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Abstract: The most significant assumptions in the subdomain technique (i.e., based on the formal
resolution of Maxwell’s equations applied in subdomain) is defined by: “The iron parts (i.e., the teeth
and the back-iron) are considered to be infinitely permeable, i.e., ipy, — +00, so that the saturation effect
is neglected”. In this paper, the author presents a new scientific contribution on improving of this
method in two-dimensional (2-D) and in Cartesian coordinates by focusing on the consideration of
iron. The subdomains connection is carried out in the two directions (i.e., x- and y-edges). The
improvement was performed by solving magnetostatic Maxwell’s equations for an air- or iron-core
coil supplied by a direct current. To evaluate the efficacy of the proposed technique, the magnetic
flux density distributions have been compared with those obtained by the 2-D finite-element
analysis (FEA). The semi-analytical results are in quite satisfying agreement with those obtained
by the 2-D FEA, considering both amplitude and waveform.

Keywords: air- or iron-core coil; Cartesian coordinates; Fourier analysis; two-dimensional;
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1. Introduction

1.1. Context of this Paper

Generally, the modeling of the electromagnetic field distribution is a key step in the design
process for developing electromechanical systems. Although there are a lot of papers in this area, the
modeling approach is still a challenging and attractive research topic. Some comprehensive reviews
on the models of electrical machines for magnetic field calculations can be found in [1-6], and their
references, with their (dis)advantages. The modeling techniques can thus be classified in various
categories:

Graphical method of Lehmann [7];

e Numerical methods (i.e., the finite-element, finite-difference or boundary-element analysis) [8-
12];

o Electrical/Thermal/Magnetic equivalent circuit (EEC/TEC/MEC) [13-16];
Schwarz-Christoffel (SC) mapping method [17-19];

o Maxwell-Fourier methods [10,18-22]: i) Multi-layers models, and ii) Subdomain technique.

The graphical method of Lehmann, which determines the magnetic field distribution in all parts
of an electrical machine even when the machine is saturated, has been forgotten to the detriment
of other methods, mainly numerical. In the past few decades, numerical modeling techniques
have been applied to electromechanical systems analysis. These methods are precise and take into
account the exact/simplified geometry, the nonlinear B(H) curve, the rotor motion,... The most
accurate models are the three-dimensional numerical methods. Nevertheless, these approaches are
time-consuming and not suitable for the optimization problems. In [23,24], it is possible to optimize
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electromagnetic systems from numerical methods. Nowadays, in order to reduce the computation
time, hybrid numerical methods can be developed [25-27]. The actual design works are mainly based
on (semi-)analytical models (i.e., EEC/TEC/MEC, SC mapping and Maxwell-Fourier methods).
Indeed, under certain assumptions, these models have the advantage to be explicit/accurate/fast.
Moreover, they allow us to take into account rigorously the slotting effect in the electrical machines
as well as various electromagnetic domains with(out) the current penetration effect in the conductive
materials. Except in the numerical methods and nonlinear MEC, the saturation effect remains one
of the scientific challenges in the modeling. Tiegna et al. (2013) [5] wrote: “No examples of analytical
models based on the formal solution of Maxwell’s equations which take into account local magnetic saturation
are available to date”. Thus, in this paper, the main scientific focus will be on the consideration of iron
in Maxwell-Fourier methods.

1.2. State-of-the-Art: Saturation in Maxwell-Fourier Methods

Very few works have included the iron or the saturation effect in Maxwell-Fourier methods due
to variation of the material properties (e.g., in case of stator and/or rotor slotting, buried magnets,...).
The most significant assumptions is defined by: “The iron parts (i.e., the teeth and the back-iron) are
considered to the infinitely permeable, i.e., Wiro, — +09, S0 that the saturation effect is neglected”. It results
in an overestimation of the magnetic flux and, consequently, the electromagnetic performances (e.g.,
the back EMF, the electromagnetic torque, the efficiency). Thus, consideration of iron in the modeling
is a mandatory task in order to have a reliable estimation of the electromechanical systems behavior.

Existing models in electrical machines, based on Maxwell’s electromagnetic field equations,
taking into account the iron parts with(out) the nonlinear B(H) curve are:

o  Multi-layers models:

— Carter’s coefficient: The slotted machine is transformed into a slotless equivalent structure
by applying the usual Carter’s coefficient [28]. Generally, the armature slotting is taken
into account through the SC mapping method. The analytical magnetic field distribution is
determined in five or six homogeneous layers (i.e., exterior, slotless stator, winding/air-gap,
magnets, and rotor) [29-31]. In [29], the magnetic permeabilities in stator/rotor iron cores
have a constant value corresponding to linear zone of the B(H) curve. An iterative technique
to include the nonlinear properties of core material has been developed in [30] (for a no-load
operation) and [31] (for a load operation whose the source term in the slot caused by the
armature currents is represented by a winding current region over the stator slot-isthmus). In
this type of modeling, the local distribution of flux densities in the teeth and slots is neglected.
However, by calculating the flux entering the stator surface from the air-gap magnetic field
and thus assuming uniform distribution of flux, the flux density in middle of the stator teeth
can be obtained.

— Saturation coefficient: It represents the ratio between the total magnetomotive force (MME)
required for the entire magnetic circuit and the air-gap MMF [32]. The main magnetic
saturation is included in the saturation factor, in an iterative way, by using the nonlinear
B(H) curve. The saturation effect is accounted for by modifying the air-gap length [32-34]
or by changing the physical properties of magnets (in this case, the saturated load operation is
calculated by considering an equivalent no-load operation with a fictitious magnet having a
remanent flux density that creates the same MMF as the one created by both real magnet and
stator MMF) [35]. The analytical magnetic field distribution is mainly determined in one or
two regions (viz., air-gap or air-gap/magnets) of slotless machines by applying the Carter’s
coefficient [32]. The slotting effect can be neglected [32,35] or taken into account through the
SC mapping method [33,34]. The magnetic fluxes in the stator/rotor iron cores are obtained
from the air-gap magnetic field [32,33,35] or/and with a simple MEC [34]. This technique
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has been applied to surface-mounted/-inset magnets machines [32-35], surface-inset magnet
machines [33], and others electrical machines.

—  Concept wave impedance: They are based on a direct solution of Maxwell’s field equations in
homogeneous multi-layers of magnetic material properties, viz., the magnetic permeability
and the electrical conductivity. This approach, developed by Mishkin (1953) [36], was first
applied to squirrel-cage induction machine in Cartesian coordinates with three-layers (i.e.,
stator slotting, air-gap, and rotor slotting). It was used and enhanced by many authors, viz.,

*  simplification of the electromagnetic theory [37];

* extended with an infinite number of layers [38];

% converted into equivalent circuits and terminal impedance [39];

* included the curvature effect with the magnetizing current [40];

* incorporated spatial harmonics in the multi-layers theory by considering isotropic and
anisotropic (e.g., laminated, composite, and toothed) regions [41,42];

* introduced the nonlinear B(H) curve in homogenous layers by an iterative procedure [43,
44];

* taking account of the effect of slot openings [45], i.e., the multi-layers model is combined
with the subdomain technique for slotted structures by assuming infinitely permeable
tooth tips;

*  included the current penetration effect in conductive layers [43,46]. The analytical solution
for the electromagnetic field in conductive layers is then defined by Bessel functions.

— Convolution theorem: The electrical machine is divided into an infinite number of
(in)homogeneous layers. The permeability in the stator and/or rotor slotting is represented
by a complex Fourier series along the direction of permeability variation The permeability
variation in the direction of the periodicity is directly included into the solution of the
magnetic field equation. The resulting formulation, based on a direct solution of Maxwell’s
field equations using the Cauchy product theorem (i.e., the discrete convolution of two infinite
series), is completely defined in terms of complex Fourier series [47]. Recently, [48] extended
this modeling taking into account the nonlinear B(H) curve in each soft-magnetic section by an
iterative procedure. For the moment, this technique has been applied to a switched reluctance
machine [48] and a synchronous reluctance machine [49].

e Hybrid models: The analytical solution can be combined with numerical methods [50-53] or
(non)linear MEC [54-63]. Usually, the analytical solution is established in uniform regions of very
low permeability (e.g., air-gap, and magnets) and other methods are sought in regions where
magnetic saturation cannot be neglected (i.e., the stator and/or rotor iron cores).

1.3. Objectives of this Paper

To the best author’s knowledge, in the literature, there is no (semi-)analytical model based on the
subdomain technique that taking into account of iron parts with(out) the nonlinear B(H) curve. Thus,
the work in this paper takes part in the development and improvement of the subdomain technique
on this scientific topic.

The disadvantage of multi-layers models, apart from using the concept wave impedance, is
that it does not give a very accurate description of the local magnetic field distribution. In the
harmonic modeling technique using the convolution theorem, convergence problems due to the
truncated Fourier series around the soft-magnetic material discontinuities may exist [47-49]. Except
in multi-layers models using the conception wave impedance, the electrical conductivity is assumed
to be zero. The new approach developed in this paper allows the local distribution of flux densities in
the iron parts, does not have numerical convergence problems, and would easily introduce the current
penetration effect in the conductive materials. Section 2 presents this new scientific contribution
based on the subdomain technique. It was performed by solving 2-D magnetostatic Maxwell’s
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Figure 1. Air- or iron-core coil.

equations in Cartesian coordinates (x,y) for an air- or iron-core coil supplied by a direct current. The
subdomains connection is carried out in the two directions (i.e., x- and y-edges). The iron magnetic
permeability is constant corresponding to linear zone of the initial magnetization curve. Nevertheless,
as in [48], it should be mentioned that the material properties could be updated iteratively to take the
nonlinear B(H) curve of the material into account. However, this is beyond the scope of the paper.
In Section 3, in order to evaluate the efficacy of the proposed technique, the magnetic flux density
distributions have been compared with those obtained by the 2-D FEA [8]. The comparisons are very
satisfying in amplitudes and waveforms.

This major scientific contribution could be applied to rotating and/or linear electrical machines
with(out) magnets supplied by a direct current or alternate current (with any waveforms) whose the
analysis would be based on a 2-D semi-analytical model in Cartesian coordinates (e.g., plane linear
machines, axial-flux machines,...).

2. A 2-D Subdomain Technique of Magnetic Field

2.1. Problem Description and Assumptions

The application example, namely an air- or iron-core coil, with the geometrical and physical
parameters is illustrated in Figure 1. The system consists of a coil with N; turns of the copper wire
which is supply by a direct current I. The direction of current in the conductor is defined by & for
the forward conductor and © for return conductor. The material in the middle of the coil can be air
or iron. The system is surrounded by the vacuum via an infinite box.

