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Abstract: The features of a class of cubic curves with a shape factor are analyzed by means of the theory of 
envelope and topological mapping. The effects of the shape factor on the cubic curves are made clear. Necessary 
and sufficient conditions are derived for the curve to have one or two inflection points, a loop or a cusp, or to be 
locally or globally convex. Those conditions are completely characterized by the relative position of the edge 
vectors of the control polygon and the shape factor. The results are summarized in a shape diagram, which is useful 
when the cubic parametric curves are used for geometric modeling. Furthermore we discussed the influences of the 
shape factor on the shape diagram and the ability for adjusting the shape of the curve. 
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1  Introduction 
 
Bézier curves and surfaces are modeling tools widely used in CAD/CAM systems [1]. The use of Bernstein 
polynomials as the basis functions in Bézier’s UNISURF is well known. Cubic Bernstein basis functions are  

{ }3 2 2 3(1 ) , 3(1 ) , 3 (1 ),u u u u u u− − − . 

In the CONSURF system developed by A A Ball [2-4] at the British Aircraft Corporation, the following basis for 
cubic polynomials was used 

{ }2 2 2 2(1 ) , 2(1 ) , 2 (1 ),u u u u u u− − − . 

Said [5] extended it to arbitrary odd degrees, namely the generalized Ball curves. The generalized Ball curves 
possess many nice properties which are similar to those of Bézier curves, such as, computational stability, 
symmetry property, convex hull property, endpoint interpolation, geometric invariant [6]. The generalized Ball 
representations for a polynomial curve are much better suited to degree raising and lowering than Bézier 
representations. It is well known that degree elevation and reduction are important in transferring data between 
various CAD systems. Goodman and Said [7,8] suggest that, in the situation where degree elevation and reduction 
are important, while other process are less important, the designer of curves and surfaces should consider using 
the generalized Ball form instead of the Bézier form. 

In CAD/CAGD, it is often necessary to detect inflection points and singularities on curves. Convexity is an 
important intuitive geometric concept and convexity control of curves and surfaces plays a fundamental role. For 
planar cubic Bézier curves an exhaustive study was presented in [9] and for the rational case in [10]. Manocha [11] 
studied this problem for polynomial and rational parametric curves of arbitrary degree. Yang [12] discussed 
inflection points and singularities on C-Bézier curves, and the results are summarized in a shape diagram of 
C-Bézier curves. Juhász [13] detected cusps, inflection points and loops of C-Bézier curves by letting a control 
point vary while the rest is held fixed. But locally and globally convex is not referred to. There are many other 
publications on this topic [14].  

With the in-depth study of curves representation, there have been more new curves similar to the Bézier curves and 
the Ball curves, for example, Q-Bézier curves [15]. Because of the introduction of the shape parameter, these curves are 
highlighting the flexibility to change the shape of the curve in geometric modeling. In order to have insight into the 
influence that the shape parameters exert on geometrical characteristics of the curve, we need to further study the 
conditions for the curve to have inflection point(s), loops or cusps, or to be locally or globally convex. 
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This paper is organized as follows: First we show the construction of a class of cubic parametric curves with a 
variable shape factor. Ball curve, cubic Bézier curve and cubic Timmer curve are special cases of the curve. In 
Section 3, the inflection points and singularities of the space cubic parametric curves are discussed. In Section 4, 
shape features of the planar cubic parametric curves are proposed by using the method based on the theory of 
envelope and topological mapping. Necessary and sufficient conditions are derived for this curve to have one or 
two inflection points, a loop or a cusp, to be locally or globally convex. The results are summarized in a shape 
diagram. At last, the influences of shape factor on the shape diagram and their ability for adjusting the shape of 
the curve are analyzed. 
 
2  The cubic parametric curve with a shape factor 
 

Definition 2.1. Given four control points ( 2,3, 0,1,2,3)d
i d i∈ = =P R , the cubic parametric curve with a 

shape factor is defined as follows 

[ ]
3

0

( ) ( ) , 0,1 ,i i
i

t B t t
=

= ∈p P                                     (1) 

where ( ) ( 0,1, 2,3)iB t i =  are the basis functions with the shape factor λ  defined by 
2 2

0 1

2 2
2 3

( ) [1 (2 ) ](1 ) , ( ) (1 ) ,

( ) (1 ), ( ) [1 (2 )(1 )] .

