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Abstract: The most significant assumptions in the subdomain technique (i.e., based on the formal
resolution of Maxwell’s equations applied in subdomain) is defined by: “The iron parts (i.e., the teeth
and the back-iron) are considered to be infinitely permeable, i.e., µiron → +∞, so that the saturation effect
is neglected”. In this paper, the author presents a new scientific contribution on improving of this
method in two-dimensional (2-D) and in Cartesian coordinates by focusing on the consideration of
iron. The subdomains connection is carried out in the two directions (i.e., x- and y-edges). The
improvement was performed by solving magnetostatic Maxwell’s equations for an air- or iron-core
coil supplied by a direct current. To evaluate the efficacy of the proposed technique, the magnetic
flux density distributions have been compared with those obtained by the 2-D finite-element
analysis (FEA). The semi-analytical results are in quite satisfying agreement with those obtained
by the 2-D FEA, considering both amplitude and waveform.
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1. Introduction

1.1. Context of this Paper

Generally, the modeling of the electromagnetic field distribution is a key step in the design
process for developing electromechanical systems. Although there are a lot of papers in this area, the
modeling approach is still a challenging and attractive research topic. Some comprehensive reviews
on the models of electrical machines for magnetic field calculations can be found in [1–6], and their
references, with their (dis)advantages. The modeling techniques can thus be classified in various
categories:

• Graphical method of Lehmann [7];
• Numerical methods (i.e., the finite-element, finite-difference or boundary-element analysis) [8–

12];
• Electrical/Thermal/Magnetic equivalent circuit (EEC/TEC/MEC) [13–16];
• Schwarz-Christoffel (SC) mapping method [17–19];
• Maxwell-Fourier methods [10,18–22]: i) Multi-layers models, and ii) Subdomain technique.

The graphical method of Lehmann, which determines the magnetic field distribution in all parts
of an electrical machine even when the machine is saturated, has been forgotten to the detriment
of other methods, mainly numerical. In the past few decades, numerical modeling techniques
have been applied to electromechanical systems analysis. These methods are precise and take into
account the exact/simplified geometry, the nonlinear B(H) curve, the rotor motion,... The most
accurate models are the three-dimensional numerical methods. Nevertheless, these approaches are
time-consuming and not suitable for the optimization problems. In [23,24], it is possible to optimize
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electromagnetic systems from numerical methods. Nowadays, in order to reduce the computation
time, hybrid numerical methods can be developed [25–27]. The actual design works are mainly based
on (semi-)analytical models (i.e., EEC/TEC/MEC, SC mapping and Maxwell-Fourier methods).
Indeed, under certain assumptions, these models have the advantage to be explicit/accurate/fast.
Moreover, they allow us to take into account rigorously the slotting effect in the electrical machines
as well as various electromagnetic domains with(out) the current penetration effect in the conductive
materials. Except in the numerical methods and nonlinear MEC, the saturation effect remains one
of the scientific challenges in the modeling. Tiegna et al. (2013) [5] wrote: “No examples of analytical
models based on the formal solution of Maxwell’s equations which take into account local magnetic saturation
are available to date”. Thus, in this paper, the main scientific focus will be on the consideration of iron
in Maxwell-Fourier methods.

1.2. State-of-the-Art: Saturation in Maxwell-Fourier Methods

Very few works have included the iron or the saturation effect in Maxwell-Fourier methods due
to variation of the material properties (e.g., in case of stator and/or rotor slotting, buried magnets,. . . ).
The most significant assumptions is defined by: “The iron parts (i.e., the teeth and the back-iron) are
considered to the infinitely permeable, i.e., µiron → +∞, so that the saturation effect is neglected”. It results
in an overestimation of the magnetic flux and, consequently, the electromagnetic performances (e.g.,
the back EMF, the electromagnetic torque, the efficiency). Thus, consideration of iron in the modeling
is a mandatory task in order to have a reliable estimation of the electromechanical systems behavior.

Existing models in electrical machines, based on Maxwell’s electromagnetic field equations,
taking into account the iron parts with(out) the nonlinear B(H) curve are:

• Multi-layers models:

– Carter’s coefficient: The slotted machine is transformed into a slotless equivalent structure
by applying the usual Carter’s coefficient [28]. Generally, the armature slotting is taken
into account through the SC mapping method. The analytical magnetic field distribution is
determined in five or six homogeneous layers (i.e., exterior, slotless stator, winding/air-gap,
magnets, and rotor) [29–31]. In [29], the magnetic permeabilities in stator/rotor iron cores
have a constant value corresponding to linear zone of the B(H) curve. An iterative technique
to include the nonlinear properties of core material has been developed in [30] (for a no-load
operation) and [31] (for a load operation whose the source term in the slot caused by the
armature currents is represented by a winding current region over the stator slot-isthmus). In
this type of modeling, the local distribution of flux densities in the teeth and slots is neglected.
However, by calculating the flux entering the stator surface from the air-gap magnetic field
and thus assuming uniform distribution of flux, the flux density in middle of the stator teeth
can be obtained.

– Saturation coefficient: It represents the ratio between the total magnetomotive force (MMF)
required for the entire magnetic circuit and the air-gap MMF [32]. The main magnetic
saturation is included in the saturation factor, in an iterative way, by using the nonlinear
B(H) curve. The saturation effect is accounted for by modifying the air-gap length [32–34]
or by changing the physical properties of magnets (in this case, the saturated load operation is
calculated by considering an equivalent no-load operation with a fictitious magnet having a
remanent flux density that creates the same MMF as the one created by both real magnet and
stator MMF) [35]. The analytical magnetic field distribution is mainly determined in one or
two regions (viz., air-gap or air-gap/magnets) of slotless machines by applying the Carter’s
coefficient [32]. The slotting effect can be neglected [32,35] or taken into account through the
SC mapping method [33,34]. The magnetic fluxes in the stator/rotor iron cores are obtained
from the air-gap magnetic field [32,33,35] or/and with a simple MEC [34]. This technique
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has been applied to surface-mounted/-inset magnets machines [32–35], surface-inset magnet
machines [33], and others electrical machines.

– Concept wave impedance: They are based on a direct solution of Maxwell’s field equations in
homogeneous multi-layers of magnetic material properties, viz., the magnetic permeability
and the electrical conductivity. This approach, developed by Mishkin (1953) [36], was first
applied to squirrel-cage induction machine in Cartesian coordinates with three-layers (i.e.,
stator slotting, air-gap, and rotor slotting). It was used and enhanced by many authors, viz.,

∗ simplification of the electromagnetic theory [37];
∗ extended with an infinite number of layers [38];
∗ converted into equivalent circuits and terminal impedance [39];
∗ included the curvature effect with the magnetizing current [40];
∗ incorporated spatial harmonics in the multi-layers theory by considering isotropic and

anisotropic (e.g., laminated, composite, and toothed) regions [41,42];
∗ introduced the nonlinear B(H) curve in homogenous layers by an iterative procedure [43,

44];
∗ taking account of the effect of slot openings [45], i.e., the multi-layers model is combined

with the subdomain technique for slotted structures by assuming infinitely permeable
tooth tips;

∗ included the current penetration effect in conductive layers [43,46]. The analytical solution
for the electromagnetic field in conductive layers is then defined by Bessel functions.

– Convolution theorem: The electrical machine is divided into an infinite number of
(in)homogeneous layers. The permeability in the stator and/or rotor slotting is represented
by a complex Fourier series along the direction of permeability variation The permeability
variation in the direction of the periodicity is directly included into the solution of the
magnetic field equation. The resulting formulation, based on a direct solution of Maxwell’s
field equations using the Cauchy product theorem (i.e., the discrete convolution of two infinite
series), is completely defined in terms of complex Fourier series [47]. Recently, [48] extended
this modeling taking into account the nonlinear B(H) curve in each soft-magnetic section by an
iterative procedure. For the moment, this technique has been applied to a switched reluctance
machine [48] and a synchronous reluctance machine [49].

• Hybrid models: The analytical solution can be combined with numerical methods [50–53] or
(non)linear MEC [54–63]. Usually, the analytical solution is established in uniform regions of very
low permeability (e.g., air-gap, and magnets) and other methods are sought in regions where
magnetic saturation cannot be neglected (i.e., the stator and/or rotor iron cores).

1.3. Objectives of this Paper

To the best author’s knowledge, in the literature, there is no (semi-)analytical model based on the
subdomain technique that taking into account of iron parts with(out) the nonlinear B(H) curve. Thus,
the work in this paper takes part in the development and improvement of the subdomain technique
on this scientific topic.

The disadvantage of multi-layers models, apart from using the concept wave impedance, is
that it does not give a very accurate description of the local magnetic field distribution. In the
harmonic modeling technique using the convolution theorem, convergence problems due to the
truncated Fourier series around the soft-magnetic material discontinuities may exist [47–49]. Except
in multi-layers models using the conception wave impedance, the electrical conductivity is assumed
to be zero. The new approach developed in this paper allows the local distribution of flux densities in
the iron parts, does not have numerical convergence problems, and would easily introduce the current
penetration effect in the conductive materials. Section 2 presents this new scientific contribution
based on the subdomain technique. It was performed by solving 2-D magnetostatic Maxwell’s
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Figure 1. Air- or iron-core coil.

equations in Cartesian coordinates (x, y) for an air- or iron-core coil supplied by a direct current. The
subdomains connection is carried out in the two directions (i.e., x- and y-edges). The iron magnetic
permeability is constant corresponding to linear zone of the initial magnetization curve. Nevertheless,
as in [48], it should be mentioned that the material properties could be updated iteratively to take the
nonlinear B(H) curve of the material into account. However, this is beyond the scope of the paper.
In Section 3, in order to evaluate the efficacy of the proposed technique, the magnetic flux density
distributions have been compared with those obtained by the 2-D FEA [8]. The comparisons are very
satisfying in amplitudes and waveforms.

This major scientific contribution could be applied to rotating and/or linear electrical machines
with(out) magnets supplied by a direct current or alternate current (with any waveforms) whose the
analysis would be based on a 2-D semi-analytical model in Cartesian coordinates (e.g., plane linear
machines, axial-flux machines,. . . ).

2. A 2-D Subdomain Technique of Magnetic Field

2.1. Problem Description and Assumptions

The application example, namely an air- or iron-core coil, with the geometrical and physical
parameters is illustrated in Figure 1. The system consists of a coil with Nt turns of the copper wire
which is supply by a direct current I. The direction of current in the conductor is defined by ⊗ for
the forward conductor and � for return conductor. The material in the middle of the coil can be air
or iron. The system is surrounded by the vacuum via an infinite box.

The 2-D magnetic field distribution in the air- or iron-core coil has been studied in Cartesian
coordinates (x, y) by solving magnetostatic Maxwell’s equations from subdomain technique. In this
analysis, the magnetic field solution is based on the following simplifying assumptions:

• The end-effects are neglected (i.e., that the magnetic variables are independent of z);
• The electrical conductivities of materials are assumed to be null (i.e., the eddy-currents induced

in the copper/iron are neglected);
• The magnetic materials are considered as isotropic (i.e., the permeability can be assumed the same

in the two directions);
• The saturation effect is taken into account with a constant magnetic permeability corresponding

to linear zone of the B(H) curve (i.e., the initial magnetization curve).
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Figure 2. Subdomains in the air- or iron-core coil.

2.2. Problem Discretization in Subdomains

As shown in Figure 2, the problem domain is divided into 7 subdomains with µ = Cst. The
vacuum around to the air- or iron-core coil is defined by 4 regions, i.e.,

• Region 1 {∀x ∧ y ∈ [y1, y2]} with µ1 = µv;

• Region 2 {∀x ∧ y ∈ [y3, y4]} with µ2 = µv;

• Region 3 {x ∈ [x1, x2] ∧ y ∈ [y2, y3]} with µ3 = µv;

• Region 4 {x ∈ [x5, x6] ∧ y ∈ [y2, y3]} with µ4 = µv.

