SDAPE(%) results for prediction methods in Case3.

<table>
<thead>
<tr>
<th>Method</th>
<th>MAPE</th>
<th>SDAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEKF-RBFNN [19]</td>
<td>0.89</td>
<td>0.52</td>
</tr>
<tr>
<td>GRD-RBFNN [19]</td>
<td>1.57</td>
<td>1.04</td>
</tr>
<tr>
<td>SVR-DEKF-RBFNN [19]</td>
<td>0.56</td>
<td>0.52</td>
</tr>
<tr>
<td>ARLA-SVR-RBFNN</td>
<td>0.62</td>
<td>0.51</td>
</tr>
<tr>
<td>AALA-SVR-RBFNN</td>
<td>0.49</td>
<td>0.38</td>
</tr>
</tbody>
</table>
The comparisons of MAPE and SDAPE using the five prediction models are shown in Table 5 and Figure 11. Comparing DEKF-RBFNN [19], GRD-RBFNN [19], SVR-DEKF-RBFNN [19], and ARLA-SVR-RBFNN with the proposed AALA-SVR- RBFNN, the error of MAPE is reduced by 44.94%, 68.79%, 12.50%, and 20.97%, respectively. Moreover, the SDAPE value of the proposed algorithm is 0.38%, smaller than those obtained by using the four approaches. These results verify that the superiority of the proposed AALA-SVR-RBFNN over other prediction methods.

5. Conclusions

In this paper, a reinforcement neural network of AALA-SVR-RBFNN is developed for predicting STLF accurately. An SVR method is first used to find the initial parameters of RBFNN. After initializations, the parameters of RBFNN are adjusted by using AALA to obtain an optimal combination. When performing the AALA, the optimal nonlinear learning rates are simultaneously determined by using PSO. Meantime, the stagnation of training RBFNN can be overcome during the adaptive annealing learning procedure. Once the optimal RBFNN is established, the 24-hour-ahead load forecasting is to be performed. Three different patterns of load are considered. Simulation results indicate that the proposed AALA-SVR-RBFNN can yield excellent forecasting results over DEKF-RBFNN, GRD-RBFNN, SVR-DEKF- RBFNN, and ARLA-SVR-RBFNN.

Acknowledgment

This work was supported in part by the National Science Council, Taiwan, R.O.C., under grants MOST 105-2221-E-252-002.

References

[29] Huang G B; Saratchandran P; Sundararajan N. “An efficient sequential learning

[39] Suresh S; Dong K; Kim H J. “A sequential learning algorithm for self-adaptive resource

© 2016 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).