B t t t B t t t
B t t t B t t t

λ λ
λ λ

= + − − = −

= − = + − −
                         (2) 

If 0λ = , the cubic parametric curve degenerates into a straight line. If 2λ = , the cubic parametric curve 
degenerates into Ball curve. If 3λ = , the cubic parametric curve degenerates into cubic Bézier curve. If 4λ = , 
the cubic parametric curve degenerates into cubic Timmer curve [16]. So, Ball curve, cubic Bézier curve and 
cubic Timmer curve are all special cases of the cubic parametric curve defined in (1).  

When parameter ( ]0,3λ ∈ , The cubic parametric curves have similar properties to cubic Bézier curve or Ball 

curve, such as symmetry, the endpoint interpolation, end edge tangent, convex hull property and geometrical 
invariance etc. And the cubic parametric curve also has a similar recursive evaluation, degree elevation and 
reduction algorithms. So we assume that ( ]0,3λ ∈  in this paper. 

The introduction of the variable shape factor makes the curve shape feature distribution simpler and easier to 
control. Given four control points, we can globally or locally adjust the shape of curve by changing the shape 
factor value. The cubic parametric curve is more approximate to the control polygon with the increasing shape 
factor λ , otherwise away from the control polygon. Therefore the cubic parametric curve is more flexible in 
adjusting the shape of the curve than either cubic Bézier curve or Ball curve. 

Fig. 1 shows the cubic parametric curves with shape factor 1λ = , 2λ =  (Ball curve), 3λ =  (cubic Bézier 
curve) and 4λ =  (cubic Timmer curve), respectively. 

 
Fig. 1. The cubic parametric curves with a shape factor (red dotted lines, 1λ = ; blue dash dotted lines, 2λ = ; 

red dashed lines, 3λ = ; blue solid lines, 4λ = ) 
 
3  Geometric features of the space cubic curve 
 
In practical applications, geometric features, such as the singularity, inflection point, cusp and convex distribution 
of curve, are very important to determine the shape of the curve. 
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Theorem 1. If (0, 3]λ ∈  and the control points ( )3 0,1, 2,3i i∈ =P R  are not coplanar, then the cubic 

parametric curve ( )tp  has no singular point, cusp, double point or pan inflection point, and the direction of 

rotation of the curve ( )tp  is consistent with that of the control polygon. 

Proof: First, we prove that the curve ( )tp  has no cusp. Let ( )1 1, 2,3i i i i−= − =q P P  be the edge vectors of 

the control polygon. Then ( )tp  can be simplified to 

0 0 1 2 3 2 3 3( ) [1 ( )] [ ( ) ( )] ( ) .t B t B t B t B t= + − + + +p P q q q                  (3) 

Therefore, 

0 1 2 3 2 3 3( ) ( ) [ ( ) ( )] ( )t B t B t B t B t′ ′ ′ ′ ′= − + + +p q q q . 

When (0,1)t ∈ , it follows from (2) 

2 3( ) ( ) 6 (1 ) 0B t B t t t′ ′+ = − ≠ . 

Since the control points ( 0,1, 2,3)i i =P  are not coplanar, the edge vectors ( )1, 2,3i i =q  are linearly 

independent, so ( )t′ ≠ 0p . Therefore the curve ( )tp  has no cusp. 

Next, we prove that the curve ( )tp  has no double point. Assume that the curve ( )tp  has a double point, say, 

1 2( ) ( ) 0t t− =p p , where 1 20 1t t≤ < ≤ . Then it follows from (3) 

[ ] [ ] [ ]0 2 0 1 1 2 1 3 1 2 2 3 2 2 3 1 3 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0B t B t B t B t B t B t B t B t− + + − − + − =q q q . 

Since the edge vectors ( )1, 2,3i i =q  are linearly independent, we have 1 2( ) ( ), 0, 2,3.i iB t B t i= =  

  0 1 0 2( ) ( )B t B t=  implies that there exists 1 2( , ) [0,1]t tξ ∈ ⊆  such that 0 ( ) 0B ξ′ = , namely, 
3( 2)

λξ
λ

=
−

. 