The air or iron in the middle of the coil is defined by the Region 5 {x ∈ [x2, x3] ∧ y ∈ [y2, y3]} with
µ5 = µv for the air or µ5 = µiron for the iron. The coil (i.e., forward and return conductors) is defined
by 2 regions, i.e.,

• Region 6 {x ∈ [x2, x3] ∧ y ∈ [y2, y3]} with µ6 = µc;

• Region 7 {x ∈ [x4, x5] ∧ y ∈ [y2, y3]} with µ7 = µc.

2.3. Governing Partial Differential Equations in Cartesian Coordinates

According to (A.4) [see Appendix A], the 2-D magnetic vector potential distribution in Cartesian
coordinates (x, y) is governed by the Laplace’s equation in Regions j with j = {1, . . . , 5}, i.e.,

∆Azj =
∂2 Azj

∂x2 +
∂2 Azj

∂y2 = 0, (1)

and the Poisson’s equation in Regions k with k = {6, 7}, i.e.,

∆Azk =
∂2 Azk

∂x2 +
∂2 Azk

∂y2 = −µk · Jzk, (2a)

where Jzk represents the current density (due to supply currents) which is defined by

Jzk = Ck ·
Nt · I

Sc
, (2b)

in which Sc is the conductor surface, and Ck is the coefficient for the direction of current in the
conductor (e.g., with C6 = 1 for the forward conductor and C7 = −1 for return conductor).
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Figure 3. Boundary conditions at the interface of two surfaces.

According to the method of separation of variables, it is interesting to note that Az• can be
decomposed into two potentials according to the two directions [see Appendix A], i.e., Ax

z• for the
x-edges (A.5b) and Ay

z• for the y-edges (A.5c). The periodicity of Ax
z• and Ax

z• are respectively defined
by β•h• and λ•h• with h• and n• the spatial harmonic orders.

2.4. Boundary Conditions

2.4.1. Reminder on the Boundary Conditions at the Interface of Two Surfaces

In electromagnetic, as shown in Figure 3, the magnetic field
−→
H obeys Ampère’s continuity

condition,
−→n ×

(−→
H ‖a −

−→
H ‖b

)
=
−→
K , (3a)

where−→n is the unit vector normal to the boundary between two surfaces,
−→
H ‖ the parallel component

of
−→
H on one side of the interface, and

−→
K the current density at the surface of the interface.

At this same surface, the magnetic flux continuity condition also applies

−→n ·
(−→

B ⊥a −
−→
B ⊥b

)
= 0 or

−→
A a −

−→
A b = 0, (3b)

where
−→
B ⊥ is the perpendicular component of

−→
B on one side of the interface. The Dirichlet condition

on one surface is defined by
−→
A a = 0 or

−→
A b = 0. (3c)

2.4.2. Application to the Air- or Iron-Core Coil

On the outer boundaries for (x1 ∧ x6, ∀y) and (∀x, y1 ∧ y4) [see Figure 2], the component of the
magnetic vector potential satisfies the Dirichlet boundary condition, i.e., (3c). By applying (3) and
using (A.2) [see Appendix A], the respective boundaries at the interface between the various regions
are illustrated in Figure 4.

2.5. General Solutions

2.5.1. Region 1

The general solution of Az1, Bx1 and By1 are determined by the particular case of the case-study
no 1 "Az imposed on all edges of a region" in the Appendix B. The boundary conditions on the y-edges of
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Figure 4. Boundary conditions in subdomains: (a) Region 1, (b) Region 2, (c) Region 3, (d) Region 4,
(e) Region 5, (f) Region 6, and (g) Region 7.

the region [see Figure 4a] are met by posing cx
h = 0 in (B.4). Therefore, the magnetic vector potential

Az1, which is a solution of (1) satisfying the boundary conditions of Figure 4a, is defined by

Az1 =
∞

∑
h1=1

d1x
h1

β1h1
· sh [β1h1 · (y− y1)]

ch
(

β1h1 · τy1
) · sin [β1h1 · (x− x1)], (4)

the components of
−→
B 1 =

{
Bx1; By1; 0

}
by

Bx1 =
∞

∑
h1=1

d1x
h1 ·

ch [β1h1 · (y− y1)]

ch
(

β1h1 · τy1
) · sin [β1h1 · (x− x1)], (5)

By1 = −
∞

∑
h1=1

d1x
h1 ·

sh [β1h1 · (y− y1)]

ch
(

β1h1 · τy1
) · cos [β1h1 · (x− x1)], (6)

where h1 is the spatial harmonic orders in Region 1, d1x
h1 the integration constant, β1h1 = h1 · π

/
τx1,

and τx1 = x6 − x1 & τy1 = y2 − y1.
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The coefficient d1x
h1 is determined using a Fourier series expansion of F1 (x) [see Figure 4a] over

the interval x = [x1, x6] = [x1, x1 + τx1]:

d1x
h1 =

2
τx1
·

x1+τx1∫
x1

F1 (x) · sin [β1h1 · (x− x1)] · dx. (7)

The expression of d1x
h1 is developed in the Appendix C.

2.5.2. Region 2

The same method than Region 1 is used to find the solution in Region 2. By posing dx
h = 0 in

(B.4) [see Appendix B], the magnetic vector potential Az2, which is a solution of (1) satisfying the
boundary conditions of Figure 4b, is defined by

Az2 = −
∞

∑
h2=1

c2x
h2

β2h2
· sh [β2h2 · (y4 − y)]

ch
(

β2h2 · τy2
) · sin [β2h2 · (x− x1)], (8)

the components of
−→
B 2 =

{
Bx2; By2; 0

}
by

Bx2 =
∞

∑
h2=1

c2x
h2 ·

ch [β2h2 · (y4 − y)]
ch
(

β2h2 · τy2
) · sin [β2h2 · (x− x1)], (9)

By2 =
∞

∑
h2=1

c2x
h2 ·

sh [β2h2 · (y4 − y)]
ch
(

β2h2 · τy2
) · cos [β2h2 · (x− x1)], (10)

where h2 is the spatial harmonic orders in Region 2, c2x
h2 the integration constant, β2h2 = h2 · π

/
τx2,

and τx2 = x6 − x1 & τy2 = y4 − y3.
The coefficient c2x

h2 is determined using a Fourier series expansion of G2 (x) [see Figure 4b] over
the interval x = [x1, x6] = [x1, x1 + τx2]:

c2x
h2 =

2
τx2
·

x1+τx2∫
x1

G2 (x) · sin [β2h2 · (x− x1)] · dx. (11)

The expression of c2x
h2 is developed in the Appendix C.

2.5.3. Region 3

The general solution of Az3, Bx3 and By3 are determined by the case-study no 1 "Az imposed on
all edges of a region" in the Appendix B. The boundary conditions on the x-edges of the region [see
Figure 4c] are met by posing ey

n = 0 in (B.1)-(B.3). Therefore, the magnetic vector potential Az3, which
is a solution of (1) satisfying the boundary conditions of Figure 4c, is defined by

Az3 = Ax
z3 + Ay

z3, (12a)

Ax
z3 =

∞

∑
h3=1

{
c3x

h3
β3h3

· sh [β3h3 · (y3 − y)]
sh
(

β3h3 · τy3
) +

d3x
h3

β3h3
· sh [β3h3 · (y− y2)]

sh
(

β3h3 · τy3
) }

· sin [β3h3 · (x− x1)], (12b)

Ay
z3 =

∞

∑
n3=1

f 3y
n3

λ3n3
· sh [λ3n3 · (x− x1)]

sh (λ3n3 · τx3)
· sin [λ3n3 · (y− y2)], (12c)

the x-component of
−→
B 3 by

Bx3 = Bx
x3 + By

x3, (13a)
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Bx
x3 =

∞

∑
h3=1

{
−c3x

h3 ·
ch [β3h3 · (y3 − y)]

sh
(

β3h3 · τy3
) + d3x

h3 ·
ch [β3h3 · (y− y2)]

sh
(

β3h3 · τy3
) }

· sin [β3h3 · (x− x1)], (13b)

By
x3 =

∞

∑
n3=1

f 3y
n3 ·

sh [λ3n3 · (x− x1)]

sh (λ3n3 · τx3)
· cos [λ3n3 · (y− y2)], (13c)

the y-component of
−→
B 3 by

By3 = Bx
y3 + By

y3, (14a)

Bx
y3 = −

∞

∑
h3=1

{
c3x

h3 ·
sh [β3h3 · (y3 − y)]

sh
(

β3h3 · τy3
) + d3x

h3 ·
sh [β3h3 · (y− y2)]

sh
(

β3h3 · τy3
) }

· cos [β3h3 · (x− x1)], (14b)

By
y3 = −

∞

∑
n3=1

f 3y
n3 ·

ch [λ3n3 · (x− x1)]

sh (λ3n3 · τx3)
· sin [λ3n3 · (y− y2)], (14c)

where h3 & n3 are the spatial harmonic orders in Region 3; c3x
h3, d3x

h3 and f 3x
n3 the integration

constants; β3h3 = h3 · π
/

τx3, and τx3 = x2 − x1; and λ3n3 = n3 · π
/

τy3 with τy3 = y3 − y2.
The coefficients c3x

h3 and d3x
h3 are respectively determined using Fourier series expansion of

Az1|∀x∧y=y2
and Az2|∀x∧y=y3

[see Figure 4c] over the interval x = [x1, x2] = [x1, x1 + τx3]:

c3x
h3 =

2
τx3
·

x1+τx3∫
x1

β3h3 · Az1|y=y2
· sin [β3h3 · (x− x1)] · dx, (15a)

d3x
h3 =

2
τx3
·

x1+τx3∫
x1

β3h3 · Az2|y=y3
· sin [β3h3 · (x− x1)] · dx. (15b)

The coefficient f 3y
n3 is determined using a Fourier series expansion of Az6|x=x2∧∀y [see Figure 4c] over

the interval y = [y2, y3] =
[
y2, y2 + τy3

]
:

f 3y
n3 =

2
τy3
·

y2+τy3∫
y2

λ3n3 · Az6|x=x2
· sin [λ3n3 · (y− y2)] · dy. (16)

The expression of c3x
h3, d3x

h3 and f 3y
n3 are developed in the Appendix C.

2.5.4. Region 4

The same method than Region 3 is used to find the solution in Region 4. By posing f y
n = 0 in

(B.1)-(B.3) [see Appendix B], the magnetic vector potential Az4, which is a solution of (1) satisfying
the boundary conditions of Figure 4d, is defined by

Az4 = Ax
z4 + Ay

z4, (17a)

Ax
z4 =

∞

∑
h4=1

{
c4x

h4
β4h4

· sh [β4h4 · (y3 − y)]
sh
(

β4h4 · τy4
) +

d4x
h4

β4h4
· sh [β4h4 · (y− y2)]

sh
(

β4h4 · τy4
) }

· sin [β4h4 · (x− x5)], (17b)

Ay
z4 =

∞

∑
n4=1

e4y
n4

λ4n4
· sh [λ4n4 · (x6 − x)]

sh (λ4n4 · τx4)
· sin [λ4n4 · (y− y2)], (17c)

the x-component of
−→
B 4 by

Bx4 = Bx
x4 + By

x4, (18a)
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Bx
x4 =

∞

∑
h4=1

{
−c4x

h4 ·
ch [β4h4 · (y3 − y)]

sh
(

β4h4 · τy4
) + d4x

h4 ·
ch [β4h4 · (y− y2)]

sh
(

β4h4 · τy4
) }

· sin [β4h4 · (x− x5)], (18b)

By
x4 =

∞

∑
n4=1

e4y
n4 ·

sh [λ4n4 · (x6 − x)]
sh (λ4n4 · τx4)

· cos [λ4n4 · (y− y2)], (18c)

the y-component of
−→
B 4 by

By4 = Bx
y4 + By

y4, (19a)

Bx
y4 = −

∞

∑
h4=1

{
c4x

h4 ·
sh [β4h4 · (y3 − y)]

sh
(

β4h4 · τy4
) + d4x

h4 ·
sh [β4h4 · (y− y2)]

sh
(

β4h4 · τy4
) }

· cos [β4h4 · (x− x5)], (19b)

By
y4 =

∞

∑
n4=1

e4y
n4 ·

ch [λ4n4 · (x6 − x)]
sh (λ4n4 · τx4)

· sin [λ4n4 · (y− y2)], (19c)

where h4 & n4 are the spatial harmonic orders in Region 4; c4x
h4, d4x

h4 and e4y
n4 the integration

constants; β4h4 = h4 · π
/

τx4, and τx4 = x6 − x5; and λ4n4 = n4 · π
/

τy4 with τy4 = y3 − y2.
The coefficients c4x

h4 and d4x
h4 are respectively determined using Fourier series expansion of

Az1|∀x∧y=y2
and Az2|∀x∧y=y3

[see Figure 4d] over the interval x = [x5, x6] = [x5, x5 + τx4]:

c4x
h4 =

2
τx4
·

x5+τx4∫
x5

β4h4 · Az1|y=y2
· sin [β4h4 · (x− x5)] · dx, (20a)

d4x
h4 =

2
τx4
·

x5+τx4∫
x5

β4h4 · Az2|y=y3
· sin [β4h4 · (x− x5)] · dx. (20b)

The coefficient e4y
n4 is determined using a Fourier series expansion of Az7|x=x5∧∀y [see Figure 4d] over

the interval y = [y2, y3] =
[
y2, y2 + τy4

]
:

e4y
n4 =

2
τy4
·

y2+τy4∫
y2

λ4n4 · Az7|x=x5
· sin [λ4n4 · (y− y2)] · dy. (21)

The expression of c4x
h4, d4x

h4 and e4y
n4 are developed in the Appendix C.