The 2-D magnetic field distribution in the air- or iron-core coil has been studied in Cartesian
coordinates (x,y) by solving magnetostatic Maxwell’s equations from subdomain technique. In this
analysis, the magnetic field solution is based on the following simplifying assumptions:

The end-effects are neglected (i.e., that the magnetic variables are independent of z);

o The electrical conductivities of materials are assumed to be null (i.e., the eddy-currents induced
in the copper/iron are neglected);

o The magnetic materials are considered as isotropic (i.e., the permeability can be assumed the same
in the two directions);

o The saturation effect is taken into account with a constant magnetic permeability corresponding
to linear zone of the B(H) curve (i.e., the initial magnetization curve).
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Figure 2. Subdomains in the air- or iron-core coil.

2.2. Problem Discretization in Subdomains

As shown in Figure 2, the problem domain is divided into 7 subdomains with = C*. The
vacuum around to the air- or iron-core coil is defined by 4 regions, i.e.,

e Region1 {Vx Ay € [y1, y2]} with y1 = py;

o Region2 {Vx Ay € [y3, ya|} with pp = po;

e Region3 {x € [x1, x2] Ay € [y2, y3]} with uz = py;

o Region4 {x € [x5, 6] Ay € [y2, y3]} with pig = .

The air or iron in the middle of the coil is defined by the Region 5 {x € [x2, x3] Ay € [y2, y3]} with

U5 = My for the air or yi5s = o, for the iron. The coil (i.e., forward and return conductors) is defined
by 2 regions, i.e.,

* Region 6 {x € [x, x3] Ay € [y2, ya]} with p = p;
e Region7 {x € [x4, x5] ANy € [y2, y3]} with uy = pe.
2.3. Governing Partial Differential Equations in Cartesian Coordinates
According to (A.4) [see Appendix A], the 2-D magnetic vector potential distribution in Cartesian
coordinates (x,y) is governed by the Laplace’s equation in Regions j with j = {1, ..., 5}, ie,
??A; A
a2 dy?

AAz = =0, @

and the Poisson’s equation in Regions k with k = {6, 7}, i.e.,

PAy  PAy

AAy = ox2 ayz =~k Jzks (2a)
where [, represents the current density (due to supply currents) which is defined by
Ni-1
Jae = Ce- (2b)
Cc

in which S, is the conductor surface, and Cj is the coefficient for the direction of current in the
conductor (e.g., with C4 = 1 for the forward conductor and C; = —1 for return conductor).
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Figure 3. Boundary conditions at the interface of two surfaces.

According to the method of separation of variables, it is interesting to note that A, can be
decomposed into two potentials according to the two directions [see Appendix A], i.e., A, for the
x-edges (A.5b) and A, for the y-edges (A.5¢). The periodicity of A%, and A%, are respectively defined
by Be;, and Ae;, with e and ne the spatial harmonic orders.

2.4. Boundary Conditions

2.4.1. Reminder on the Boundary Conditions at the Interface of Two Surfaces

In electromagnetic, as shown in Figure 3, the magnetic field H obeys Ampere’s continuity
condition,
7 X (ﬁH“ — ﬁHb) = ?, (3a)

where 77 is the unit vector normal to the boundary between two surfaces, ﬁ I the parallel component

of H on one side of the interface, and X the current density at the surface of the interface.
At this same surface, the magnetic flux continuity condition also applies

- =
7-(?@-?@,):0 or Ag— A, =0, (3b)

- -
where B | is the perpendicular component of B on one side of the interface. The Dirichlet condition
on one surface is defined by

— —
A;=0 or A, =0. (30)

2.4.2. Application to the Air- or Iron-Core Coil

On the outer boundaries for (x1 A xg, Vy) and (Vx, y; A ya) [see Figure 2], the component of the
magnetic vector potential satisfies the Dirichlet boundary condition, i.e., (3c). By applying (3) and
using (A.2) [see Appendix A], the respective boundaries at the interface between the various regions
are illustrated in Figure 4.

2.5. General Solutions

2.5.1. Region 1

The general solution of A1, By; and By are determined by the particular case of the case-study
no1 " A, imposed on all edges of a region” in the Appendix B. The boundary conditions on the y-edges of
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(e) Region 5, (f) Region 6, and (g) Region 7.

the region [see Figure 4a] are met by posing ¢;, = 0 in (B.4). Therefore, the magnetic vector potential
Az, which is a solution of (1) satisfying the boundary conditions of Figure 4a, is defined by

_ v Ay sh[Bly - (y—y1)] e
An = hél ,Blhi ot (Bl - 1) sin Bl - (x — x1)), (4)

ﬁ
the components of B = {By1;B,1;0} by

e Bl (y—w)] )
b = hlE:l Hi- ch (Bl - t1) rsin [l - (v = x)l ©)
By1: _ i d1x ‘Sh[ﬁlhl'(y_yl)] . COS [,31111'(96—961)], ©)

hi=1 " ch (Bln1 - ty1)

where 1 is the spatial harmonic orders in Region 1, dlﬁl the integration constant, 1, = hl- / Ty,
and Tyl = X6 — X1 & Tyl =Y2— Y1
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The coefficient d1j; is determined using a Fourier series expansion of F; (x) [see Figure 4a] over
the interval x = [x1, xg] = [x1, X1 + T ]:

5 X1+Ty1
1y, = — / F (x) -sin [l - (x — x1)] - dx. )
x1

The expression of d1j; is developed in the Appendix C.

2.5.2. Region 2

The same method than Region 1 is used to find the solution in Region 2. By posing d; = 0 in
(B.4) [see Appendix B], the magnetic vector potential A;;, which is a solution of (1) satisfying the
boundary conditions of Figure 4b, is defined by

o 25 sh[B2h2 - (ya—y)]

Az =n h22=1 B2 ch (B212 - Ty2) -sin B2 - (x — x1)], ®)

the components of ?2 = {Bx2; B,p;0} by

v oo Ch[B2p- (ya—y)] -
P2 = hzg’l P2y, (B2 - 12) -sin [B2yp - (x — x1)], )
fe = h2Z::1 e o (B2n2 " Ty2) rcos [B2p - (x —x1)], (10)

where h2 is the spatial harmonic orders in Region 2, c2;, the integration constant, 2, = h2- 7 / Ty,
and T2 = X6 — X1 & Tyz = Y4 — Y3.

The coefficient c2}, is determined using a Fourier series expansion of G, (x) [see Figure 4b] over
the interval x = [x1, xg] = [x1, X1 + Tw2):

X1+Tx2
25, = 2. / Gy (x) - sin [B2yp - (x — x1)] - dx. (11)

Tx2
x1

The expression of ¢2;, is developed in the Appendix C.

2.5.3. Region 3

The general solution of A.3, Byz and B,z are determined by the case-study no 1 "A; imposed on
all edges of a region” in the Appendix B. The boundary conditions on the x-edges of the region [see
Figure 4c] are met by posing e, = 0in (B.1)-(B.3). Therefore, the magnetic vector potential A,3, which
is a solution of (1) satisfying the boundary conditions of Figure 4c, is defined by

Ayp =A%+ AL, (12a)

[e9)

x Sz sh(B3us-(ys—y)] 345 sh(B3-(y—y2)] | _. o
23 = Z {ﬁ3h3 sh (.33}:3"@3) + B35 ” (53113"@3) } sin [B3;3 - (x —x1)], (12b)

n3=1
> f3)s sh[A3y3 - (x — x1)]

Al =
23 nSZzl A3 sh (/\3713 : ’L'xg)

-sin [A3,3 - (¥ — y2)], (12¢)

the x-component of ?3 by
Bys = By3 + B, (13a)
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X _ = _ X .Ch[ﬁ3h3'(y3_]/)] x .Ch[ﬁ3h3'(]/—]/2)] La Ay
3 —h;_:l{ B3 (B 13) 3y — (F3m 1) } sin [B3y3 - (x —x1)],  (13b)

sh[A3y5 - (x — x1)]

x3 - n3zl f3 sh (/\3713 TxS) * COS [A3n3 ) (]/ - ]/2)]/ (13¢c)
_>
the y-component of B 3 by
Bys = By + Bys, (14a)
- sh B33 - (y3 —y)] sh [B313 - (y — y2)]

Y= — 37, +d35, - -cos [B3y3 - (x —x1)], (14b)

v hBZ::1 { " sh(B3u - 10) " sh (B35 1) F%ha ¢ V)

Ch[A3y5 - (x —xq)]

-sin [A3,3 - (y — , 14c
n321f sh (A3n3 Tx3) 1 [ n3 (y ]/2)] ( )

where h3 & n3 are the spatial harmonic orders in Region 3; ¢3;;, d3;; and f3;; the integration
constants; B33 = h3 - 71/ 7,3, and T3 = xp — xq; and A3,3 = 13- 71/ 1,3 with 1,3 = y3 — va.

The coefficients c3;, and d3;, are respectively determined using Fourier series expansion of
Azl Ay—y, and Ay, Ay—y, [see Figure 4c] over the interval x = [x1, x2] = [x1, X1+ Ta3):

X1+Ty3

2 .
3js = . / B3is - Aztly—y, -sin [B3y3 - (x — x1)] - dx, (15a)
X1
5 1t T3
a3y = = / B35 - Anl,_,, - sin[B3ss - (x — x1)] - dx. (15b)
X1

The coefficient fBZ3 is determined using a Fourier series expansion of Az|,_,, AVy [see Figure 4c] over
the interval y = [y2, y3] = [yz, yo + Ty?)} :

5 Yo +Ty3
f30s = . / ABu + Azglyy, +SIN[A33 - (y — y2)] - dy. (16)
Y2

The expression of c3;,, d3;, and f3z3 are developed in the Appendix C.

2.5.4. Region 4

The same method than Region 3 is used to find the solution in Region 4. By posing f; = 0 in
(B.1)-(B.3) [see Appendix B], the magnetic vector potential A4, which is a solution of (1) satisfying
the boundary conditions of Figure 4d, is defined by

Ay =AL+AY, (17a)

o)

v _ Ay sh[Bna- (y3—y)] | 445y sh(Bdu-(y—y2)]l | _. _
“E {ﬁﬁi' (Bl Tr) P sh (B 1) }'Sm P (e =)l A70)

hd=1
edny  sh Mg (X6 — X)]

Al =
z4 n4Z:1 /\4,14 sh (/\4,14 . Tx4)

-sin (Mg - (v — 12)], (17¢)

the x-component of ?4 by
By =BY + B/, (18a)
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o ch [B4ns - (y3 — y)] ch[Bdns-(y—y2)l | .