Since 0 1ξ< < , we have  0 1
3( 2)

λ
λ

< <
−

, which results in 3λ >  or 0λ < , contradicting (0,3]λ ∈ . 

Therefore 0 1 0 2( ) ( )B t B t≠ . Hence the curve ( )tp  has no double point. 

Last, we prove that the curve ( )tp  has no pan inflection points, and the direction of rotation of ( )tp  is 

consistent with that of the polygon. 

The point ( )0 0( ) 0 1t t< <p  is the pan inflection point of the space curve ( )tp  if and only if the sign of 

torsion changes when it passes through 0t . We assume 

( ) det( ( ) ( ), ( ))g t t t t′ ′′ ′′′= P ,P P . 

Note that 
3

0

( ) 1i
i

B t
=

= , 
3 3 3

0 0 0

( ) ( ) ( ) 0i i i
i i i

B t B t B t
= = =

′ ′′ ′′′= = =   . 

Then 
3 3 3 3

3 3 3
0 0 0 0

3 3 3 3
0 0 0

0 0 0 0

( ) ( ) ( ) ( )

( ) det ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i
i i i i

i i i i i i
i i i

i i i i i i i i
i i i i

B t B t B t B t
g t B t B t B t

B t B t B t B t

= = = =

= = =

= = = =

′ ′′ ′′′
 ′ ′′ ′′′= =   ′ ′′ ′′′

   
  

   
P P P

P P P P
 

                

0 0 0 0

1 1 1 1

0 3 2 2 2 21 2

3 3 3 3

( ) ( ) ( ) ( )

1 1 ( ) ( ) ( ) ( )1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

B t B t B t B t
B t B t B t B t
B t B t B t B t
B t B t B t B t

′ ′′ ′′′ 
 ′ ′′ ′′′   =   ′ ′′ ′′′  
 ′ ′′ ′′′ 

P PP P
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0 0 0 0

1 1 1 1
1 2 3

0 3 2 2 2 21 2

3 3 3 3

( ) ( ) ( ) ( )

1 0 ( ) ( ) ( ) ( )0 0
( , , ) ( ),

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

B t B t B t B t
B t B t B t B t

D t
B t B t B t B t
B t B t B t B t

′ ′′ ′′′
′ ′′ ′′′

= =
′ ′′ ′′′
′ ′′ ′′′

q q q
P qq q

 

where 1 2 3( , , )q q q  is the mixed product of the edge vectors 1 2 3, ,q q q . The edge vectors 1 2 3, ,q q q  are not 

coplanar, so 1 2 3( , , ) 0≠q q q . Since (0,3]λ ∈ ，we get 

0 0 0 0

1 1 1 1 2

2 2 2 2

3 3 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) 12 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

B t B t B t B t
B t B t B t B t

D t
B t B t B t B t
B t B t B t B t

λ

′ ′′ ′′′
′ ′′ ′′′

= = >
′ ′′ ′′′
′ ′′ ′′′

. 

For 0 1t≤ ≤ , we have ( ) 0g t ≠  and ( )g t  has the same sign as 1 2 3( , , )q q q . So the cubic parametric 

curve ( )tp  has no pan inflection point and the direction of rotation of the curve ( )tp  is consistent with that of 

the polygon. The proof of Theorem 1 is completed. 
 
4 Geometric features of the planar cubic curve 
 
It is known that a planar cubic parametric curve may have one or two inflection points, a loop or a cusp. If the 

control points ( )3 0,1, 2,3i i∈ =P R  are coplanar, then edge vectors ( 1, 2,3)i i =q  are linearly dependent and 

the cubic parametric curve ( )tp  reduces to a plane curve. The following discussion is based on the positional 

relationship of 1q  and 3q . 