2.5.5. Region 5

According to case-study no 1 "Az imposed on all edges of a region" in the Appendix B, the magnetic
vector potential Az5, which is a solution of (1) satisfying the boundary conditions of Figure 4e, is
defined by

Az5 = Ax
z5 + Ay

z5, (22a)

Ax
z5 =

∞

∑
h5=1

{
c5x

h5
β5h5

· sh [β5h5 · (y3 − y)]
sh
(

β5h5 · τy5
) +

d5x
h5

β5h5
· sh [β5h5 · (y− y2)]

sh
(

β5h5 · τy5
) }

· sin [β5h5 · (x− x3)], (22b)

Ay
z5 =

∞

∑
n5=1

{
e5y

n5
λ5n5

· sh [λ5n5 · (x4 − x)]
sh (λ5n5 · τx5)

+
f 5y

n5
λ5n5

· sh [λ5n5 · (x− x3)]

sh (λ5n5 · τx5)

}
· sin [λ5n5 · (y− y2)], (22c)

the x-component of
−→
B 5 by

Bx5 = Bx
x5 + By

x5, (23a)

Bx
x5 =

∞

∑
h5=1

{
−c5x

h5 ·
ch [β5h5 · (y3 − y)]

sh
(

β5h5 · τy5
) + d5x

h5 ·
ch [β5h5 · (y− y2)]

sh
(

β5h5 · τy5
) }

· sin [β5h5 · (x− x3)], (23b)
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By
x5 =

∞

∑
n5=1

{
e5y

n5 ·
sh [λ5n5 · (x4 − x)]

sh (λ5n5 · τx5)
+ f 5y

n5 ·
sh [λ5n5 · (x− x3)]

sh (λ5n5 · τx5)

}
· cos [λ5n5 · (y− y2)], (23c)

the y-component of
−→
B 5 by

By5 = Bx
y5 + By

y5, (24a)

Bx
y5 = −

∞

∑
h5=1

{
c5x

h5 ·
sh [β5h5 · (y3 − y)]

sh
(

β5h5 · τy5
) + d5x

h5 ·
sh [β5h5 · (y− y2)]

sh
(

β5h5 · τy5
) }

· cos [β5h5 · (x− x3)], (24b)

By
y5 = −

∞

∑
n5=1

{
−e5y

n5 ·
ch [λn5 · (x4 − x)]

sh (λn5 · τx5)
+ f 5y

n5 ·
ch [λn5 · (x− x3)]

sh (λn5 · τx5)

}
· sin [λn5 · (y− y2)], (24c)

where h5 & n5 are the spatial harmonic orders in Region 5; c5x
h5, d5x

h5, e5y
n5 and f 5y

n5 the integration
constants; β5h5 = h5 · π

/
τx5, and τx5 = x4 − x3; and λ5n5 = n5 · π

/
τy5 with τy5 = y3 − y2.

The coefficients c5x
h5 and d5x

h5 are respectively determined using Fourier series expansion of
Az1|∀x∧y=y2

and Az2|∀x∧y=y3
[see Figure 4e] over the interval x = [x3, x5] = [x3, x3 + τx5]:

c5x
h5 =

2
τx5
·

x3+τx5∫
x3

β5h5 · Az1|y=y2
· sin [β5h5 · (x− x3)] · dx, (25a)

d5x
h5 =

2
τx5
·

x3+τx5∫
x3

β5h5 · Az2|y=y3
· sin [β5h5 · (x− x3)] · dx. (25b)

The coefficient e5y
n5 and f 5y

n5 are respectively determined using a Fourier series expansion of
Az6|x=x3∧∀y and Az7|x=x4∧∀y [see Figure 4e] over the interval y = [y2, y3] =

[
y2, y2 + τy5

]
:

e5y
n5 =

2
τy5
·

y2+τy5∫
y2

λ5n5 · Az6|x=x3
· sin [λ5n5 · (y− y2)] · dy, (26a)

f 5y
n5 =

2
τy5
·

y2+τy5∫
y2

λ5n5 · Az7|x=x4
· sin [λ5n5 · (y− y2)] · dy. (26b)

The expression of c5x
h5, d5x

h5, e5y
n5 and f 5y

n5 are developed in the Appendix C.

2.5.6. Region 6

According to case-study no 2 "By and Az are respectively imposed on x- and y-edges of a region" in
the Appendix B, the magnetic vector potential Az6, which is a solution of (2) satisfying the boundary
conditions of Figure 4f, is defined by

Az6 = Ax
z6 + Ay

z6 + AzP6, (27a)

Ax
z6 =

∣∣∣∣∣∣
(y3 − y) · c6x

0 + (y− y2) · d6x
0

· · ·+
∞
∑

h6=1

{
c6x

h6
β6h6
· sh[β6h6·(y3−y)]

sh(β6h6·τy6)
+

d6x
h6

β6h6
· sh[β6h6·(y−y2)]

sh(β6h6·τy6)

}
· cos [β6h6 · (x− x2)]

, (27b)

Ay
z6 = −

∞

∑
n6=1

{
e6y

n6
λ6n6

· ch [λ6n6 · (x− x2)]

sh (λ6n6 · τx6)
−

f 6y
n6

λ6n6
· ch [λ6n6 · (x3 − x)]

sh (λ6n6 · τx6)

}
· sin [λ6n6 · (y− y2)]. (27c)
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Considering the form of the current density distribution, i.e., (2b), a particular solution AzP6 can be
found as follows:

AzP6 = −1
2
· µ6 · Jz6 · y2. (27d)

The x-component of
−→
B 6 is defined by

Bx6 = Bx
x6 + By

x6 + BxP6, (28a)

Bx
x6 =

∣∣∣∣∣∣
−c6x

0 + d6x
0

· · ·+
∞
∑

h6=1

{
−c6x

h6 ·
ch[β6h6·(y3−y)]

sh(β6h6·τy6)
+ d6x

h6 ·
ch[β6h6·(y−y2)]

sh(β6h6·τy6)

}
· cos [β6h6 · (x− x2)]

, (28b)

By
x6 = −

∞

∑
n6=1

{
e6y

n6 ·
ch [λ6n6 · (x− x2)]

sh (λ6n6 · τx6)
− f 6y

n6 ·
ch [λ6n6 · (x3 − x)]

sh (λ6n6 · τx6)

}
· cos [λ6n6 · (y− y2)], (28c)

BxP6 =
∂AzP6

∂y
= −µ6 · Jz6 · y, (28d)

and the y-component of
−→
B 6 by

By6 = Bx
y6 + By

y6 + ByP6, (29a)

Bx
y6 =

∞

∑
h6=1

{
c6x

h6 ·
sh [β6h6 · (y3 − y)]

sh
(

β6h6 · τy6
) + d6x

h6 ·
sh [β6h6 · (y− y2)]

sh
(

β6h6 · τy6
) }

· sin [β6h6 · (x− x2)], (29b)

By
y6 =

∞

∑
n6=1

{
e6y

n6 ·
sh [λ6n6 · (x− x2)]

sh (λ6n6 · τx6)
+ f 6y

n6 ·
sh [λ6n6 · (x3 − x)]

sh (λ6n6 · τx6)

}
· sin [λ6n6 · (y− y2)], (29c)

ByP6 = −∂AzP6

∂x
= 0, (29d)

where h6 & n6 are the spatial harmonic orders in Region 6; c6x
0 , d6x

0 , c6x
h6, d6x

h6, e6y
n6 and f 6y

n6 the
integration constants; β6h6 = h6 · π

/
τx6, and τx6 = x3− x2; and λ6n6 = n6 · π

/
τy6 with τy6 = y3− y2.

The coefficients c6x
0 & c6x

h6 and d6x
0 & d6x

h6 are respectively determined using Fourier series
expansion of Az1|∀x∧y=y2

and Az2|∀x∧y=y3
[see Figure 4f] over the interval x = [x2, x3] =

[x2, x2 + τx6]:

c6x
0 +

1
τy6
· AzP6|y=y2

=
1

τx6
·

x2+τx6∫
x2

1
τy6
· Az1|y=y2

· dx, (30a)

c6x
h6 =

2
τx6
·

x2+τx6∫
x2

β6h6 · Az1|y=y2
· cos [β6h6 · (x− x2)] · dx, (30b)

d6x
0 +

1
τy6
· AzP6|y=y3

=
1

τx6
·

x2+τx6∫
x2

1
τy6
· Az2|y=y3

· dx, (30c)

d6x
h6 =

2
τx6
·

x2+τx6∫
x2

β6h6 · Az2|y=y3
· cos [β6h6 · (x− x2)] · dx. (30d)

The coefficient e6y
n6 and f 6y

n6 are respectively determined using a Fourier series expansion of µ6
/

µ5 ·
By5
∣∣
x=x3∧∀y and µ6

/
µ3 · By3

∣∣
x=x2∧∀y [see Figure 4f] over the interval y = [y2, y3] =

[
y2, y2 + τy6

]
:

e6y
n6 =

2
τy6
·

y2+τy6∫
y2

µ6

µ5
· By5

∣∣
x=x3
· sin [λ6n6 · (y− y2)] · dy, (31a)
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f 6y
n6 =

2
τy6
·

y2+τy6∫
y2

µ6

µ3
· By3

∣∣
x=x2
· sin [λ6n6 · (y− y2)] · dy. (31b)

The expression of c6x
0 , d6x

0 , c6x
h6, d6x

h6, e6y
n6 and f 6y

n6 are developed in the Appendix C.