= —c47, - +d47, - -sin [B4y4 - (x — x5)],  (18b)
x4 h4Z::1 { h4 sh (;B4h4 . Ty4) h4 sh (ﬁ4h4 . Ty4) [,B h4 ( 5)}

v v Sh[Mug - (xe —x)] o

Bx4 - n4Z::l 64714 sh (/\4114 . Tx4) cos [/\4714 (]/ ]/2)]/ (18C)
_)
the y-component of B 4 by

Bys = By, + By, (19)

[ee]

- 5 o S0 g, B - o

h4=1
v _ v gy Mg (xe —x)] o
By4 - n4Z:1 e4n4 sh (Mg - Tog) sin [)‘4714 (}/ yZ)]r (19¢c)

where h4 & n4 are the spatial harmonic orders in Region 4; c4;1‘4, d4z4 and 6414 the integration
constants; B4y, = h4 - 71/ Ty, and Tey = X6 — ¥5; and Adyy = nd - 77/ 7,4 with 7,4 = y3 — 2.

The coefficients c4;, and d4;, are respectively determined using Fourier series expansion of
A21|W/\y:y2 and A22|Vx/\y:y3 [see Figure 4d] over the interval x = [x5, X¢] = [x5, X5+ Tyal:

5 X5+ Ty4
cdy, = T / Bdna - Anl,—y, - sin [Bdpg - (x — x5)] - dx, (20a)
X
x5
5 X5+ Ty
iy = [ B Acalyy, - sin [Baa - (x = x5)] - d. (20b)
X
X5

The coefficient 645 4 is determined using a Fourier series expansion of A7, _,. nvy [see Figure 4d] over
the interval y = [y», y3] = [y2, 2 + Ty4} :

y2+Ty4
47 _ 2. M, - A csin[Ad,y - (y — -d 21
e n4 T4 n4 Z7|x:x5 SIH[ n4 (y yZ)} y ( )
Y
W

The expression of c4;,, d4;, and 64% 4 are developed in the Appendix C.

2.5.5. Region 5

According to case-study no 1 " A, imposed on all edges of a region” in the Appendix B, the magnetic
vector potential A,5, which is a solution of (1) satisfying the boundary conditions of Figure 4e, is
defined by

Ay =A%+ AL, (22a)

v _ i CSys  sh[B5ys - (y3 —y)] n 5,5 sh [B5ys - (y — y2)]
& BSis  sh (B5ps - Ty5) BSis  sh (B5us - Ty5)

h5=1
A i { e5z5 sh [A5y5 - (x4 — x)] n f5z5 sh [A5y5 - (x — x3)]

= n5—1 ABys sh (A5n5 : TxS) ABys sh (A5n5 : Tx5)

} ~sin [B5y5 - (x —x3)],  (22b)

} -sin[A5u5- (¥ —12)],  (22¢)

—
the x-component of B 5 by
Bys = B + B, (23a)

ch [B5us - (v — y2)]
sh (ﬁ5h5 . Ty5)

- ch [B5us - (y3 — )]
Y= —c5%x - + d5%
x5 hSZ::1 { h5 sh ( ﬁ5h5 K TyS) h5

} sin [5ys - (x — x3)],  (23b)
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e y  Sh[A5y5 - (x4 — x)] y  Sh[ASs5 - (x —x3)] | o
Bx5 - nSZ:l {e5n5 sh (A5n5 . Tx5> + f5n5 sh ()‘5115 . TxS) cos [A5n5 (y yZ)L (23C)

the y-component of B 5 by

Bys = Bjs + Bys, (24a)
v xS (B - (y3 —v)] + sh(Bdus- (v —y2)] | e
Y5 = h5Z::1 {C5h5 sh (B5u5 - 5) +ddys - — (B - 05) } cos [B5y5 - (x — x3)],  (24b)
v _ v oy chAns - (xq —x)] y  ChAns- (x—x3)]1 o
ByS = n5Z:41 { e5y5 s (Ays - Tu5) + f5u5 sh (Aus - Tos) } sin [Ays - (y —y2)],  (240)

where 15 & 15 are the spatial harmonic orders in Region 5; c5;5, d5;5, eSZS and f5z5 the integration
constants; 5,5 = h5 - 71/ Ty5, and Ty5 = x4 — x3; and A5,5 = n5 - 77/ 15 with 7,5 = y3 — vo.
The coefficients c5;; and d5;; are respectively determined using Fourier series expansion of

Aztlyxpy—y, a0d Azlyypy—,, [see Figure 4e] over the interval x = [x3, x5] = [x3, X3 + Tys]:

2 X3+ Tys5

c5p5 = - / B5is - Aztly—y, - sin [B5ys - (x — x3)] - dx, (25a)
x5 4
9 X3+Tx5

d5fs = [ 8515+ Acalyy, - sin [B5s - (x — x3)] - d. (25b)
X

x3

The coefficient eSZ5 and folS are respectively determined using a Fourier series expansion of
Az6|y—nvy and A7y, nyy [see Figure de] over the interval y = [y, y3] = [y2, ¥2 + s

y2+Ty5

2 .
e5z5 = P . / AB,5 - AZ6|x:x3 -sin[Abys - (y — y2)] - dy, (26a)
y
1
5 Y2+7y5
f5ls= o / ASus+ Augly_y, -sin [ASys - (y — y2)] - dy. (26b)
y
2

The expression of c5;5, d5;s, eSZ5 and f5z5 are developed in the Appendix C.

2.5.6. Region 6

According to case-study no 2 "By and A; are respectively imposed on x- and y-edges of a region” in
the Appendix B, the magnetic vector potential A,s, which is a solution of (2) satisfying the boundary
conditions of Figure 4f, is defined by

Az = Al + Al + Azpe, (27a)

. (y3—y) - 65 + (y — y2) - 6}
6= | ...y L s shlBows(ys—y)] | i shiBow(y=p2)] | | e . (27b)
Z +h62:1 Pore sh(ﬁzhe-ryé) + B sh(,gghé.%) } cos [Bbps - (x — x2)]

Al =—
z6 Z )L6n6 sh (/\6716 . Tx6) A6n6 sh (/\6,16 . Txé)

o { e6h,  ch[A6us- (x —x5)]  f6hs clt[Abys - (x5 — x)]
n6=1

} sin [A6s - (v~ y2)]. (270)
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Considering the form of the current density distribution, i.e., (2b), a particular solution A,ps can be
found as follows:

1
Azps = —5 M6 J26 - Y2 (27d)

The x-component of ?6 is defined by

By = B§6 + BZ& + Bxpe, (28a)
—c6g + dobj
X
6= ooy L ex . chlBbus (v3—y)] x . ch[Bons (y—y2)] { e (28b)
+ heZ:1 { COjyq sh(B6ns-Ty6) + d6jq =h(BbreTy6) } cos [B6pe - (x — x2)]

e h [A6y6 - (x — h [A6y6 - —
BZG == 2 {66216 = S[h (;6716(3'(73(6];2)] _f6Z6 = S[h (A66n§),c3,rx6)x>] } - COS [)‘6716 : (]/ - yZ)]r (28¢)

n6=1
0A
B.pe = azpe = Mo Jz6- Y, (28d)
Y
_)
and the y-component of B ¢ by
Bys = By + Bgé + Bype, (29a)

X - x sh [186h6 ) (]/3 — y)] x sh [‘B6h6 ) (y - yz)] :
B )y {C "6 gh (B6ms - Ty6) * i sh (B6ys - Tys) }-sm Pl (x =22l (290)

BY — i {66%6 ) sh [)L6n6 : (x — XZ)] +f6z6 ) sh [A6n6 . (JC3 - x)] } . sin [A6n6 . (y _ yZ)]/ (29¢)

v n6=1 sh (Aby6 - Txe) sh (A6,6 - Txg)
_ aAszi _
Bype = —— — =0, (29d)

where h6 & 16 are the spatial harmonic orders in Region 6; c6], d66‘, c6,’§6, d6ﬁ6, e6z6 and f6z6 the
integration constants; f6,6 = h6 - 71/ Ty6, and Ty = x3 — Xp; and A6, = 16 - 7T/ Ty6 With Ty6 = y3 — .

The coefficients c6j & c6;, and d6j & d6;, are respectively determined using Fourier series
expansion of Ay, Ay=1a and Azly, Ay=v3 [see Figure 4f] over the interval x = [x, x3] =
[x2, X2 + Tyg):

1 X2+Tye
x = — —_— .
c60+% - Azpely—y, = w ] Aztlyy, - dx, (30a)
X2+ Txe
2
c6s = / B616 - Aztly_y, - 0 [B66 - (x — x2)] - d, (30b)
X
X2
1 1 X2+Tye
65+ — - Agpg| . = — - / = A, - dx, 30
0 + Ty(, ZP6|y_y3 Tx6 A Tyé Zz‘y_yS * ( C)
X2+Txe
2
dbjy = / B61ie - Az, - 08 [Bbye - (x — x2)] - dx. (30d)
X3

The coefficient e6¥l6 and f 6%6 are respectively determined using a Fourier series expansion of g /ji5 -
Bys |x=x3 Ay and pe / U3 - Byg,}x:x2 Avy [see Figure 4f] over the interval y = [y2, y3] = [y2, Yo + Tyé]:

2+Ty6

Y
2 .
€6’ = % . / % . By5|x:7[3 -sin [A6ye - (v — y2)] - dy, (31a)
v
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2 .
£ = 2 Ee  Bya|,_, -sin [A6us - (y — y2)] - dy. (31b)
Y2

The expression of c6y, d6g, c6;,, d6;, 66216 and f6z6 are developed in the Appendix C.