2.5.7. Region 7

According to case-study no 2 "By and Az are respectively imposed on x- and y-edges of a region" in
the Appendix B, the magnetic vector potential Az7, which is a solution of (2) satisfying the boundary
conditions of Figure 4g, is defined by

Az7 = Ax
z7 + Ay

z7 + AzP7, (32a)

Ax
z7 =

∣∣∣∣∣∣
(y3 − y) · c7x

0 + (y− y2) · d7x
0

· · ·+
∞
∑

h7=1

{
c7x

h7
β7h7
· sh[β7h7·(y3−y)]

sh(β7h7·τy7)
+

d7x
h7

β7h7
· sh[β7h7·(y−y2)]

sh(β7h7·τy7)

}
· cos [β7h7 · (x− x4)]

, (32b)

Ay
z7 = −

∞

∑
n7=1

{
e7y

n7
λ7n7

· ch [λ7n7 · (x− x4)]

sh (λ7n7 · τx7)
−

f 7y
n7

λ7n7
· ch [λ7n7 · (x5 − x)]

sh (λ7n7 · τx7)

}
· sin [λ7n7 · (y− y2)]. (32c)

Considering the form of the current density distribution, i.e., (2b), a particular solution AzP7 can be
found as follows:

AzP7 = −1
2
· µ7 · Jz7 · y2. (32d)

The x-component of
−→
B 7 is defined by

Bx7 = Bx
x7 + By

x7 + BxP7, (33a)

Bx
x7 =

∣∣∣∣∣∣
−c7x

0 + d7x
0

· · ·+
∞
∑

h7=1

{
−c7x

h7 ·
ch[β7h7·(y3−y)]

sh(β7h7·τy7)
+ d7x

h7 ·
ch[β7h7·(y−y2)]

sh(β7h7·τy7)

}
· cos [β7h7 · (x− x4)]

, (33b)

By
x7 = −

∞

∑
n7=1

{
e7y

n7 ·
ch [λ7n7 · (x− x4)]

sh (λ7n7 · τx7)
− f 6y

n7 ·
ch [λ7n7 · (x5 − x)]

sh (λ7n7 · τx7)

}
· cos [λ7n7 · (y− y2)], (33c)

BxP7 =
∂AzP7

∂y
= −µ7 · Jz7 · y, (33d)

and the y-component of
−→
B 7 by

By7 = Bx
y7 + By

y7 + ByP7, (34a)

Bx
y7 =

∞

∑
h7=1

{
c7x

h7 ·
sh [β7h7 · (y3 − y)]

sh
(

β7h7 · τy7
) + d7x

h7 ·
sh [β7h7 · (y− y2)]

sh
(

β7h7 · τy7
) }

· sin [β7h7 · (x− x4)], (34b)

By
y7 =

∞

∑
n7=1

{
e7y

n7 ·
sh [λ7n7 · (x− x4)]

sh (λ7n7 · τx7)
+ f 7y

n7 ·
sh [λ7n7 · (x5 − x)]

sh (λ7n7 · τx7)

}
· sin [λ7n7 · (y− y2)], (34c)

ByP7 = −∂AzP7

∂x
= 0, (34d)

where h7 & n7 are the spatial harmonic orders in Region 7; c7x
0 , d7x

0 , c7x
h7, d7x

h7, e7y
n7 and f 7y

n7 the
integration constants; β7h7 = h7 · π

/
τx7, and τx7 = x5− x4; and λ7n7 = n7 · π

/
τy7 with τy7 = y3− y2.
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The coefficients c7x
0 & c7x

h7 and d7x
0 & d7x

h7 are respectively determined using Fourier series
expansion of Az1|∀x∧y=y2

and Az2|∀x∧y=y3
[see Figure 4g] over the interval x = [x4, x5] =

[x4, x4 + τx7]:

c7x
0 +

1
τy7
· AzP7|y=y2

=
1

τx7
·

x4+τx7∫
x4

1
τy7
· Az1|y=y2

· dx, (35a)

c7x
h7 =

2
τx7
·

x4+τx7∫
x4

β7h7 · Az1|y=y2
· cos [β7h7 · (x− x4)] · dx, (35b)

d7x
0 +

1
τy7
· AzP7|y=y3

=
1

τx7
·

x4+τx7∫
x4

1
τy7
· Az2|y=y3

· dx, (35c)

d7x
h7 =

2
τx7
·

x4+τx7∫
x4

β7h7 · Az2|y=y3
· cos [β7h7 · (x− x4)] · dx. (35d)

The coefficient e7y
n7 and f 7y

n7 are respectively determined using a Fourier series expansion of µ7
/

µ4 ·
By4
∣∣
x=x5∧∀y and µ7

/
µ5 · By5

∣∣
x=x4∧∀y [see Figure 4g] over the interval y = [y2, y3] =

[
y2, y2 + τy7

]
:

e7y
n7 =

2
τy7
·

y2+τy7∫
y2

µ7

µ4
· By4

∣∣
x=x5
· sin [λ7n7 · (y− y2)] · dy, (36a)

f 7y
n7 =

2
τy7
·

y2+τy7∫
y2

µ7

µ5
· By5

∣∣
x=x4
· sin [λ7n7 · (y− y2)] · dy. (36b)

The expression of c7x
0 , d7x

0 , c7x
h7, d7x

h7, e7y
n7 and f 7y

n7 are developed in the Appendix C.

2.6. Solving of Cramer’s System

The integration constants can be determined by solving the following linear equations (i.e.,
Cramer’s system) which can be written in matrix form as [65]

[IC] = [BC]−1 · [ES] , (37)

where [IC] is the integration constants vector (of dimension Xmax × 1),

[IC] =
[
[IC1] [IC2] [IC3] [IC4] [IC5] [IC6] [IC7]

]T
, (38a)

[IC1] = [d1x
h1] , (38b)

[IC2] = [c2x
h2] , (38c)

[IC3] =
[

c3x
h3 d3x

h3 f 3y
n3

]
, (38d)

[IC4] =
[

c4x
h4 d4x

h4 e4y
n4

]
, (38e)

[IC5] =
[

c5x
h5 d5x

h5 e5y
n5 f 5y

n5

]
, (38f)

[IC6] =
[

c6x
0 c6x

h6 d6x
0 d6x

h6 e6y
n6 f 6y

n6

]
, (38g)

[IC7] =
[

c7x
0 c7x

h7 d7x
0 d7x

h7 e7y
n7 f 7y

n7

]
, (38h)
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[ES] the electromagnetic sources vector (of dimension Xmax × 1),

[ES] =
[
[ES1] [ES2] [ES3] [ES4] [ES5] [ES6] [ES7]

]T
, (39a)

[ES1] = [ES16h1 + ES17h1] , (39b)

[ES2] = [ES26h2 + ES27h2] , (39c)

[ES3] =
[

0 0 ES36n3

]
, (39d)

[ES4] =
[

0 0 ES47n4

]
, (39e)

[ES5] =
[

0 0 ES56n5 ES57n5

]
, (39f)

[ES6] =
[

ES610 0 ES620 0 0 0
]

, (39g)

[ES7] =
[

ES710 0 ES720 0 0 0
]

, (39h)

and [BC] the boundary conditions matrix (of dimension Xmax × Xmax)

[BC] =



[I] 0 [BC13] [BC14] [BC15] [BC16] [BC17]
0 [I] [BC23] [BC24] [BC25] [BC26] [BC27]

[BC31] [BC32] [I] 0 0 [BC36] 0
[BC41] [BC42] 0 [I] 0 0 [BC47]
[BC51] [BC52] 0 0 [I] [BC56] [BC57]
[BC61] [BC62] [BC63] 0 [BC65] [I] 0
[BC71] [BC72] 0 [BC74] [BC75] 0 [I]


, (40a)

in which [I] is identity matrix, and

[BC13] =
[

Q13ch1,h3 Q13dh1,h3 Q13 fh1,n3

]
[BC14] =

[
Q14ch1,h4 Q14dh1,h4 Q14eh1,n4

]
[BC15] =

[
Q15ch1,h5 Q15dh1,h5 Q15eh1,n5 Q15 fh1,n5

]
[BC16] =

[
Q16ch1,0 Q16ch1,h6 Q16dh1,0 Q16dh1,h6 Q16eh1,n6 Q16 fh1,n6

]
[BC17] =

[
Q17ch1,0 Q17ch1,h7 Q17dh1,0 Q17dh1,h7 Q17eh1,n7 Q17 fh1,n7

]
(40b)

for Region 1,

[BC23] =
[

Q23ch2,h3 Q23dh2,h3 Q23 fh2,n3

]
[BC24] =

[
Q24ch2,h4 Q24dh2,h4 Q24eh2,n4

]
[BC25] =

[
Q25ch2,h5 Q25dh2,h5 Q25eh2,n5 Q25 fh2,n5

]
[BC26] =

[
Q26ch2,0 Q26ch2,h6 Q26dh2,0 Q26dh2,h6 Q26eh2,n6 Q26 fh2,n6

]
[BC27] =

[
Q27ch2,0 Q27ch2,h7 Q27dh2,0 Q27dh2,h7 Q27eh2,n7 Q27 fh2,n7

]
(40c)
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for Region 2,

[BC31] =
[

Q31dh3,h1 0 0
]T

[BC32] =
[

0 Q32ch3,h2 0
]T

[BC36] =

 0 0 0 0 0 0
0 0 0 0 0 0

Q36cn3,0 Q36cn3,h6 Q36dn3,0 Q36dn3,h6 Q36en3,n6 Q36 fn3,n6


(40d)

for Region 3,

[BC41] =
[

Q41dh4,h1 0 0
]T

[BC42] =
[

0 Q42ch4,h2 0
]T

[BC47] =

 0 0 0 0 0 0
0 0 0 0 0 0

Q47cn4,0 Q47cn4,h7 Q47dn4,0 Q47dn4,h7 Q47en4,n7 Q47 fn4,n7


(40e)

for Region 4,

[BC51] =
[

Q51dh5,h1 0 0 0
]T

[BC52] =
[

0 Q52ch5,h2 0 0
]T

[BC56] =


0 0 0 0 0 0
0 0 0 0 0 0

Q56cn5,0 Q56cn5,h6 Q56dn5,0 Q56dn5,h6 Q56en5,n6 Q56 fn5,n6

0 0 0 0 0 0



[BC57] =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Q57cn5,0 Q57cn5,h7 Q57dn5,0 Q57cn5,h7 Q57en5,n7 Q57 fn5,n7



(40f)

for Region 5,

[BC61] =
[

Q61d0,h1 Q61dh6,h1 0 0 0 0
]T

[BC62] =
[

0 0 Q62c0,h2 Q62ch6,h2 0 0
]T

[BC63] =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Q63cn6,h3 Q63dn6,h3 Q63 fn6,n3



[BC65] =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Q65cn6,h5 Q65dn6,h5 Q65en6,n5 Q65 fn6,n5

0 0 0 0



(40g)
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for Region 6,

[BC71] =
[

Q71d0,h1 Q71dh7,h1 0 0 0 0
]T

[BC72] =
[

0 0 Q72c0,h2 Q72ch7,h2 0 0
]T

[BC74] =



0 0 0
0 0 0
0 0 0
0 0 0

Q74cn7,h4 Q74dn7,h4 Q74en7,n4

0 0 0



[BC75] =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Q75cn7,h5 Q75dn7,h5 Q75en7,n5 Q75 fn7,n5



(40h)

for Region 7.
The corresponding elements in (39) and (40) are defined in the Appendix C. One can note that

(37) consists of

Xmax =

[
H1max + H2max + 2 · H3max + N3max + 2 · H4max + N4max

· · ·+ 2 · (H5max + N5max) + 2 · (H6max + N6max + 1) + 2 · (H7max + N7max + 1)

]
(41)

equations and unknowns. Any mathematical software (such as Matlab R© or Mathcad R© for example)
can quickly give the numerical solution of (37). The analytical solutions of the magnetic flux
density in the various regions have been computed with a finite number of spatial harmonics terms
H1max - H7max (for the x-edges) and N3max - N7max (for the y-edges) as indicated in Table 1.

Table 1. Parameters of the Air- or Iron-Core Coil.

Parameters, Symbols, Units Values

Number of series turns, Nt [-] 1,600
Maximum direct current, I [A] 5

Surface of conductors, Sc [mm2] 800
Current density (due to supply currents), Jzk [A/mm2] ± 10

Effective axial length, Lz [cm] 4
Geometrical parameters in the x-axis, {x1; x2; x3; x4; x5; x6} [cm] {0; 10; 12; 16; 18; 28}

Geometrical parameters in the y-axis, {y1; y2; y3; y4} [cm] {0; 10; 14; 24}
Relative magnetic permeability of the iron, µiron [-] 1,500

Number of spatial harmonics for Region 1, H1max [-] 98
Number of spatial harmonics for Region 2, H2max [-] 98

Number of spatial harmonics for Region 3, {H3max; N3max} [-] {35; 88}
Number of spatial harmonics for Region 4, {H4max; N4max} [-] {35; 88}
Number of spatial harmonics for Region 5, {H5max; N5max} [-] {14; 88}
Number of spatial harmonics for Region 6, {H6max; N6max} [-] {7; 88}
Number of spatial harmonics for Region 7, {H7max; N7max} [-] {7; 88}
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Az
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2-D Subdomain model

2-D FEA

(a)
Az

r

2-D Subdomain model

2-D FEA

(b)

Figure 5. Equipotential lines of Az with the 2-D subdomain model and FEA for (a) air- and (b)
iron-core coil.

3. Comparison of the Semi-Analytic and Finite-Element Calculations

3.1. Introduction

The objective of this section is to show the effectiveness of 2-D subdomain model on the magnetic
field distribution. The main parameters of the air- and iron-cored coil are given in Table 1. For the
comparison, the system has been set up using Cedrat’s Flux2D software package (i.e., an advanced
finite-element method based numeric field analysis program) [8]. The finite-element computations
are done under same assumptions on which the semi-analytical model is based [see § 2.1. Problem
Description and Assumptions]. The Cramer’s system (37) consists of 1,100 elements which is much
smaller than the 2-D FEA mesh having 8,566 surfaces elements of second order. The personal
computer used for this comparison has the following characteristics: HP Z800 Intel(R) Xeon(R)
CPU@2.4 GHz (with 2 processors) RAM 16 Go 64 bits.

3.2. Results Discussion

The 2-D subdomain model is implemented so that it is possible to get values of Az in the air-
and iron-core coil. Figure 5 present the equipotential lines (≈ 30 lines) of Az in the system with
the semi-analytical model and FEA. As can be seen, a good evaluation is obtained, comparing those
results with 2-D FEA, for both air- and iron-core.

The paths of the magnetic flux density validation for the comparison are given in Figure 6.
The waveforms of the components of

−→
B =

{
Bx; By; 0

}
are represented on the various paths in

Figure 7 - Figure 11. The solid lines represent the magnetic flux density computed by the 2-D FEA
and the circles correspond to 2-D subdomain model. It can be seen that a very good agreement is
obtained for the components of

−→
B , whatever the paths, for both air- and iron-core. This confirms

that the saturation effect, with a constant magnetic permeability corresponding to linear zone of
B(H) curve, is taken into account accurately. It is interesting to note that numerical peaks appear
in the FEA results [see Figure 8a and Figure 11a] which are mainly due to the mesh. Some slight
discrepancies are observed between numerical and analytical results which can be caused by the
finite number of spatial harmonic taken into account in the semi-analytical model according to the x-
and y-edges. The increase of harmonics number can resolve these deviations, however, at the expense
of the computation time.
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Figure 6. Paths of the magnetic flux density validation for the comparison.
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Figure 7. Waveform of the (a) x- and (b) y-components for Path 1.

4. Conclusion

An overview on the existing (semi-)analytical models in Maxwell-Fourier methods (i.e.,
multi-layers models and subdomain technique) with the saturation effect has been realized. It
has been demonstrated that there is no (semi-)analytical model based on the subdomain technique
taking into account the iron parts with(out) the nonlinear B(H) curve. Then, the new scientific
contribution on the 2-D subdomain technique in Cartesian coordinates to study the local magnetic
field distribution in the iron parts is presented in this paper.

It was performed by solving 2-D magnetostatic Maxwell’s equations in Cartesian coordinates
(x, y) for an air- or iron-core coil supplied by a direct current. The subdomains connection is
carried out in the two directions (i.e., x- and y-edges). The iron magnetic permeability is constant
corresponding to linear zone of the initial magnetization curve. However, nonlinear magnetic
materials could be accounted for by means of an iterative algorithm. This major scientific contribution
will be applied to rotating and/or linear electrical machines with(out) magnets supplied by a direct
current or alternate current (with any waveforms) whose the analysis would be based on a 2-D
semi-analytical model in Cartesian coordinates (e.g., plane linear machines, axial-flux machines,. . . ).
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Figure 8. Waveform of the (a) x- and (b) y-components for Path 2.
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Figure 9. Waveform of the (a) x- and (b) y-components for Path 3.
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Figure 10. Waveform of the (a) x- and (b) y-components for Path 4.
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Figure 11. Waveform of the (a) x- and (b) y-components for Path 5.

An extension of the 2-D subdomain technique in polar coordinates as well as various electrical
machines (viz., radial-/axial-/transverse-flux machines, linear machines, U-/E-cored electromagnet
device,. . . ) will be made in the next studies.

This new approach to account for the saturation effect is (semi-)analytically based and takes
significantly less computing time than the FEA; it is eminently suitable for design and optimization
of the electromechanical systems. Predicted results from the exact (semi-)analytical model have been
compared finite-element predictions, and good agreement has been achieved, in both amplitudes and
waveforms.

Author Contributions: This paper is the results of the hard work of all authors, which have wrote the paper and
have gave advices for the manuscripts.
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Appendix A The 2-D Magnetostatic General Solution in Cartesian Coordinates

Appendix A.1 Governing Partial Differential Equations (EDPs)

By assuming that the term ∂
−→
D
/

∂t is negligible, the magnetostatic Maxwell’s equations are
represented by Maxwell-Ampère

−−−−−→
rot
(−→

H
)
=
−→
J (with

−→
J = 0 for the no-load operation), (A.1a)

and Maxwell-Thomson
div
(−→

B
)
= 0 (Magnetic flux conservation), (A.1b)

−→
B =

−−−−−→
rot
(−→

A
)

with div
(−→

A
)
= 0 (Coulomb’s gauge), (A.1c)

where
−→
A ,
−→
B ,
−→
H , and

−→
J are respectively the magnetic vector potential, the magnetic flux density,

magnetic field, and the current density (due to supply currents) vectors.
The field vectors

−→
B and

−→
H are coupled by the magnetic material equation

−→
B = µ · −→H + µ0 ·

−→
M, (A.2)
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where
−→
M is the magnetization vector (with

−→
M = 0 for the vacuum/iron or

−→
M 6= 0 for the magnets

according to the magnetization direction [4]), and µ = µ0 · µr the absolute magnetic permeability of
the magnetic material in which µ0 and µr are respectively the vacuum permeability and the relative
permeability of the magnetic material (with µr = 1 for the vacuum or µr 6= 1 for the magnets/iron).

By using (A.1) and (A.2), the general EDPs of magnetostatic are defined by [64]:

−→
X A − ν · ∆−→A =

−→
J +
−→
X B, (A.3a)

−→
X A =

−−−−→
grad (ν) ∧

−−−−−→
rot
(−→

A
)

, (A.3b)

−→
X B = µ0 ·

[−−−−→
grad (ν) ∧−→M + ν ·

−−−−−→
rot
(−→

M
)]

, (A.3c)

where ν = 1
/

µ is the absolute magnetic reluctivity of the magnetic material.

By neglecting the end-effects (i.e., the system is infinitely long which leads to
−→
A = {0; 0; Az}:

the magnetic variables are independent of z), (A.3) in Cartesian coordinates (x, y) with µ = Cst can
be expressed by:

∆Az =
∂2 Az

∂x2 +
∂2 Az

∂y2 = ES, (A.4a)

ES = −
[

µ · Jz + µ0 ·
(

∂My

∂x
− ∂Mx

∂y

)]
. (A.4b)

Appendix A.2 General Solution

It is interesting to note that Az is governed by Poisson’s equation, when there is one or more
electromagnetic sources (i.e., ES 6= 0), or Laplace’s equation, when there is no electromagnetic sources
(i.e., ES = 0). According to the method of separation of variables, the 2-D magnetostatic general
solution of Az in Cartesian coordinates (x, y) can be written as

Az = Ax
z + Ay

z + AzP, (A.5a)

Ax
z =

∣∣∣∣∣∣∣
(
Cx

0 + Dx
0 · y

)
·
(
Ex

0 + Fx
0 · x

)
· · ·+

∞
∑

h=1

[
Cx

h · ch (βh · y)
· · ·+ Dx

h · sh (βh · y)

]
·
[

Ex
h · cos (βh · x)
· · ·+ Fx

h · sin (βh · x)

]
, (A.5b)

Ay
z =

∣∣∣∣∣∣∣∣
(

Cy
0 + Dy

0 · y
)
·
(

Ey
0 + Fy

0 · x
)

· · ·+
∞
∑

n=1

[
Cy

n · cos (λn · y)
· · ·+ Dy

n · sin (λn · y)

]
·
[

Ey
n · ch (λn · x)
· · ·+ Fy

n · sh (λn · x)

]
, (A.5c)

where AzP are the particular solution of Azrespecting the second member ES in (A.4), Cx
0 - Fx

h & Cy
0 - Fy

h
the integration constants, βh & λn the periodicity of Ax

z & Ay
z , and h & n the spatial harmonic orders.

According to (A.1c), the components of
−→
B =

{
Bx; By; 0

}
can be deduced from Az by

Bx =
∂Az

∂y
and By = −∂Az

∂x
(A.6)

which leads to
Bx = Bx

x + By
x +

∂AzP
∂y

, (A.7a)

Bx
x =

∣∣∣∣∣∣∣
Dx

0 ·
(
Ex

0 + Fx
0 · x

)
· · ·+

∞
∑

h=1
βh ·

[
Cx

h · sh (βh · y)
· · ·+ Dx

h · ch (βh · y)

]
·
[

Ex
h · cos (βh · x)
· · ·+ Fx

h · sin (βh · x)

]
, (A.7b)
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Figure B.1. Az imposed on all edges of a region: (a) General and (b) According to the principle of
superposition.

By
x =

∣∣∣∣∣∣∣∣
Dy

0 ·
(

Ey
0 + Fy

0 · x
)

· · ·+
∞
∑

n=1
λn ·

[
−Cy

n · sin (λn · y)
· · ·+ Dy

n · cos (λn · y)

]
·
[

Ey
n · ch (λn · x)
· · ·+ Fy

n · sh (λn · x)

]
, (A.7c)

and
By = Bx

y + By
y −

∂AzP
∂x

, (A.8a)

Bx
y = −

∣∣∣∣∣∣∣
Fx

0 ·
(
Cx

0 + Dx
0 · y

)
· · ·+

∞
∑

h=1
βh ·

[
Cx

h · ch (βh · y)
· · ·+ Dx

h · sh (βh · y)

]
·
[
−Ex

h · sin (βh · x)
· · ·+ Fx

h · cos (βh · x)

]
, (A.8b)

By
y = −

∣∣∣∣∣∣∣∣
Fy

0 ·
(

Cy
0 + Dy

0 · y
)

· · ·+
∞
∑

n=1
λn ·

[
Cy

n · cos (λn · y)
· · ·+ Dy

n · sin (λn · y)

]
·
[

Ey
n · sh (λn · x)
· · ·+ Fy

n · ch (λn · x)

]
. (A.8c)

Appendix B Simplification of Laplace’s Equations according to imposed Boundary Conditions

Appendix B.1 Case-Study no 1: "Az imposed on all edges of a region"

Figure B.1a shows a region (for x ∈ [xl , xr] and y ∈ [yl , yt])) whose the magnetic vector potentials
are imposed on all edges. By applying the principle of superposition on the magnetic quantities,
Figure B.1a is redefined by Figure B.1b.

In the case-study no 1, the magnetic vector potential Az = Ax
z + Ay

z , i.e., (A.5), is redefined by

Ax
z =

∞

∑
h=1

{
cx

h
βh
· sh [βh · (yt − y)]

sh
(

βh · τy
) +

dx
h

βh
· sh [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B.1a)

Ay
z =

∞

∑
n=1

{
ey

n
λn
· sh [λn · (xr − x)]

sh (λn · τx)
+

f y
n

λn
· sh [λn · (x− xl)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B.1b)

the component Bx = Bx
x + By

x of
−→
B , i.e., (A.7), by

Bx
x =

∞

∑
h=1

{
−cx

h ·
ch [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
ch [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B.2a)
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Figure B.2. Az = 0 on x-edges and Az imposed on y-edges of a region.