2.5.7. Region 7

According to case-study no 2 "By and A; are respectively imposed on x- and y-edges of a region” in
the Appendix B, the magnetic vector potential A,7, which is a solution of (2) satisfying the boundary
conditions of Figure 4g, is defined by

Ay = AL+ AV + Aspy, (32a)
(ya —y) - 75+ (y — y2) - d75
7= o | Ty shlB7ur(va—y)] | 47y sh[B7r-(y—y2)] ’ (32b)
et Z _Th7 |, 2P W7 \I3 )] Zlhy o, 22UPh7 AT Y2)) 'COS[ﬁ7h7'<X*X4)]

h7=1 /87117 Sh(‘B7h7~Ty7) ﬁ7h7 Sh(ﬁ7h7~Ty7)

Yy _
Az7__

s 67327 ch[A7,7 - (x — x4)] f7z7 ch [A7,7 - (x5 — x)] .
P { Ve sh(\t) N sh(ata) [T [A7w7 - (y — y2)]. (320)

Considering the form of the current density distribution, i.e., (2b), a particular solution A,py can be
found as follows:

1
Azp7 = —5 W7 J.7 - v (32d)

The x-component of §>7 is defined by

B.7 = Bj7 + By, + Bupy, (33a)
—CTE 4 d7E
X
751y e BTz ()] . hlB7i(y=ya)] | o (33b)
' Jrh7z=1{ i7" “n(nge) O sh($7 ) } cos [B7)7 - (¥ — x4)]

= h[A7,7 - (x — W(A7,7 - (x5 —
BZ7 T 2 {67217 . : S[h ()L77n§J'CTX7J;4)] B f6Z7 . : S[h (A77n§)'C5Tx7)X)] } 1€ [)\7;17 . (y - yZ)], (33C)

n7=1
0A
Bypy = a;m =—pr-J7- Y, (33d)
%
and the y-component of By by
By7 = Bj; + By, + Byp7, (34a)

v ) oox SEIBThr - (3 —y)] o ShIBZw - (v —w2)]
y7_h7z_:1{C7h7' sh(B7ir-17) O sh (77 1) }’sm[ﬁ Tz (el G40

e y  Sh[A7y7 - (x — x4)] y  Sh[A7u7-(xs —x)] | o
By7—n72_1{e7n7 ATy ta) fhr — 1) sin[AZ,7- (y —y2)],  (34c)

Bpy = ——=1 = 4
yP7 o 0, (34d)

where h7 & n7 are the spatial harmonic orders in Region 7; ¢75, d7j, c7;,, A7, 67‘17 and f 7%7 the
integration constants; 77 = h7 - 71 /Ty7, and Ty; = x5 — x4; and A7,7 = n7 - 71/ 1,7 with 1,7 = y3 — yo.
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The coefficients c7j & c7;, and d7j & d7;, are respectively determined using Fourier series
expansion of AZl|Vx/\y:y2 and A22|Vx/\y:y3 [see Figure 4g] over the interval x = [x4, x5] =
[X4, X4 + Tx7]5

1 X4+ Ty7
X —_ . _ .
7§ + - Azp7ly=y, = > Azl,y, - dx, (35a)
X4
X4+Ty7
2
75, = . / B7n7 - Azly—y, - €08 [B7n7 - (x — x4)] - dx, (35b)
X
x4
X4+Ty
A7 A = 4/ 1, | dx (350)
0" g, = T g, Ty lvEs T
X4
X4+ Ty7
2
a7y = - / B7i7 - Azalyy, - <0 (77 - (x — x4)] - dx. (35d)
Xy

The coefficient 67‘17 and f 7%7 are respectively determined using a Fourier series expansion of iy /iy -
By4|x:x5 AV and 7 /s - Byg,}x:x4 svy Lsee Figure 4g] over the interval y = 2, v3] = [v2, y2 + 17

2 ]/2+Ty7
o7, = =2 % Byl _,, sin[A7u7 - (y — y2)] - dy, (36a)
Y2
y2+Ty7
=2 [ BBl sin[A Ty (y— )] 4 (36b)
n7 Ty7 ;’15 y5 X=Xy n7 y yz y‘
Y2

The expression of ¢7%, d7%, c7%.,, d7%.,, 7", and 7", are developed in the Appendix C.
P 07 S/ 17r W 4y70 €407 n7 p PP

2.6. Solving of Cramer’s System

The integration constants can be determined by solving the following linear equations (i.e.,
Cramer’s system) which can be written in matrix form as [65]

[IC] = [BC] ! - [ES], (37)

where [IC] is the integration constants vector (of dimension Xmax X 1),

IC] = | [Ic1] [IC2]  [IC3]  [Ic4] [IC5] [ICe] [ICT] }T, (38a)
1C1] = [d13y], (38b)

1C2] = [c25,], (380)

[1C3] = | 3}y d3jy f3%s |, (38d)

1C4] = | o4, daj, ety |, (38¢)

[IC5] = | 535 d5fs eSls f5ls |, (386)

[IC6] = | c6F c6f 65 d6fy e6ls f6l, | (38g)

iC7) = | 7 7, a7y A7y, Ty (70 | (38h)
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[ES] the electromagnetic sources vector (of dimension Xmax X 1),
[ES] = [ [ES1] [ES2] [ES3] [ES4] [ES5] [ES6] [ES7] ]T, (39)
[ES1] = [ES16p + ES1741], (39b)
[ES2] = [ES26yp + ES27)a], (39¢)
[ES3] = [ 0 0 ES36y3 } (39d)
[ES4] = [ 0 0 ES47n } (3%)
[ES5] = [ 0 0 ES56,5 ES57,5 } (391)
[ES6] = [ ES6ly 0 ES62p 0 0 0 } (39g)
[ES7]:[ES710 0 ES720 0 0 o}, (39h)
and [BC] the boundary conditions matrix (of dimension Xmax X Xmax)
[ 0  [BC13] [BC14] [BC15] [BCl6] [BC17] ]
0 (] [BC23] [BC24] [BC25] [BC26] [BC27
[BC31] [BC32] (1] 0 0 [BC36] 0
[BC] = | [BC41] [BC42] 0 (1] 0 0 [Bca7] |, (40a)
[BC51] [BC52] 0 0 (] [BC56] [BC57]
[BC61] [BCe2] [BC63] 0  [BCe5| 1] 0
| [BC71] [BC72] 0  [BCv4] [BC75] 0 |

in which [I] is identity matrix, and

[BC13] = | Q13cpy 3 Q13dp1p3  Q13fu1u3

[BC14] = | Qldcppg Qlddpi s Qldey g

[BC15] = | Q15enss Ql5dimss Ql5emus Q15finas | (40)
[BC16] = | Qlé6cp g Qlécyine Qlédig Qlédyine  Ql6en e QL6 uine

[BC17] = | Ql7cp19 Ql7cpipy  Ql7dpg Q17dpipy  Ql7ep17 Q17 fiany

for Region 1,
BC23] = | Q23cpop3 Q23dppns Q23 fiou3
BC24] = | Q24cipps Q24dpp s Q24ep0 14

o~}
0
N
=)

[BC23]
[BC24] = |
[BC25) = | Q25cis Q25dinss Q25e10us Q25fins | (400)
[BC26] = | Q26100 Q26cipe Q2610 Q261256 Q261,16 Q26fh2,n6J
[ = | Q70 Q7ciopy  Q27dioo Q27diyy Q271007 Q27 fiony

or]
O
N
N
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[BC31] =
[BC32] =

[BC36] =

for Region 3,

[BC41] =
[BC42] =

[BC47] =

for Region 4,

[BC51] =
[BC52] =

[BC56] =

[BC57) =

for Region 5,
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T
[ Bldjam 0 0 |
T
Q32€h3h2 0
} (40d)
0 0 0 0 0
0 0 0 0 0
Q36cn30 Q36cn3,h6 Q36dn3,0 Q36dn3,h6 Q36en3,n6 Q36fn3,n6
T
[Q41dh4rh1 0 0]
T
0 Q4240 0} 0
0 0 0 0 0 0 (40e)
0 0 0 0 0 0
Q47cua0 Q47cpap; Q47dyso Q47dpap; Q47ensn7 Q47 fuany
T
[Q51dh5,h1 00 o}
r T
0 Q5205 O 0}
0 0 0 0 0 0
0 0 0 0 0 0
Q56¢c,50 Q56c,506 Q56dus50 Q56d,545 Q56€n56 Q56 fusn6 (40f)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
| Q57cus0  Q57cusp7; Q57duso  Q57c¢uspy;  Q57eusn7 Q57 fusnz
T
[BC61] = [ Q6ldgy; Q6ldyg 0 0 0 0}
1T
[BC62] = [ 0 0 Q62 Q62ueu 0 0
0 0 0 1
0 0 0
0 0 0
B =
[BC63] 0 0 0
0 0 0 (40g)
| Q63cy6n3 Q63d,6p3 Q63 fu6n3 |
0 0 0 0
0 0 0 0
0 0 0 0
[BCES] = 0 0 0 0
Q65Cn6,h5 Q65dn6,h5 Q65€n6,n5 Q65f n6,n5
0 0 0 0o |
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for Region 6,
T
[BC71] = [ Q71doy  Q7ldjzpn 0 0 0 0}
T
BC72] = [0 0 Q7202 Q720742 0 0
[ 0 0 0 i
0 0 0
0 0 0
[BC74] = 0 0 0
Q74cuzpa Q74dn7pa Q747,04 (40h)
0 0 o |
[ 0 0 0 0 i
0 0 0 0
0 0 0 0
BC75| =
[BC73] 0 0 0 0
0 0 0 0
L Q75¢cu7ps Q75du705  Q75€n7,n5  Q75fu7n5 |
for Region 7.

The corresponding elements in (39) and (40) are defined in the Appendix C. One can note that
(37) consists of

Hlmax + Hzmax + 2 H3max + N3max + 2 H4max + N4max

X =
max 42 (H5max + N5max) +2- (H6max + Nb6max + 1) +2- (H7max + N7max + 1)

(41)

equations and unknowns. Any mathematical software (such as Matlab® or Mathcad®) for example)
can quickly give the numerical solution of (37). The analytical solutions of the magnetic flux
density in the various regions have been computed with a finite number of spatial harmonics terms
H1pax - H7 max (for the x-edges) and N34y - N7,0x (for the y-edges) as indicated in Table 1.

Table 1. Parameters of the Air- or Iron-Core Coil.

Parameters, Symbols, Units Values
Number of series turns, N; [-] 1,600
Maximum direct current, I [A] 5
Surface of conductors, S [mm?] 800
Current density (due to supply currents), [x [A/mm?] +10
Effective axial length, L, [cm] 4
Geometrical parameters in the x-axis, {x1; x2; x3; x4; X5; x6} [cm]  {0;10;12;16; 18;28}
Geometrical parameters in the y-axis, {y1;y2; y3; Y4} [cm] {0;10;14;24}
Relative magnetic permeability of the iron, p;.oy [-] 1,500
Number of spatial harmonics for Region 1, H1 4y [-] 98
Number of spatial harmonics for Region 2, H2,4x [-] 98
Number of spatial harmonics for Region 3, { H3max; N3max} [-] {35,88}
Number of spatial harmonics for Region 4, { H4max; N4max} [-] {35;88}
Number of spatial harmonics for Region 5, { H5max; N5max} [-] {14;88}
Number of spatial harmonics for Region 6, { Homax; N6max} [-] {7,88}
Number of spatial harmonics for Region 7, { H7max; N7max} [-] {7,88}
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Figure 5. Equipotential lines of A, with the 2-D subdomain model and FEA for (a) air- and (b)
iron-core coil.