By
x =

∞

∑
n=1

{
ey

n ·
sh [λn · (xr − x)]

sh (λn · τx)
+ f y

n ·
sh [λn · (x− xl)]

sh (λn · τx)

}
· cos [λn · (y− yl)], (B.2b)

and the component By = Bx
y + By

y of
−→
B , i.e., (A.8), by

Bx
y = −

∞

∑
h=1

{
cx

h ·
sh [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
sh [βh · (y− yl)]

sh
(

βh · τy
) }

· cos [βh · (x− xl)], (B.3a)

By
y = −

∞

∑
n=1

{
−ey

n ·
ch [λn · (xr − x)]

sh (λn · τx)
+ f y

n ·
ch [λn · (x− xl)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B.3b)

where cx
h , dx

h , ey
n and f y

n are new integration constants; βh = h · π
/

τx with τx = xr − xl ; and λn =

n · π
/

τy with τy = yt − yl .
For the particular case illustrated in Figure B.2 (whose the magnetic vector potentials are zero on

x-edges and imposed on y-edges), the magnetic vector potential Az, according to (B.1) with Ay
z = 0,

is expressed by

Az =
∞

∑
h=1

{
cx

h
βh
· sh [βh · (yt − y)]

sh
(

βh · τy
) +

dx
h

βh
· sh [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B.4a)

the x-component of
−→
B , according to (B.6) with By

x = 0, by

Bx =
∞

∑
h=1

{
−cx

h ·
ch [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
ch [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B.4b)

the y-component of
−→
B , according to (B.3) with By

y = 0, by

By = −
∞

∑
h=1

{
cx

h ·
sh [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
sh [βh · (y− yl)]

sh
(

βh · τy
) }

· cos [βh · (x− xl)]. (B.4c)

Appendix B.2 Case-Study no 2: " By and Az are respectively imposed on x- and y-edges of a region"

Figure B.3a shows a region for x ∈ [xl , xr] and y ∈ [yl , yt])) whose the magnetic flux densities
and vector potentials are respectively imposed on x- and y-edges. By applying the principle of
superposition on the magnetic quantities, Figure B.3a is redefined by Figure B.3b.
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Figure B.3. By imposed on x-edges and imposed on y-edges of a region: (a) General and (b) According
to the principle of superposition.

In the case-study no 2, the magnetic vector potential Az = Ax
z + Ay

z , i.e., (A.5), is redefined by

Ax
z =

∣∣∣∣∣∣
(yt − y) · cx

0 + (y− yl) · dx
0

· · ·+
∞
∑

h=1

{
cx

h
βh
· sh[βh ·(yt−y)]

sh(βh ·τy)
+

dx
h

βh
· sh[βh ·(y−yl)]

sh(βh ·τy)

}
· cos [βh · (x− xl)]

, (B.5a)

Ay
z = −

∞

∑
n=1

{
ey

n
λn
· ch [λn · (x− xl)]

sh (λn · τx)
− f y

n
λn
· ch [λn · (xr − x)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B.5b)

the component Bx = Bx
x + By

x of
−→
B , i.e., (A.7), by

Bx
x =

∣∣∣∣∣∣
−cx

0 + dx
0

· · ·+
∞
∑

h=1

{
−cx

h ·
ch[βh ·(yt−y)]

sh(βh ·τy)
+ dx

h ·
ch[βh ·(y−yl)]

sh(βh ·τy)

}
· cos [βh · (x− xl)]

, (B.6a)

By
x = −

∞

∑
n=1

{
ey

n ·
ch [λn · (x− xl)]

sh (λn · τx)
− f y

n ·
ch [λn · (xr − x)]

sh (λn · τx)

}
· cos [λn · (y− yl)], (B.6b)

and the component By = Bx
y + By

y of
−→
B , i.e., (A.8), by

Bx
y =

∞

∑
h=1

{
cx

h ·
sh [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
sh [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B.7a)

By
y =

∞

∑
n=1

{
ey

n ·
sh [λn · (x− xl)]

sh (λn · τx)
+ f y

n ·
sh [λn · (xr − x)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B.7b)

where cx
0 , dx

0 , cx
h , dx

h , ey
n and f y

n are new integration constants.
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Appendix C Elements of Cramer’s Systems

Appendix C.1 Simplifying Function of General Integrals

For the determination of the integral constants, it is required to calculate general integrals of the
form

Fs =

ll+w∫
ll

sin [αs · (l − ls)] · dl, (C.1a)

Fcs =

ll+w∫
ll

cos [αc · (l − lc)] · sin [αs · (l − ls)] · dl, (C.1b)

Fss =

ll+w∫
ll

sin [αs1 · (l − ls1)] · sin [αs2 · (l − ls2)] · dl, (C.1c)

Fls =

ll+w∫
ll

l · sin [αs · (l − ls)] · dl, (C.1d)

Fl2s =

ll+w∫
ll

l2 · sin [αs · (l − ls)] · dl, (C.1e)

Fchs =

ll+w∫
ll

ch [αch · (l − lch)] · sin [αs · (l − ls)] · dl, (C.1f)

Fshs =

ll+w∫
ll

sh [αsh · (l − lsh)] · sin [αs · (l − ls)] · dl. (C.1g)

The functions (C.1) will be used in the expression of the integration constants. The expressions of
(C.1a) - (C.1c) have given in [65]. The development of (C.1d) - (C.1g) gives

Fls (αs, ls, ll , w) =

[
sin [αs · (ll + w− ls)]− sin [αs · (ll − ls)]
· · · − αs · {(ll + w) · cos [αs · (ll + w− ls)]− ll · cos [αs · (ll − ls)]}

]
α2

s
, (C.2a)

Fl2s (αs, ls, ll , w) =

 2 · {cos [αs · (ll + w− ls)]− cos [αs · (ll − ls)]}
· · · − α2

s ·
{
(ll + w)2 · cos [αs · (ll + w− ls)]− l2

l · cos [αs · (ll − ls)]
}

· · ·+ 2 · αs · {(ll + w) · sin [αs · (ll + w− ls)]− ll · sin [αs · (ll − ls)]}


α3

s
, (C.2b)

Fchs (αch, αs, lch, ls, ll , w) =


−αch ·

{
sh [αch · (ll − lch)] · sin [αs · (ll − ls)]
· · · − sh [αch · (ll + w− lch)] · sin [αs · (ll + w− ls)]

}

· · ·+ αs ·
{

ch [αch · (ll − lch)] · cos [αs · (ll − ls)]
· · · − ch [αch · (ll + w− lch)] · cos [αs · (ll + w− ls)]

}


(
α2

ch + α2
s
) ,

(C.2c)
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Fshs (αsh, αs, lsh, ls, ll , w) =


−αsh ·

{
ch [αsh · (ll − lsh)] · sin [αs · (ll − ls)]
· · · − ch [αsh · (ll + w− lsh)] · sin [αs · (ll + w− ls)]

}

· · ·+ αs ·
{

sh [αsh · (ll − lsh)] · cos [αs · (ll − ls)]
· · · − sh [αsh · (ll + w− lsh)] · cos [αs · (ll + w− ls)]

}


(
α2

sh + α2
s
) .

(C.2d)

Appendix C.2 Expression of d1x
h1 for Region 1

By incorporating F1 (x) [see Figure 4a] into (7) and by using (13), (18), (23), (28) and (33), the
development of (7) gives

d1x
h1 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

h3=1

(
c3x

h3 ·Q13ch1,h3 + d3x
h3 ·Q13dh1,h3

)
+

∞
∑

n3=1
f 3y

n3 ·Q13 fh1,n3

· · ·+
∞
∑

h4=1

(
c4x

h4 ·Q14h1,h4 + d4x
h4 ·Q14dh1,h4

)
+

∞
∑

n4=1
e4y

n4 ·Q14eh1,n4

· · ·+
∞
∑

h5=1

(
c5x

h5 ·Q15ch1,h5 + d5x
h5 ·Q15dh1,h5

)
+

∞
∑

n5=1

(
e5y

n5 ·Q15eh1,n5 + f 5y
n5 ·Q15 fh1,n5

)
· · ·+

∞
∑

h6=0

(
c6x

h6 ·Q16ch1,h6 + d6x
h6 ·Q16dh1,h6

)
+

∞
∑

n6=1

(
e6y

n6 ·Q16eh1,n6 + f 6y
n6 ·Q16 fh1,n6

)
· · ·+

∞
∑

h7=0

(
c7x

h7 ·Q17ch1,h7 + d7x
h7 ·Q17dh1,h7

)
+

∞
∑

n7=1

(
e7y

n7 ·Q17eh1,n7 + f 6y
n7 ·Q17 fh1,n7

)
· · · − ES1h1

,

(C.3a)

Q13ch1,h3 =
2

τx1
· µ1

µ3
· coth

(
βh3 · τy3

)
· Fss (β3h3, β1h1, x1, x1, x1, τx3) , (C.3b)

Q13dh1,h3 = − 2
τx1
· µ1

µ3
· csch

(
βh3 · τy3

)
· Fss (β3h3, β1h1, x1, x1, x1, τx3) , (C.3c)

Q13 fh1,n3 = − 2
τx1
· µ1

µ3
· csch (λn3 · τx3) · Fshs (λ3n3, β1h1, x1, x1, x1, τx3) , (C.3d)

Q14ch1,h4 =
2

τx1
· µ1

µ4
· coth

(
βh4 · τy4

)
· Fss (β4h4, β1h1, x5, x1, x5, τx4) , (C.3e)

Q14dh1,h4 = − 2
τx1
· µ1

µ4
· csch

(
βh4 · τy4

)
· Fss (β4h4, β1h1, x5, x1, x5, τx4) , (C.3f)

Q14eh1,n4 =
2

τx1
· µ1

µ4
· csch (λn4 · τx4) · Fshs (λ4n4, β1h1, x6, x1, x5, τx4) , (C.3g)

Q15ch1,h5 =
2

τx1
· µ1

µ5
· coth

(
βh5 · τy5

)
· Fss (β5h5, β1h1, x3, x1, x3, τx5) , (C.3h)

Q15dh1,h5 = − 2
τx1
· µ1

µ5
· csch

(
βh5 · τy5

)
· Fss (β5h5, β1h1, x3, x1, x3, τx5) , (C.3i)

Q15eh1,n5 =
2

τx1
· µ1

µ5
· csch (λn5 · τx5) · Fshs (λ5n5, β1h1, x4, x1, x3, τx5) , (C.3j)

Q15 fh1,n5 = − 2
τx1
· µ1

µ5
· csch (λn5 · τx5) · Fshs (λ5n5, β1h1, x3, x1, x3, τx5) , (C.3k)

Q16ch1,h6 =
2

τx1
· µ1

µ6
·
{

Fs (β1h1, x1, x2, τx6) for h6 = 0
coth

(
βh6 · τy6

)
· Fcs (β6h6, β1h1, x2, x1, x2, τx6) for h6 6= 0

(C.3l)

Q16dh1,h6 = − 2
τx1
· µ1

µ6
·
{

Fs (β1h1, x1, x2, τx6) for h6 = 0
csch

(
βh6 · τy6

)
· Fcs (β6h6, β1h1, x2, x1, x2, τx6) for h6 6= 0

(C.3m)
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Q16eh1,n6 =
2

τx1
· µ1

µ6
· csch (λn6 · τx6) · Fchs (λ6n6, β1h1, x2, x1, x2, τx6) , (C.3n)

Q16 fh1,n6 = − 2
τx1
· µ1

µ6
· csch (λn6 · τx6) · Fchs (λ6n6, β1h1, x3, x1, x2, τx6) , (C.3o)

Q17ch1,h7 =
2

τx1
· µ1

µ7
·
{

Fs (β1h1, x1, x4, τx7) for h7 = 0
coth

(
βh7 · τy7

)
· Fcs (β7h7, β1h1, x4, x1, x4, τx7) for h7 6= 0

(C.3p)

Q17dh1,h7 = − 2
τx1
· µ1

µ7
·
{

Fs (β1h1, x1, x4, τx7) for h7 = 0
csch

(
βh7 · τy7

)
· Fcs (β7h7, β1h1, x4, x1, x4, τx7) for h7 6= 0

(C.3q)

Q17eh1,n7 =
2

τx1
· µ1

µ7
· csch (λn7 · τx7) · Fchs (λ7n7, β1h1, x4, x1, x4, τx7) , (C.3r)

Q17 fh1,n7 = − 2
τx1
· µ1

µ7
· csch (λn7 · τx7) · Fchs (λ7n7, β1h1, x5, x1, x4, τx7) , (C.3s)

ES16h1 = −µ1 ·
2

τx1
· Jz6 · y2 · Fs (β1h1, x1, x2, τx6) , (C.3t)

ES17h1 = −µ1 ·
2

τx1
· Jz7 · y2 · Fs (β1h1, x1, x4, τx7) . (C.3u)

Appendix C.3 Expression of c2x
h2 for Region 2

By incorporating G2 (x) [see Figure 4b] into (11) and by using (13), (18), (23), (28) and (33), the
development of (11) gives

c2x
h2 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

h3=1

(
c3x

h3 ·Q23ch2,h3 + d3x
h3 ·Q23dh2,h3

)
+

∞
∑

n3=1
f 3y

n3 ·Q23 fh2,n3

· · ·+
∞
∑

h4=1

(
c4x

h4 ·Q24ch2,h4 + d4x
h4 ·Q24dh2,h4

)
+

∞
∑

n4=1
e4y

n4 ·Q24eh2,n4

· · ·+
∞
∑

h5=1

(
c5x

h5 ·Q25ch2,h5 + d5x
h5 ·Q25dh2,h5

)
+

∞
∑

n5=1

(
e5y

n5 ·Q25eh2,n5 + f 5y
n5 ·Q25 fh2,n5

)
· · ·+

∞
∑

h6=0

(
c6x

h6 ·Q26ch2,h6 + d6x
h6 ·Q26dh2,h6

)
+

∞
∑

n6=1

(
e6y

n6 ·Q26eh2,n6 + f 6y
n6 ·Q26 fh2,n6

)
· · ·+

∞
∑

h7=0

(
c7x

h7 ·Q27ch2,h7 + d7x
h7 ·Q27dh2,h7

)
+

∞
∑

n7=1

(
e7y

n7 ·Q27eh2,n7 + f 6y
n7 ·Q27 fh2,n7

)
· · · − (ES26h2 + ES27h2)

,

(C.4a)

Q23ch2,h3 =
2

τx2
· µ2

µ3
· csch

(
βh3 · τy3

)
· Fss (β3h3, β2h2, x1, x1, x1, τx3) , (C.4b)

Q23dh2,h3 = − 2
τx2
· µ2

µ3
· coth

(
βh3 · τy3

)
· Fss (β3h3, β2h2, x1, x1, x1, τx3) , (C.4c)

Q23 fh2,n3 = − 2
τx2
· µ2

µ3
·

cos
(
λn3 · τy3

)
sh (λn3 · τx3)

· Fshs (λ3n3, β2h2, x1, x1, x1, τx3) , (C.4d)

Q24ch2,h4 =
2

τx2
· µ2

µ4
· csch

(
βh4 · τy4

)
· Fss (β4h4, β2h2, x5, x1, x5, τx4) , (C.4e)

Q24dh2,h4 = − 2
τx2
· µ2

µ4
· coth

(
βh4 · τy4

)
· Fss (β4h4, β2h2, x5, x1, x5, τx4) , (C.4f)

Q24eh2,n4 =
2

τx2
· µ2

µ4
·

cos
(
λn4 · τy4

)
sh (λn4 · τx4)

· Fshs (λ4n4, β2h2, x6, x1, x5, τx4) , (C.4g)

Q25ch2,h5 =
2

τx2
· µ2

µ5
· csch

(
βh5 · τy5

)
· Fss (β5h5, β2h2, x3, x1, x3, τx5) , (C.4h)
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Q25dh2,h5 = − 2
τx2
· µ2

µ5
· coth

(
βh5 · τy5

)
· Fss (β5h5, β2h2, x3, x1, x3, τx5) , (C.4i)

Q25eh2,n5 =
2

τx2
· µ2

µ5
·

cos
(
λn5 · τy5

)
sh (λn5 · τx5)

· Fshs (λ5n5, β2h2, x4, x1, x3, τx5) , (C.4j)

Q25 fh2,n5 = − 2
τx2
· µ2

µ5
·

cos
(
λn5 · τy5

)
sh (λn5 · τx5)

· Fshs (λ5n5, β2h2, x3, x1, x3, τx5) , (C.4k)

Q26ch2,h6 =
2

τx2
· µ2

µ6
·
{

Fs (β2h2, x1, x2, τx6) for h6 = 0
csch

(
βh6 · τy6

)
· Fcs (β6h6, β2h2, x2, x1, x2, τx6) for h6 6= 0

(C.4l)

Q26dh2,h6 = − 2
τx2
· µ2

µ6
·
{

Fs (β2h2, x1, x2, τx6) for h6 = 0
coth

(
βh6 · τy6

)
· Fcs (β6h6, β2h2, x2, x1, x2, τx6) for h6 6= 0

(C.4m)

Q26eh2,n6 =
2

τx2
· µ2

µ6
·

cos
(
λn6 · τy6

)
sh (λn6 · τx6)

· Fchs (λ6n6, β2h2, x2, x1, x2, τx6) , (C.4n)

Q26 fh2,n6 = − 2
τx2
· µ2

µ6
·

cos
(
λn6 · τy6

)
sh (λn6 · τx6)

· Fchs (λ6n6, β2h2, x3, x1, x2, τx6) , (C.4o)

Q27ch2,h7 =
2

τx2
· µ2

µ7
·
{

Fs (β2h2, x1, x4, τx7) for h7 = 0
csch

(
βh7 · τy7

)
· Fcs (β7h7, β2h2, x4, x1, x4, τx7) for h7 6= 0

(C.4p)

Q27dh2,h7 = − 2
τx2
· µ2

µ7
·
{

Fs (β2h2, x1, x4, τx7) for h7 = 0
coth

(
βh7 · τy7

)
· Fcs (β7h7, β2h2, x4, x1, x4, τx7) for h7 6= 0

(C.4q)

Q27eh2,n7 =
2

τx2
· µ2

µ7
·

cos
(
λn7 · τy7

)
sh (λn7 · τx7)

· Fchs (λ7n7, β2h2, x4, x1, x4, τx7) , (C.4r)

Q27 fh2,n7 = − 2
τx2
· µ2

µ7
·

cos
(
λn7 · τy7

)
sh (λn7 · τx7)

· Fchs (λ7n7, β2h2, x5, x1, x4, τx7) , (C.4s)

ES26h2 = −µ2 ·
2

τx2
· Jz6 · y3 · Fs (β2h2, x1, x2, τx6) , (C.4t)

ES27h2 = −µ2 ·
2

τx2
· Jz7 · y3 · Fs (β2h2, x1, x4, τx7) , (C.4u)

Appendix C.4 Expression of c3x
h3, d3x

h3 and f 3y
n3 for Region 3

By using (4), the development of (15a) gives

c3x
h3 = −

∞

∑
h1=1

d1x
h1 ·Q31dh3,h1, (C.5a)

Q31dh3,h1 = − 2
τx3
· βh3

βh1
· th
(

βh1 · τy1
)
· Fss (β1h1, β3h3, x1, x1, x1, τx3) . (C.5b)

By using (8), the development of (15b) gives

d3x
h3 = −

∞

∑
h2=1

c2x
h2 ·Q32ch3,h2, (C.6a)

Q32ch3,h2 =
2

τx3
· βh3

βh2
· th
(

βh2 · τy2
)
· Fss (β2h2, β3h3, x1, x1, x1, τx3) . (C.6b)
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By using (27), the development of (16) gives

f 3y
n3 = −

∣∣∣∣∣∣∣∣∣∣

∞
∑

h6=0

(
c6x

h6 ·Q36cn3,h6 + d6x
h6 ·Q36dn3,h6

)
· · ·+

∞
∑

n6=1

(
e6y

n6 ·Q36en3,n6 + f 6y
n6 ·Q36 fn3,n6

)
· · · − ES36n3

(C.7a)

Q36cn3,h6 =
2

τy3
· λn3 ·

{
−
[
y3 · Fs

(
λ3n3, y2, y2, τy3

)
− Fls

(
λ3n3, y2, y2, τy3

)]
for h6 = 0

1
βh6
· csch

(
βh6 · τy6

)
· Fshs

(
β6h6, λ3n3, y3, y2, y2, τy3

)
for h6 6= 0

(C.7b)

Q36dn3,h6 =
2

τy3
· λn3 ·

{ [
y2 · Fs

(
λ3n3, y2, y2, τy3

)
− Fls

(
λ3n3, y2, y2, τy3

)]
for h6 = 0

−1
βh6
· csch

(
βh6 · τy6

)
· Fshs

(
β6h6, λ3n3, y2, y2, y2, τy3

)
for h6 6= 0

(C.7c)

Q36en3,n6 =
2

τy3
· λn3

λn6
· csch (λn6 · τx6) · Fss

(
λ6n6, λ3n3, y2, y2, y2, τy3

)
, (C.7d)

Q36 fn3,n6 = − 2
τy3
· λn3

λn6
· coth (λn6 · τx6) · Fss

(
λ6n6, λ3n3, y2, y2, y2, τy3

)
, (C.7e)

ES36n3 = −µ6 ·
λn3

τy3
· Jz6 · Fl2s

(
λ3n3, y2, y2, τy3

)
. (C.7f)

Appendix C.5 Expression of c4x
h4, d4x

h4 and e4y
n4 for Region 4

By using (4), the development of (20a) gives

c4x
h4 = −

∞

∑
h1=1

d1x
h1 ·Q41dh4,h1, (C.8a)

Q41dh4,h1 = − 2
τx4
· βh4

βh1
· th
(

βh1 · τy1
)
· Fss (β1h1, β4h4, x1, x5, x5, τx4) . (C.8b)

By using (8), the development of (20b) gives

d4x
h4 = −

∞

∑
h2=1

c2x
h2 ·Q42ch4,h2, (C.9a)

Q42ch4,h2 =
2

τx4
· βh4

βh2
· th
(

βh2 · τy2
)
· Fss (β2h2, β4h4, x1, x5, x5, τx4) . (C.9b)

By using (32), the development of (21) gives

e4y
n4 = −

∣∣∣∣∣∣∣∣∣∣

∞
∑

h7=0

(
c7x

h7 ·Q47cn4,h7 + d7x
h7 ·Q47dn4,h7

)
· · ·+

∞
∑

n7=1

(
e7y

n7 ·Q47en4,n7 + f 7y
n7 ·Q47 fn4,n7

)
· · · − ES47n4

(C.10a)

Q47cn4,h7 =
2

τy4
· λn4 ·

{
−
[
y3 · Fs

(
λ4n4, y2, y2, τy4

)
− Fls

(
λ4n4, y2, y2, τy4

)]
for h7 = 0

1
βh7
· cos(βh7·τx7)

sh(βh7·τy7)
· Fshs

(
β7h7, λ4n4, y3, y2, y2, τy4

)
for h7 6= 0 (C.10b)

Q47dn4,h7 =
2

τy4
· λn4 ·

{ [
y2 · Fs

(
λ4n4, y2, y2, τy4

)
− Fls

(
λ4n4, y2, y2, τy4

)]
for h7 = 0

−1
βh7
· cos(βh7·τx7)

sh(βh7·τy7)
· Fshs

(
β7h7, λ4n4, y2, y2, y2, τy4

)
for h7 6= 0 (C.10c)

Q47en4,n7 =
2

τy4
· λn4

λn7
· coth (λn7 · τx7) · Fss

(
λ7n7, λ4n4, y2, y2, y2, τy4

)
, (C.10d)
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Q47 fn4,n7 = − 2
τy4
· λn4

λn7
· csch (λn7 · τx7) · Fss

(
λ7n7, λ4n4, y2, y2, y2, τy4

)
, (C.10e)