3. Comparison of the Semi-Analytic and Finite-Element Calculations

3.1. Introduction

The objective of this section is to show the effectiveness of 2-D subdomain model on the magnetic
field distribution. The main parameters of the air- and iron-cored coil are given in Table 1. For the
comparison, the system has been set up using Cedrat’s Flux2D software package (i.e., an advanced
finite-element method based numeric field analysis program) [8]. The finite-element computations
are done under same assumptions on which the semi-analytical model is based [see § 2.1. Problem
Description and Assumptions]. The Cramer’s system (37) consists of 1,100 elements which is much
smaller than the 2-D FEA mesh having 8,566 surfaces elements of second order. The personal
computer used for this comparison has the following characteristics: HP Z800 Intel(R) Xeon(R)
CPU@2.4 GHz (with 2 processors) RAM 16 Go 64 bits.

3.2. Results Discussion

The 2-D subdomain model is implemented so that it is possible to get values of A; in the air-
and iron-core coil. Figure 5 present the equipotential lines (~ 30 lines) of A, in the system with
the semi-analytical model and FEA. As can be seen, a good evaluation is obtained, comparing those
results with 2-D FEA, for both air- and iron-core.

The paths of the magnetic flux density validation for the comparison are given in Figure 6.
The waveforms of the components of = {Bx; By;O} are represented on the various paths in
Figure 7 - Figure 11. The solid lines represent the magnetic flux density computed by the 2-D FEA
and the circles correspond to 2-D _)subdomain model. It can be seen that a very good agreement is
obtained for the components of B, whatever the paths, for both air- and iron-core. This confirms
that the saturation effect, with a constant magnetic permeability corresponding to linear zone of
B(H) curve, is taken into account accurately. It is interesting to note that numerical peaks appear
in the FEA results [see Figure 8a and Figure 11a] which are mainly due to the mesh. Some slight
discrepancies are observed between numerical and analytical results which can be caused by the
finite number of spatial harmonic taken into account in the semi-analytical model according to the x-
and y-edges. The increase of harmonics number can resolve these deviations, however, at the expense
of the computation time.
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Figure 6. Paths of the magnetic flux density validation for the comparison.
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Figure 7. Waveform of the (a) x- and (b) y-components for Path 1.

4. Conclusion

An overview on the existing (semi-)analytical models in Maxwell-Fourier methods (i.e.,
multi-layers models and subdomain technique) with the saturation effect has been realized. It
has been demonstrated that there is no (semi-)analytical model based on the subdomain technique
taking into account the iron parts with(out) the nonlinear B(H) curve. Then, the new scientific
contribution on the 2-D subdomain technique in Cartesian coordinates to study the local magnetic
field distribution in the iron parts is presented in this paper.

It was performed by solving 2-D magnetostatic Maxwell’s equations in Cartesian coordinates
(x,y) for an air- or iron-core coil supplied by a direct current. The subdomains connection is
carried out in the two directions (i.e., x- and y-edges). The iron magnetic permeability is constant
corresponding to linear zone of the initial magnetization curve. However, nonlinear magnetic
materials could be accounted for by means of an iterative algorithm. This major scientific contribution
will be applied to rotating and/or linear electrical machines with(out) magnets supplied by a direct
current or alternate current (with any waveforms) whose the analysis would be based on a 2-D
semi-analytical model in Cartesian coordinates (e.g., plane linear machines, axial-flux machines,...).
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Figure 8. Waveform of the (a) x- and (b) y-components for Path 2.

0.0 — FEA 610°°} — FEA
o ©0 Subdomain model 00 Subdomain model

N .
7

\\ Air-core coil /

Air-core coil

- 4107

-810°

The x-component of the magnetic flux density for Path 3 [T]

The y-component of the magnetic flux density for Path 3 [T]

A
% o

0012
o @, ’5/,( ~
- o001 - 0029 \2’2““‘& — i
: N Iron-core coil
o o
- 10 20 % 4 5 60 70 8 % 100 10 120 130 140 150 160 170 180 190 200 210 220 230 240 - 10 0 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
Length of Path 3 [mm] Length of Path 3 [mm]

(€] (b)

Figure 9. Waveform of the (a) x- and (b) y-components for Path 3.
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Figure 10. Waveform of the (a) x- and (b) y-components for Path 4.
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Figure 11. Waveform of the (a) x- and (b) y-components for Path 5.

An extension of the 2-D subdomain technique in polar coordinates as well as various electrical
machines (viz., radial-/axial-/transverse-flux machines, linear machines, U-/E-cored electromagnet
device,...) will be made in the next studies.

This new approach to account for the saturation effect is (semi-)analytically based and takes
significantly less computing time than the FEA; it is eminently suitable for design and optimization
of the electromechanical systems. Predicted results from the exact (semi-)analytical model have been
compared finite-element predictions, and good agreement has been achieved, in both amplitudes and
waveforms.

Author Contributions: This paper is the results of the hard work of all authors, which have wrote the paper and
have gave advices for the manuscripts.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A The 2-D Magnetostatic General Solution in Cartesian Coordinates

Appendix A.1 Governing Partial Differential Equations (EDPs)

By assuming that the term oD / ot is negligible, the magnetostatic Maxwell’s equations are
represented by Maxwell-Ampére
—

rot (ﬁ) = 7) (with 7} = 0 for the no-load operation), (A.la)

and Maxwell-Thomson

div (?) =0 (Magnetic flux conservation), (A.1b)
—_—
B = rot (X) with div (Z)) =0 (Coulomb’s gauge), (A.lc)

— -
where A, ?, ﬁ, and | are respectively the magnetic vector potential, the magnetic flux density,
magnetic field, and the current density (due to supply currents) vectors.

The field vectors B and H are coupled by the magnetic material equation

?:%ﬁ—kyo-ﬁ, (A.2)
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where ]\_>/I is the magnetization vector (with Z\_/>I = 0 for the vacuum/iron or M # 0 for the magnets

according to the magnetization direction [4]), and i = pg - i, the absolute magnetic permeability of

the magnetic material in which pg and y, are respectively the vacuum permeability and the relative

permeability of the magnetic material (with i, = 1 for the vacuum or y, # 1 for the magnets/iron).
By using (A.1) and (A.2), the general EDPs of magnetostatic are defined by [64]:

Xy—v-AA =T +Xg (A.3a)
—
?A = grad (v) Arot <Z>), (A.3b)
—_—
?B = - [grad (v) A M +v - rot (M)] , (A.3¢c)

where v = 1/ is the absolute magnetic reluctivity of the magnetic material.
By neglecting the end-effects (i.e., the system is infinitely long which leads to A= {0;0; Az }:
the magnetic variables are independent of z), (A.3) in Cartesian coordinates (x,y) with u = C can

be expressed by:
azAz azAZ

oM, oM
ES = {# J=+ Ho- ( - ay")] : (A.4b)

Appendix A.2 General Solution

It is interesting to note that A, is governed by Poisson’s equation, when there is one or more
electromagnetic sources (i.e., ES # 0), or Laplace’s equation, when there is no electromagnetic sources
(i.e., ES = 0). According to the method of separation of variables, the 2-D magnetostatic general
solution of A; in Cartesian coordinates (x,y) can be written as

A= Ag + Ag + Azp, (A.5a)

(C5+Df -y) - (B + Fy - x)

A= 2| Gch(Bry) ,
= Dy -sh (B -y) ]

(Cg+Dg:y>-<Eg+Fg-x)

Cl - cos (Ay - y)
w=1| o+ Disin (A y)

E¥ - cos (By, - x) 1, (A.5b)
-+ Ff -sin (B - x) ]

EY-ch (A, - x) 1. (A.50)
-+ F/-sh(A, -x)

where A, p are the particular solution of A;respecting the second member ES in (A.4), Cj - Fj} & Cy Fy
the integration constants, 8j, & A, the per10d1c1ty of AX & A7, and h & n the spatial harmoruc orders
According to (A.1c), the components of B = {Bx, By; 0} can be deduced from A, by

9A,
Iy

dA;

By = —_—
* ox

and By = — (A.6)

which leads to 9A
By = B¥+ B+ ayzp , (A.7a)

Dj - (Eg + Fj - x)

Br=| . g | CishBuy) | Eji-cos (B - x) , (A.7b)
+ Y B " D;’f'Ch(,Bh'J/)} [ -+ FY -sin (B, - x)
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Figure B.1. A, imposed on all edges of a region: (a) General and (b) According to the principle of
superposition.

Dy (B +F -x)
By =

& —Cjy -sin (Ay - ) Ez ch (A, - x) , (A.7¢)
Y Ay y v
n=1 -+ Dy - cos (An - y) -++ F; -sh (A, - x)
and A
p
By = Bj+ By — —=, (A.8a)
F- (GG +D5 ) ]
By==1 ... 4% p,. | G By (| —Eisin (B %) : (A.8b)
=1 Dy -sh (B - y) By -cos (B - x) |
R (ch+Df-y) _
Blé’:* — % I Ch - cos (Ay - y) _ Ej -sh(Ay - x) . (A.8¢)
i1 | oo+ Diysin (A - y) o ch (A - x)

Appendix B Simplification of Laplace’s Equations according to imposed Boundary Conditions

Appendix B.1 Case-Study no 1: " A, imposed on all edges of a region”

Figure B.1a shows a region (for x € [x;, x,] and y € [y}, y¢])) whose the magnetic vector potentials
are imposed on all edges. By applying the principle of superposition on the magnetic quantities,
Figure B.1a is redefined by Figure B.1b.

In the case-study no 1, the magnetic vector potential A, = Af + Ag ,1.e., (A.5), is redefined by

sy ) G shBu-(ye—w)] iy shiBu- =yl \ ora .
Az_g{ﬁh sh(Br-7) | PBi sh(Br-my) } Br-(x—x)],  (Bla)

® e shiA, - (xr—x VoshlA, - (x—x
E{A’L W*i ’W} sin [Au - (y — 1)), (B.1b)

_>
the component By = BY + B of B, i.e., (A7), by

S o ChlBn-(we—y)] | o chlBn-w—w)l | .
B = Z{_Ch' shh(ﬁh-fy) i shh(ﬁh~Ty)l }.Sm[ﬁh.(x_m]’ (B2
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Figure B.2. A; = 0 on x-edges and A, imposed on y-edges of a region.
[y she (=] |y s (x—x)]
B = {ey —— y.o o = L cos (B.2b
X ng:l n Sh ()\n 'Tx) fn Sh ()\n Tx) [ (y yl)] )

and the component By = B;‘ + Bg of ?, ie, (A.8), by

i { sh [Bn - (vt —v)] +di.5h[ﬁh'(y_yl)] } -cos (B, - (x —x7)], (B.3a)

= sh (B~ ) sh (P )

where ¢j, dj, el and fy are new integration constants; B, = h- / Ty with T, = x, — xj; and A, =
n- 7T/Ty with 1, = yr — y;.

For the particular case illustrated in Figure B.2 (whose the magnetic vector potentials are zero on
x-edges and imposed on y-edges), the magnetic vector potential A;, according to (B.1) with A7 = 0,
is expressed by

oy S shiBr e =) Ay shBn =yl | ey .
AZ_};{'B;;[ Sh(‘Bh-Ty) +’BI:[ Sh(‘Bh‘Ty) } [.Bh ( l)]/ (B4)

_>
the x-component of B, according to (B.6) with BY = 0, by

{—c’hc' By (e 9] | g 1Bi-(y — )] } -sin [By, - (x — x1)], (B.4b)

Px = sh(Br-) " sh(Ba- )

et

the y-component of ?, according to (B.3) with Bg =0, by

_ oy S shlBu e = )]y shiBr- (v —yr)]
By——;;{ch- shh(,Bh-Ty) +dy - shh(ﬁh-ry) }~cos [Br - (x —x7)]. (B.4c)

Appendix B.2 Case-Study no 2: " By and A; are respectively imposed on x- and y-edges of a region”

Figure B.3a shows a region for x € [x;,x;] and y € [y;,y:])) whose the magnetic flux densities
and vector potentials are respectively imposed on x- and y-edges. By applying the principle of
superposition on the magnetic quantities, Figure B.3a is redefined by Figure B.3b.
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Figure B.3. B, imposed on x-edges and imposed on y-edges of a region: (a) General and (b) According
to the principle of superposition.

In the case-study no 2, the magnetic vector potential A, = A} + Al e, (A.5), is redefined by

P e—y)-cg+y—w)-dy (B.5)
2= L2 shiBey)] % shlBy-w)l | (e , 5a
’ + hgl /5};1 shzﬁh‘try) + 5;;1 shz/}h"ry)] } cos ['Bh (x xl)]

© o a2 (x —x Y ch[Ag - (2 —x .
Az=—}:{A’;-W—L-W}-sln[An~(y—yz)], (B.5b)

_>
the component By = BY + B of B, i.e., (A7), by

n=1

—cp +dy
B;(: ® _x, hBu(yi—y)] v chB-(—y)] | . B , (B.6a)
* hgl { Ch Sh(ﬁh'ry) T dh Sh(ﬁh'Ty) cos [lBh (x XI)}
vy [y e (k=) e A (= 2)] o
e n; {e” E e et i yy were wl GLC A A DI (B.6b)

and the component B, = B;‘ + BZ of ?, ie., (A.8), by

B;_i{cﬁ.shwh-(yt—yn+dﬁ.sh[ﬁh-<y—yz>1}.sm[ﬁh.(x_x,>], (B72)

=1 sh (By - Ty) sh (B 1)

where cg, dg, c3, dy, e% and f% are new integration constants.
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Appendix C Elements of Cramer’s Systems

Appendix C.1 Simplifying Function of General Integrals

For the determination of the integral constants, it is required to calculate general integrals of the

form
L+w
F, = /sin[zxs-(l—ls)]'dl, (C.1a)
lz
I+w
Fu — /cos[occ-(l—lc)]-sin[zxs-(l—ls)]-dl, (C.1b)
I
I4+w
Fo = / sin sy - (I — )] - sin [asa - (1 — )] - d, (C.10)
I
I4+w
F = / -sinfas - (I —15)] - dl, (C.1d)
I
Ii+w
Fppe = / 2 sinfas - (I — 1)) - d, (C.1e)
Ul
L+w
Fe = / chag, - (1 — 1)) - sin[as - (1 — 15)] - I, (C.16)
I
4w
Fye = /sh[ash~(l—lsh)]-sin[ocs-(l—ls)]-dl. (C.lg)

I

The functions (C.1) will be used in the expression of the integration constants. The expressions of
(C.1a) - (C.1c) have given in [65]. The development of (C.1d) - (C.1g) gives

l sin [as - (I +w — I)] — sin [as - (I, — 1s)] ]
(o o 1 0) = ~~~—as'{(ll+w)'COS[“s'(ll;w—ls)]—ZZ'COS[“s'(lz—ls)]} 2

2-{cosas - (I, +w —1s)] —cos [as - (I; — I5)] }
a2 {1+ w) - cos [ws - (h+w— )] = 17+ cos [as - (h — 15)]}
2 {(I+w)-sinfas - (I +w—1s)] = I - sin[as - (I = I5)]}

Flzs (DCS/ lS/ ll/ w) = “3 4 (C2b)
s
—ag, - sh [ach . (ll - lch)] - sin [“S . (ll - ls)]
¢ coo—shlag, - (L +w—1y)] -sin[as - (I + w —I5)]
.- ch [“ch . (ll — ZC],,)] - COS [Dés . (ll — ls)]
T = ch [ (4w — Lgy)] - cos [as - (1 +w — 15)]
Fchs (‘Xch/“s/lch/ Zs/ll/ w) = ,

(a2, +a2)
(C.20)
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- ch fagy - (I = Lp)] - sin [ - (1 = I5)]
T g (b w = 1) sin fos - (1w = 1))
vt Sl (= Lay)] - cos [as - (I = Is)]
s <o —shlag, - (I +w —Ig,)] - cos [as - (I} +w —1s)]
Fons (’xsh; Ks, lsh/ ls, ll/ ZU) = (0(2 + az)

h 5
’ (C.2d)

Appendix C.2 Expression of d17, for Region 1

By incorporating F; (x) [see Figure 4a] into (7) and by using (13), (18), (23), (28) and (33), the
development of (7) gives

pa (cs;;3 - Q1313 + A3, - Q13dj1 1i3) + 321 £302 - Q13 fi1 3
= n3=
+ D Y (cAT, - Qg p + d4T, - Qlddy ) + oy ed!, - Qldey g
= nd=
e + ¥ (cBs - Q1505 + 5 - Q15dys) + L (€5l - Q15e15 + f5%5 - Q15 5 )
n = h5;1 n%o:l
+ X (€65 Qb e +dofg - Ql6dinse) + L (e6%6 - Q166,05 + f6g - Q16,06 )
— née=
i 720 (c757 - QL7¢h1 7 + d75; - Q17dp1 p7) + 721 (6757 - Q17e1,7 + f65, - Q17fhl,n7>
n7=
.-~ ESlp
) (C.3a)
Q3¢ 3 = ™ Z; -coth (Bys - 1y3) - Fss (B3pa, Plin, X1, %1, X1, Ta3) (C.3b)
X
2
Q13dy1 43 = v % ~csch (Bus - Ty3) - Fes (B3na, B, X1, X1, %1, Tu3) (C30)
X
2
QU8fins = =+ L esch (Aus + Ts)  Fos (Adua, Bl 1,31, 31, ), (C.3d)
X
2
Qldcyipg = v % -coth (B - Tya) - Fss (B4na, Bln1, X5, X1, X5, Tus) (C.3e)
X
2
Qlddyy py = o % ~csch (Bpa - Tya) - Fss (B4na, Blp1, X5, X1, X5, Txa) (C.3f)
X
2
Qldeyy s = ™ % ~csch (Aug - Taa) - Fons (Mg, B, X, X1, X5, Tat) (C.3g)
X
2
Q15¢u1 05 = v % -coth (Bps - Tys) - Fss (B5us, Bln1, X3, %1, X3, Tx5) , (C.3h)
X
2 .
Q15dy1 45 = o ﬁ; ~csch (Bps - Tys) - Fss (B5hs, Bln1, X3, X1, %3, Txs) (C.3i)
X
2 .
Q15ep1,5 = = ;2 csch (Aps - Tas) - Fsns (ASns, Blp1, Xa, X1, X3, Tys) , (C3j)
X
2
Q15fh1,n5 = _Tl g; -csch (A ( n5 - Tx5) * Fops (/\5115/ ﬁlhlr X3,X1,X3, TxS) ’ (C.3k)
X
2 Fs (Bly1, X1, X2, Txe) for h6 = 0
16¢ = — . —. C.3l1
Q k6 Tx1 ]/16 { coth (ﬁhé . Ty6) . ch (,86}16/ ﬁlhl,JQ, X1,X2, Txé) for h6 7é 0 ( )
2 M1 F (,Blhl/ X1, X2, Txé) forh6 =0
16d) g = — — - 1L C.3m)
Q 1Lh6 Tx1 He { csch (,3% . Tyé) . ch (ﬁ6h6/ ﬁlhl,xz, X1, X2, Tx6) for h6 7'5 0 (

4
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2
Q16ep1 46 = o % ~csch (Aus - Tas) * Fons (A6ne, Blp1, X2, X1, X2, Tas)
X

2
Q16f11,n6 = - B esch (An6 - Tx6) - Fens (A6ne, Blna, X3, X1, X2, Tas)

¥l He
Q17¢11 17 = 2 ) B (Bl x1, X, T7) for h7 =0
"I g Ty ) coth (Bug - Ty7) - Fes (B7i, Bli, Xa X1, %4, Tuy)  for 7 #£0
Q17d — _l ey Fs (Blp1, x1, X4, Ta7) for h7 =0
MITT T wr | esch (Buy - ty7) - Fes (B7u7 Blun, Xa X1, %4, Tp)  for h7 # 0

2
Q17eh1,n7 = Tl : % -csch (/\717 : Tx7) : FChS ()L7l’l7/ ﬁ]‘hll X4,X1,X4, Tx7) ’
X

2 1
Q17 fii 7 = o B esen (An7 - Ta7) - Fens (A7n7, Blpa, X5, X1, X4, Ta7)
X

Hz
2
ES16y1 = —pq - ™ “Jz6 - Y2 - Fs (Bly1, X1, X2, Txs)
X
2
ES17y1 = —pq - ™ Jz7 - y2 - Fs (Blp1, X1, X4, Ta7) -
X