ES47n4 = −µ7 ·
λn4

τy4
· Jz7 · Fl2s

(
λ4n4, y2, y2, τy4

)
. (C.10f)

Appendix C.6 Expression of c5x
h5, d5x

h5, e5y
n5 and f 5y

n5 for Region 5

By using (4), the development of (25a) gives

c5x
h5 = −

∞

∑
h1=1

d1x
h1 ·Q51dh5,h1, (C.11a)

Q51dh5,h1 = − 2
τx5
· βh5

βh1
· th
(

βh1 · τy1
)
· Fss (β1h1, β5h5, x1, x3, x3, τx5) . (C.11b)

By using (8), the development of (25b) gives

d5x
h5 = −

∞

∑
h2=1

c2x
h2 ·Q52ch5,h2, (C.12a)

Q52ch5,h2 =
2

τx5
· βh5

βh2
· th
(

βh2 · τy2
)
· Fss (β2h2, β5h5, x1, x3, x3, τx5) . (C.12b)

By using (27), the development of (26a) gives

e5y
n5 = −

∣∣∣∣∣∣∣∣∣∣

∞
∑

h6=0

(
c6x

h6 ·Q56cn5,h6 + d6x
h6 ·Q56dn5,h6

)
· · ·+

∞
∑

n6=1

(
e6y

n6 ·Q56en5,n6 + f 6y
n6 ·Q56 fn5,n6

)
· · · − ES56n5

(C.13a)

Q56cn5,h6 =
2

τy5
· λn5 ·

{
−
[
y3 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h6 = 0

1
βh6
· cos(βh6·τx6)

sh(βh6·τy6)
· Fshs

(
β6h6, λ5n5, y3, y2, y2, τy5

)
for h6 6= 0 (C.13b)

Q56dn5,h6 =
2

τy5
· λn5 ·

{ [
y2 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h6 = 0

−1
βh6
· cos(βh6·τx6)

sh(βh6·τy6)
· Fshs

(
β6h6, λ5n5, y2, y2, y2, τy5

)
for h6 6= 0 (C.13c)

Q56en5,n6 =
2

τy5
· λn5

λn6
· coth (λn6 · τx6) · Fss

(
λ6n6, λ5n5, y2, y2, y2, τy5

)
, (C.13d)

Q56 fn5,n6 = − 2
τy5
· λn5

λn6
· csch (λn6 · τx6) · Fss

(
λ6n6, λ5n5, y2, y2, y2, τy5

)
, (C.13e)

ES56n5 = −µ6 ·
λn5

τy5
· Jz6 · Fl2s

(
λ5n5, y2, y2, τy5

)
. (C.13f)

By using (32), the development of (26b) gives

f 5y
n5 = −

∣∣∣∣∣∣∣∣∣∣

∞
∑

h7=0

(
c7x

h7 ·Q57cn5,h7 + d7x
h7 ·Q57dn5,h7

)
· · ·+

∞
∑

n7=1

(
e7y

n7 ·Q57en5,n7 + f 7y
n7 ·Q57 fn5,n7

)
· · · − ES57n5

, (C.14a)

Q57cn5,h7 =
2

τy5
·λn5 ·

{
−
[
y3 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h7 = 0

1
βh7
· csch

(
βh7 · τy7

)
· Fshs

(
β7h7, λ5n5, y3, y2, y2, τy5

)
for h7 6= 0

(C.14b)
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Q57dn5,h7 =
2

τy5
·λn5 ·

{ [
y2 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h7 = 0

−1
βh7
· csch

(
βh7 · τy7

)
· Fshs

(
β7h7, λ5n5, y2, y2, y2, τy5

)
for h7 6= 0

(C.14c)

Q57en5,n7 =
2

τy5
· λn5

λn7
· csch (λn7 · τx7) · Fss

(
λ7n7, λ5n5, y2, y2, y2, τy5

)
, (C.14d)

Q57 fn5,n7 = − 2
τy5
· λn5

λn7
· coth (λn7 · τx7) · Fss

(
λ7n7, λ5n5, y2, y2, y2, τy5

)
, (C.14e)

ES57n5 = −µ7 ·
λn5

τy5
· Jz7 · Fl2s

(
λ5n5, y2, y2, τy5

)
. (C.14f)

Appendix C.7 Expression of c6x
0 , d6x

0 , c6x
h6, d6x

h6, e6y
n6 and f 6y

n6 for Region 6

By using (4) and (27d), the development of (30a) and (30b) gives

c6x
0 = ES610 −

∞

∑
h1=1

d1x
h1 ·Q61d0,h1, (C.15a)

Q61d0,h1 = − 1
τy6
· 1

τx6
· 1

βh1
· th
(

βh1 · τy1
)
· Fs (β1h1, x1, x2, τx6) , (C.15b)

ES610 =
1
2
· 1

τy6
· µ6 · Jz6 · y2

2. (C.15c)

c6x
h6 = −

∞

∑
h1=1

d1x
h1 ·Q61dh6,h1, (C.16a)

Q61dh6,h1 = − 2
τx6
· βh6

βh1
· th
(

βh1 · τy1
)
· Fcs (β6h6, β1h1, x2, x1, x2, τx6) . (C.16b)

By using (8) and (27d), the development of (30c) and (30d) gives

d6x
0 = ES620 −

∞

∑
h2=1

c2x
h2 ·Q62c0,h2, (C.17a)

Q62c0,h2 =
1

τy6
· 1

τx6
· 1

βh2
· th
(

βh2 · τy2
)
· Fs (β2h2, x1, x2, τx6) , (C.17b)

ES620 =
1
2
· 1

τy6
· µ6 · Jz6 · y2

3. (C.17c)

d6x
h6 = −

∞

∑
h2=1

c2x
h2 ·Q62ch6,h2, (C.18a)

Q62ch6,h2 =
2

τx6
· βh6

βh2
· th
(

βh2 · τy2
)
· Fcs (β6h6, β2h2, x2, x1, x2, τx6) . (C.18b)

By using (24), the development of (31a) gives

e6y
n6 = −


∞
∑

h5=1

(
c5x

h5 ·Q65cn6,h5 + d5x
h5 ·Q65dn6,h5

)
· · ·+

∞
∑

n5=1

(
e5y

n5 ·Q65en6,n5 + f 5y
n5 ·Q65 fn6,n5

)
 (C.19a)

Q65cn6,h5 = − 2
τy6
· µ6

µ5
· csch

(
βh5 · τy5

)
· Fshs

(
β5h5, λ6n6, y3, y2, y2, τy6

)
, (C.19b)
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Q65dn6,h5 =
2

τy6
· µ6

µ5
· csch

(
βh5 · τy5

)
· Fshs

(
β5h5, λ6n6, y2, y2, y2, τy6

)
, (C.19c)

Q65en6,n5 = − 2
τy6
· µ6

µ5
· coth (λn5 · τx5) · Fss

(
λ5n5, λ6n6, y2, y2, y2, τy6

)
, (C.19d)

Q65 fn6,n5 =
2

τy6
· µ6

µ5
· csch (λn5 · τx5) · Fss

(
λ5n5, λ6n6, y2, y2, y2, τy6

)
. (C.19e)

By using (14), the development of (31b) gives

f 6y
n6 = −

[
∞

∑
h3=1

(c3x
h3 ·Q63cn6,h3 + d3x

h3 ·Q63dn6,h3) +
∞

∑
n3=1

f 3y
n3 ·Q63 fn6,n3

]
, (C.20a)

Q63cn6,h3 = − 2
τy6
· µ6

µ3
· cos (βh3 · τx3)

sh
(

βh3 · τy3
) · Fshs

(
β3h3, λ6n6, y3, y2, y2, τy6

)
, (C.20b)

Q63dn6,h3 =
2

τy6
· µ6

µ3
· cos (βh3 · τx3)

sh
(

βh3 · τy3
) · Fshs

(
β3h3, λ6n6, y2, y2, y2, τy6

)
, (C.20c)

Q63 fn6,n3 =
2

τy6
· µ6

µ3
· coth (λn3 · τx3) · Fss

(
λ3n3, λ6n6, y2, y2, y2, τy6

)
. (C.20d)

Appendix C.8 Expression of c7x
0 , d7x

0 , c7x
h7, d7x

h7, e7y
n7 and f 7y

n7 for Region 7

By using (4) and (32d), the development of (35a) and (35b) gives

c7x
0 = ES710 −

∞

∑
h1=1

d1x
h1 ·Q71d0,h1, (C.21a)

Q71d0,h1 = − 1
τy7
· 1

τx7
· 1

βh1
· th
(

βh1 · τy1
)
· Fs (β1h1, x1, x4, τx7) , (C.21b)

ES710 =
1
2
· 1

τy7
· µ7 · Jz7 · y2

2. (C.21c)

c7x
h7 = −

∞

∑
h1=1

d1x
h1 ·Q71dh7,h1, (C.22a)

Q71dh7,h1 = − 2
τx7
· βh7

βh1
· th
(

βh1 · τy1
)
· Fcs (β7h7, β1h1, x4, x1, x4, τx7) . (C.22b)

By using (8) and (32d), the development of (35c) and (35d) gives

d7x
0 = ES720 −

∞

∑
h2=1

c2x
h2 ·Q72c0,h2, (C.23a)

Q72c0,h2 =
1

τy7
· 1

τx7
· 1

βh2
· th
(

βh2 · τy2
)
· Fs (β2h2, x1, x4, τx7) , (C.23b)

ES720 =
1
2
· 1

τy7
· µ7 · Jz7 · y2

3. (C.23c)

d7x
h7 = −

∞

∑
h2=1

c2x
h2 ·Q72ch7,h2, (C.24a)

Q72ch7,h2 =
2

τx7
· βh7

βh2
· th
(

βh2 · τy2
)
· Fcs (β7h7, β2h2, x4, x1, x4, τx7) . (C.24b)
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By using (24), the development of (36a) gives

f 7y
n7 = −


∞
∑

h5=1

(
c5x

h5 ·Q75cn7,h5 + d5x
h5 ·Q75dn7,h5

)
· · ·+

∞
∑

n5=1

(
e5y

n5 ·Q75en7,n5 + f 5y
n5 ·Q75 fn7,n5

)
 , (C.25a)

Q75cn7,h5 = − 2
τy7
· µ7

µ5
· cos (βh5 · τx5)

sh
(

βh5 · τy5
) · Fshs

(
β5h5, λ7n7, y3, y2, y2, τy7

)
, (C.25b)

Q75dn7,h5 =
2

τy7
· µ7

µ5
· cos (βh5 · τx5)

sh
(

βh5 · τy5
) · Fshs

(
β5h5, λ7n7, y2, y2, y2, τy7

)
, (C.25c)

Q75en7,n5 = − 2
τy7
· µ7

µ5
· csch (λn5 · τx5) · Fss

(
λ5n5, λ7n7, y2, y2, y2, τy7

)
, (C.25d)

Q75 fn7,n5 =
2

τy7
· µ7

µ5
· coth (λn5 · τx5) · Fss

(
λ5n5, λ7n7, y2, y2, y2, τy7

)
. (C.25e)

By using (19), the development of (36b) gives

e7y
n7 = −

[
∞

∑
h4=1

(c4x
h4 ·Q74cn7,h4 + d4x

h4 ·Q74dn7,h4) +
∞

∑
n4=1

e4y
n4 ·Q74en7,n4

]
, (C.26a)

Q74cn7,h4 = − 2
τy7
· µ7

µ4
· csch

(
βh4 · τy4

)
· Fshs

(
β4h4, λ7n7, y3, y2, y2, τy7

)
, (C.26b)

Q74dn7,h4 =
2

τy7
· µ7

µ4
· csch

(
βh4 · τy4

)
· Fshs

(
β4h4, λ7n7, y2, y2, y2, τy7

)
, (C.26c)

Q74en7,n4 = − 2
τy7
· µ7

µ4
· coth (λn4 · τx4) · Fss

(
λ4n4, λ7n7, y2, y2, y2, τy7

)
. (C.26d)
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