Appendix C.3 Expression of c2, for Region 2
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(C.3n)

(C.30)

(C.3p)

(C39)

(C.3r)

(C.3s)

(C.3t)

(C.3u)

By incorporating G, (x) [see Figure 4b] into (11) and by using (13), (18), (23), (28) and (33), the

development of (11) gives

) 321 (cszs - Q23cyp 13 + 3%, - Q23dyn p3) + Py fszg, - Q23fip 3

4ty - Q24cyy py + d47, - Q24dh2h4)—l— 2 ed?, - Q24ey) 4

ol
(c57s - Q25¢yp 5 + d5}is - Q25d s
(coj;

=
—_

X
2y = —

=

n5*

=

%+++
=
o

(7%, - Q27cyp 7 + A7 - Q274 7
26 + ES27))

eTre et

o

n7=1

/\x‘
1
n

2
Q23¢pp p3 = v % ~csch (Bus - Ty3) - Fss (B3ua, B2i2, X1, %1, X1, Tx3) ,
X.

2
Q23dh2,h3 = _TZ : % . COth (ﬁhS . Ty3) : FSS (ﬁ3h3/ ﬁth/ xl/ xl/ xl/ Tx3) 7
X

2 cos (A3 - Ty3
Qfig,0 = -2 - 12 02 (b o)

- F A3 ’ 2 7 AL AL ALY ’
T s Sh (A ) shs (A3n3, B2n2, X1, X1, X1, Ty3)

2 m
Q24cipps = — - P2 cseh (Bna - Tya) - Fss (B4na, B2n2, X5, %1, X5, Txa)

Tx2 M4
2 ]/lz
Q24dyp ja = P -coth (Bpa - Ty4) - Fss (B4na, P22, X5, X1, X5, Tus) ,
X

2  up cos ()Ln4 . Ty4)
24 =— = — = F A4/2/ YV 7 s
Q24epp 14 Tt S (s Tea) shs (Adna, B2n2, Xo, X1, X5, Tya)

2w
Q25Ch2,h5:?2 ;js ~csch (Bps - Tys) - Fss (B5ns, P22, X3, X1, X3, Txs ) ,
X.

)+ (€5n5 - Q25¢10,45 + 555 - Q25 h2,n5>
¥ - Q260216 + A6 - Q2610 16) + z_ (e6%s - Q26e12,16+ f6ls - Q2616
)+

2_ ( vy Qe 7 + 65, - Q271 h2,n7>

(C.4a)
(C.4b)

(C4c)

(C.4d)

(C.de)

(C.4f)

(C4g)

(C.4h)

7
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2 .
Q25d), 15 = . % -coth (Bps - Tys) - Fss (B5hs, B2i2, X3, X1, X3, Tx5) , (C.4i)
X
2 cos (Ays - Ty )
Q25ejp,5 = — - k. M - Fgns (A515, B2ip, X4, X1, X3, Ta5) (C4j)

Txo M5 Sh(Aps - Tas)

2 Hp COS ()\n5 . ’Z_'y5)
25 =—— .= ————  FL . Fu (A5,5, B2i1n, X3, X1, X3, Tx5) , C.4k
Q25 12,5 o 5 Sh (A Tes) shs (Ans, B2n2, X3, X1, X3, Ty5) (C.4k)

2 2 Fs (B2p2, X1, %2, Txe) for h6 =0
26¢ = — = c.4l
Q26ckps T2 He { csch (Bne - Ty6) - Fes (Bbne, P22, X2, %1, X2, Txg) ~ for h6 # 0 (C.4D)
2 H2 F; <52h2/ X1, X2, Txé) for h6 =0
26d =—— = C.4m
Q26das T2 He { coth (Bpe - Ty6) - Fes (Bbne, P22, X2, X1, X2, Txg) ~ for h6 # 0 ( )

2y €08 (A Tys)
2 = — = ————= - Fs (Abyg, B21n, X2, X1, X2, , C4
Q26e2,n6 T chs (Aug, B2n2, X2, X1, X2, Tx6) (C4n)

2 pp cos (An6 - Tyo)

26 =—— = ——— F 2 . Fu. (Abue, B2, X3, X1, X2, Tag) , C.4do
Q26 fi2,n6 T e Sl ) T (Abn6, B2n2, X3, X1, X2, Tx6) (C4o)
2 H2 FS (ﬁthI X1,X4, Tx7) forh7 =0

27¢ =—.=. C4

Q h2h7 T2 M7 { csch (ﬁh7 . T]/7) . FCS (,37}17, IBZhQ/ X4,X1,X4, Tx7) for h7 7é 0 ( p)
2 H2 Fs (ﬁth, X1, X4, Tx7) forh7 =0

27d =——"=. C4

Q2727 T2 W7 { coth (By7 - Ty7) - Fes (B7h7, B2n2, Xa, X1, X4, Tu7) ~ for h7 # 0 (€49

2 pp o0s (A7 Ty7)
ey g = — P22\ YY) (A7 B2, X, X1, Xay Tar) C4
Q27ep2,n7 ST 5 W chs (A7u7, B212, X4, X1, X4, Tr7) (Co4r)

2 Hp COS ()\n7 . Ty7)

27 == —— < .F AZ.7,B210, X5, X1, Xa, , C4
Q27 fua,n7 o 1 S Oy ) chs (A7n7, B2i2, X5, X1, X4, Tx7) (C.4s)
2
ES26yp = —pa - ™ “Jz6 - Y3 - Fs (B2n2, X1, X2, Txe) (C4t)
X.
2
ES27p = —pa - ™ “J27-y3 - Fs (B2n2, X1, X4, Tx7) (C4u)
X.

Appendix C.4 Expression of c3;,, d3;, and £3Y, for Region 3
By using (4), the development of (15a) gives

Bjy = — ) dlj; - Q3ldjz 1, (C.5a)
hl=1
_ 2 Pu
Q31dyz 1 = "5 B th (Bm - Ty1) - Fss (Blp1, B33, X1, X1, X1, Tu3) - (C.5b)
X,

By using (8), the development of (15b) gives

3 = — ) 2y - Q8232 (C.6a)
W2—1
_ 2 P
Q321550 = — - == - th (Bra - Ty2) - Fss (B2n2, B3ha, X1, X1, X1, Ta3) - (C.6b)

Tx3 ﬁ h2


http://dx.doi.org/10.20944/preprints201609.0106.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2016

30 of 37
By using (27), the development of (16) gives
hégo (C6z6 . Q36cn3,h6 + d6;:6 . Q36dn3,h6)
y _ - (]
f3us = NS 6):1 (3616 - Q363,16 + f6 - Q36fn3,n6) (C.7a)
n6=
... —ES36,3
2 - [y?) - F (/\3n3/ Y2,Y2, TyS) — Fjg ()\3113/ Y2,Y2, Ty3)] for h6 = 0
36¢c =— Aps- C.7b
Q 13,16 Ty3 n3 { i - csch (,Bh6 : Tyé) : Fshs (,36}16/ A3n3/ Y3,Y2,Y2, Ty3) for h6 7é 0 ( )
2 [v2 - Fs (A343,¥2, Y2, Ty3) — Fis (A343, Y2, Y2, Ty3) ] for h6 =0
36d =— Ap-g = C.7¢c
Q 13,116 Ty3 n3 { Thi - csch (ﬁh6 . Ty6) : Fshs (ﬁ6h6/ )\3713/ Y2,Y2,Y2, Ty3) for h6 7é 0 ( )
2 A
Q36136 = — - =2 - csch (Aus - Tus) - Fss (Abus, A3u3, Y2, Y2, Y2, Ty3), (C.7d)
Tys Ane
2 Aus
Q36fn3,n6 = —— - -coth ()\n6 : Tx6) - Fss (A6Tl6/ A343, Y2,Y2,Y2, Ty3) ’ (C-7e)
Ty3 Ané
A
ES36y3 = —pi6 ?n: “Jz6 - Fras (A3u3, Y2, 42, T3) - (C.7f)
Y
Appendix C.5 Expression of c4;,, d4;, and e4,y14 for Region 4
By using (4), the development of (20a) gives
chf, =— Y dljy - Q4ldp (C.8a)
h=1
__ 2% Pu b
Q4ldpgn = =t (B - Ty1) - Fss (Blin, BAnas X1, X5, X5, Taa) - (C.8b)
Tea P
By using (8), the development of (20b) gives
ddiy = — Y 2 - Q42¢H4 10, (C.9a)
h2=1
ey = =Py,
Q42cp4pp = — - = - th (B - Ty2) - Fss (B2u2, BAna, X1, X5, X5, Tea) - (C.9b)
T P2
By using (32), the development of (21) gives
\ 720 (7%, - Q47cpa 7 + A7}, - Q47d s ji7)
vy _ _ o (e
T 721 (6717 - Q47eq7 + F7V - Q47f, 4,;17) (C.10a)
n7=
.. — ES47,4
2 — [v3- Fs (Mua,y2,v2, Tya) — Fis (Mpa, v2, 42, Ta)]  forh7 =0
A7Coany = —  Apa - o C.10b
Q n4’h7 Ty4 m { ﬁ . % : Fshs (ﬁ7h7/ )\4714/ ]/3/ ]/2/ yZ/ Ty4) fOI' h7 # O ( )
2 (2 Fs (Mug, 2,92, Tya) — Fis (Adua, 2,92, Ta) | for h7 =0
A7d, 4y = — Ay -4 =, C.10c
Q77 Ty4 n { ﬁ717 : % - Fous (B7h7, Mna Y2, Y2, Y2, Tya) for h7 # 0 ( )
2 A
Q47en4n7 = — - ~= - coth (A7 - Ta7) - Fss (A7n7, AMua, Y2, Y2, Y2, Tya) (C.10d)

Tys  Any
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2 An4
Q47 fuapy = —— - 7= - csch (An7 - Tuz) - Fss (A707, Mua, Y2, Y2, Y2, Tya) (C.10e)
Ty Auy
A
ES47,4 = —p7 - ?n: “J27 - Fios (Adna, Y2, 92, Tya) - (C.10f)
Y
Appendix C.6 Expression of c5;, d5;, e5! - and f5' for Region 5
By using (4), the development of (25a) gives
55 = — Y dlj; - Q51dys 1, (C.11a)
h1=1
__2 B
Q51dysq = —— - == - th (Bp1 - Ty1) - Fss (Blm, B5us, X1, X3, X3, Txs) - (C.11b)
Ts P
By using (8), the development of (25b) gives
55 = — Y 25, - Q525 2, (C.12a)
h2=1
52 _ 2 PBis
Q52¢u540 = — - “th (Bra - Ty2) - Fss (B2n2, BSns, X1, X3, X3, Tx5) - (C.12b)
x5 ﬁh2
By using (27), the development of (26a) gives
h6;0 (c6}i - Q56,516 + A6 - Q56d,5 16 )
Vo _ - [eS]
ey =~ | ...+ 621 <86Z6 - Q565,16 + f6', - Q56fn5,n6> (C.13a)
ne=
.. — ES56,5
2 - [}/3 - F ()\5715/ Y2,Y2, TyS) — Fyg (/\5715/ Y2,Y2, TyS)] for h6 = 0
56¢ =— Au5- Ty (C.13b)
Q 15,16 Ty5 ns { ﬁ : % . FShS (ﬁ6h6/ A5n5/ Y3,Y2,Y2, Ty5) for h6 # 0
2 []/2 - Fs (A5n5/ Y2,Y2, Ty5) — Fyg (A5n5/ Y2,Y2, TyS)} for h6 = 0
56,5 16 = — - Ayg -4 - C.13
Q n5,6 Ty5 " { T}; ! % : FS]’!S (ﬁ6h6/ /\5115/ Y2,Y2,Y2, Ty5) for h6 ?é 0 ( C)
2 Aus
Q56,516 = — - ~— - coth (Aus - Tas) - Fss (A6ps, ABus, Y2, Y2, Y2, Ty5) (C.13d)
Tys  Ane
2 A
Q56 fusu6 = —— - 7= - csch (Apg - Tue) - Fss (A6p6, ABns, Y2, Y2, Y2, Ty5) (C.13e)
Ty5 Ané
A
ES56,5 = — i - T’f Jz6 - Fios (A5u5,v2,¥2, Ty5) - (C.13f)
Y
By using (32), the development of (26b) gives
h720 (C7i7 : Q57cn5,h7 + d727 : Q57dn5,h7)
v _ - [eS]
fos=—| ... ¢ n7;1 (WZ7 - Q57ens,u7 + 70 - Q57fn5,n7> / (C.14a)
-+ — ES57,5
2 — [y3 - Fs (A5n5,Y2,¥2, Ty5) — Fis (ASs, Y2, Y2, Ty5) | forh7 =0
57 = — Ays- C.14b
Q57¢us,h7 75 { B+ CSCh (Buz - Ty7) - Fons (B7i7, Aus, Y3, Y2, y2, Tys) - for h7 #0 ( )
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2 (2 - Fs (A5u5, 2,42, Ty5) — Fis (A5u5,Y2, 42, Ty5) | for h7 =0
Q57dys5 7 = — - Aus- {1
’ Ty5 B - csch (,Bh7 : Ty7) * Fsps (ﬁ7h7/ AB5us,Y2, Y2, Y2, TyS) for h7 # 0
2 Ay
Q57ens,n7 = — - —= - csch (A7 - Taz) - Fss (A7u7, ABys, Y2, Y2, Y2, Ty5)
Ty5 /\n7
2 An5
Q57fn5 n7 = T - ; coth ()\n7 Tx7) Fss (A7n71 AdSys, Y2,Y2,Y2, TyS) ’
y n
A
ES57u5 = —p7 - ?1155 < Jz7 - Fias (ABus, Y2, Y2, Ty5) -

Appendix C.7 Expression of c6g, A6y, c6ﬁ6, d6ﬁ6, 6626 and f 6%6 for Region 6
By using (4) and (27d), the development of (30a) and (30b) gives

6y = ES61g— Y dly; - Q61dy 1,

ni=1
Q61d SR th ( T1) - Fs (Blp1, X1, X2, Tae)
ol = T T P Bn1 - T ) - Fs (Blu1, X1, X2, Txe )
1 1
ES610 = — - — .1'16 . ]26 y%
2 Ty6

bjig = — Y, dlj; - Q61dye 1,
n=1

2
Q61dye 1 = — sy, (Bn1 - ty1) - Fes (B6ne, Bl X2, X1, X2, Txg) -
e Pm

By using (8) and (27d), the development of (30c) and (30d) gives

d6 = ES629 — Y 2}, - Q62¢q 0,
h2=1
Q62c r.1 1th(/3 Ty2) - Fs (B2n2, X1, X2, Txe)
= 5 ° 2) 7 7 A2, 6) s
0,h2 Tye Tx6 ABh2 h2 "ty s h2, X1 X
1 1
ES62 = - —-m-h«yé-
y6
(e )
6l = — ) 2y - Q62C16 2,
h2=1

2
Q62cpe 0 = — - Pus “th (Bra - Ty2) - Fes (B6nes B2n2, X2, X1, X2, Txg) -
Tx6 lBhZ

By using (24), the development of (31a) gives

0o
hSZl (CS;'[[S . Q65cn6,h5 + dSiClS . Q65dn6,h5)

R (eSZ5 - Q65,65 + f5's - Q65 fn6,n5)
nb=

v
e6n6__

2
Q65¢y6n5 = " P . cseh (Bis - Ty5) - Fsns (B5n5, Abue, Y3, Y2, Y2, Tye) »

6 U5
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(C.14¢)

(C.14d)

(C.14e)

(C.14f)

(C.15a)

(C.15b)

(C.15¢)

(C.16a)

(C.16b)

(C.17a)

(C.17b)

(C.17¢)

(C.18a)

(C.18b)

(C.19a)

(C.19b)
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2
Q65d,6 15 = T % ~csch (Brs - Ty5) - Fons (B5ns, Abus, Y2, Y2, Y2, Ty ) » (C.19¢)
Y
2
Q65¢y6,15 = _776 : % -coth (/\HS : TxS) - Fss (/\5115/ Abpe, Y2, Y2, Y2, Ty6) ’ (C.194d)
Y
2
Q65fn6,n5 = ?6 : % - csch (AnS : Tx5) - Fes (/\5715/ Aby6, Y2,Y2,Y2, Ty6) . (C.19)
Y
By using (14), the development of (31b) gives
f6he=—| Y_ (B)5 - Q63cus 3+ d3j5 - Q63dus3) + Y, f3hs - Q63 fuen3 | (C.20a)
n3=1 n3=1
2 Ccos - T.
Q63cuen3 = —— - Ho <0 (Big Ta) Fops (B33, Abus, Y3, Y2, Y2, Tys) » (C.20b)

Tye M3 sh (ﬁhS : TyB)

2 s cos (B3 Ta3)
63d =— = ——— . F 313, A6u6, Y2, Y2, Y2, Tue ) , C.20c
Q63d 6,13 e 15 sh (B Ta) shs (B33, Ao, Y2, Y2, Y2, Tys) ( )

2
Q63fn6,n3 = ?6 . % . Coth (AnS : Tx3) : FSS ()\3113/ /\6116/ ]/2/ ]/2/ y2/ Ty6) . (CZOd)
Y

Appendix C.8 Expression of c7y, d75, c7;,, A7y, 67217 and f 7317 for Region 7
By using (4) and (32d), the development of (35a) and (35b) gives

75 = ES71o— Y d1j; - Q71dg ), (C.21a)
h1=1
Q71d, SEIE th (Bn1 - ty1) - Fs (B, X1, X4, Tay) (C.21b)
0,h1 — Ty7 Te7 ,Bhl hl yl s hl, A1, A4, X7 ) s .
1 1 )
ES710 = E c—— U7~ ]z7 *Ys. (C.21C)
Ty7
Ty =— Y dljy - Q71dyz (C.22a)
h1=1
_ 2 PBu
Q71dh7,hl*_r7 B “th (B - Ty1) - Fes (B7n7, Blnt, X4, X1, X4, Tuz) - (C.22b)
X

By using (8) and (32d), the development of (35c) and (35d) gives

(o)
A7y = ES720 — ) ¢2j - Q72¢0 1, (C.23a)
h2=1
Q72c 1orr th ( Ty2) - Fs (B2n2, X1, X4, Te7) (C.23b)
0h2 = T T P Brz - Ty2) - Fs (B2n2, X1, X4, Ta7) .
11 )
ES720 = E T —— U7 ]27 *Y3. (C23C)
Ty7
A7y, = — Z 255 - Q72¢17,112, (C.24a)
h2=1
_ 2 Bw
Q72¢7pp = — “th (B2 - y2) - Fes (B7n7, B2n2s Xa, X1, X4, Ta7) - (C.24b)

Te7 B2
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By using (24), the development of (36a) gives
o
Y (CSZS - Q75¢y7 5 + d5ys - Q75dn7,h5)
== = y ’ , (C.25a)
ot (e85 Q75ewrs + f55 Q75 s )
nb5=
2 p7 <08 (Bys - Tus)
Q75¢uzps = ——— - — —— o~ Fons (BSn5, A7u7, Y3, Y2, 92, Ty7) (C.25b)
" Tz ps sh(Bus Tys) T ( ! )
2 p7 cos (Bis - Tis)
Q75dyzps = — - 7 Fons (BSh5, A7n7, Y2, Y2, Y2, Ty7) , (C.25¢)
" Ty7 M5 Sh(,BhS'TyS) SS(ﬁ 72 Y2y y)
2 7
Q75ey7 5 = *?7 : % -csch (/\nS : TxS) - Fys ()‘5n5/ A707,Y2, Y2, Y2, Ty7) ’ (C.25d)
y
2 7
Q75fn7,n5 = 77 ) % -coth (Ay5 - Ta5) - Fss (/\5715/ A7z, Y2, Y2, Y2, Ty7) . (C.25¢)
Y
By using (19), the development of (36b) gives
[e) [e9)
e7h,=—| Y (c4iy - Q74cyypa + ddiy - Q74dy7pa) + Y €4y - Q74eu7 04|, (C.26a)
h4=1 n4=1
2 ]17
Q74cn7pa = T csch (Bna - Tya) - Fons (B4nar A7u7,Y3, Y2, Y2, Ty7) (C.26b)
¥
2 7
Q74d 7 s = ™ % ~csch (Bua - Tya) - Fons (B4nar A7n7, Y2, Y2, Y2, Ty7) (C.26¢)
Y
2 uy
Q74ey7,ua = o % - coth (Ag - Txa) - Fss (Aduas A707, Y2, Y2, Y2, Ty7) - (C.26d)
Yy
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