 
4.1 Edge vectors 1q  and 3q  are non-parallel 

 
When edge vectors 1q  and 3q  are non-parallel, 1q  and 3q  are the base vectors of the plane. Let 

2 1 3u v= +q q q . From equation (3), we have 

( )
( )

0 0 2 3 1

3 2 3 3

( ) 1 ( ) ( ) ( )

( ) ( ) ( )

t B t u B t B t

B t v B t B t

= + − + +  
+ + +  

p P q

q
                              (4) 

If ( ) (0 1)t t′ = < <0p , then 

( ) ( )0 2 3 1 3 2 3 3( ) ( ) ( ) ( ) ( ) ( )B t u B t B t B t v B t B t′ ′ ′ ′ ′ ′− + + + + + =       0q q .              (5) 

Since 1q  and 3q  are linearly independent, we have 

0

2 3

3

2 3

( )

( ) ( )
: (0 1)

( )

( ) ( )

B tu
B t B t

C t
B tv

B t B t

 ′
=

′ ′+
< <

′ = − ′ ′+

. 

Substituting (2) into the above two equations gives 

( )
1

2 6
: 0 1 .

1
2 6(1 )

u
tC t

v
t

λ λ

λ λ

 = − − < <
 = − −

−

                             (6) 

Next we discuss the shape of the curve C . From equations (6), we know 
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0
lim
t

u
+→

= −∞ , 
0

lim 1
3t

v λ
+→

= − , 
1

lim 1
3t

u λ
−→

= − , 
1

lim
t

v
−→

= −∞ . 

So the curve C  has two asymptotes: 1, 1
3 3

u vλ λ= − = − . On the other hand, we get from (6) 

( )
2

2

d
0

d 1

v t
u t

= − <
−

, 
( )

2 3

32

d 12
0

d 1

v t
u tλ

= <
−

. 

Therefore, the curve C  is monotonic decreasing (0 1, (0,3])t λ< < ∈  and has no inflection point. 

By means of the monotone and strict convexity of the curve C , we further discuss the cusps, the inflection 
points and convexity of the curve ( )tp . 

 
4.1.1 About the cusp 

 
The necessary condition for the curve ( )tp  to have a cusp is  

( )( ) 0 0 1t t′ = < <p . 

Suppose ( )0 00 1t t< <  is the point corresponding to ( )0 0,u v C∈ , such that 0( ) 0t′ =p ． 

The Taylor expansion of ( )tp  about 0t  is 

2 2
0 0 0 0 0 0

1
( ) ( ) ( )( ) ( )( ) ( ) .

2
t t t t t t t t ο t t′ ′′= + − + − + −p p p p  

Differentiating the above equation yields 

0 0 0( ) ( )( ) ( )t t t t t tο′ ′′= − + −p p , 

where 0( ) 0t′′ ≠p . In fact, by (5) ( ) (0 1)t t′′ = < <0p  implies  

( ) ( )0 2 3 1 3 2 3 3( ) ( ) ( ) ( ) ( ) ( ) .B t u B t B t B t v B t B t′′ ′′ ′′ ′′ ′′ ′′− + + + + + =       0q q  

Since 1q  and 3q  are linearly independent, we have 

0

2 3

3

2 3

( )

( ) ( )
(0 1)

( )

( ) ( )

B tu
B t B t

t
B tv

B t B t

′′ = ′′ ′′+ < < ′′− =
 ′′ ′′+

. 

That is 

1
2 6(2 1)

(0 1)

1
2 6(2 1)

u
t

t
v

t

λ λ

λ λ

 = − − − < <
 = − +
 −

.                              (7) 

If (6) and (7) hold simultaneously, then we get 0λ = , contradicting (0,3]λ ∈ , so 0( ) 0t′′ ≠p . 

While 0( ) 0t′ =p , 0( ) 0t′′ ≠p , we know the direction of ( )t′p  changes when it passes through 0t . As a 

result, 0( )tp  is a cusp on the curve ( )tp . And therefore the curve ( )tp  having cusp is equivalent to 

( , )u v C∈ .  

 
4.1.2 About the inflection point 
 

The point ( )0 0( ) 0 1t t< <p  is the inflection point of the curve ( )tp  if and only if the direction of 

( ) ( )t t′ ′′×p p  changes when it passes through 0t . According to equation (4), we have 

( )( )1 3( ) ( ) ; ,t t f t u v′ ′′× = ×p p q q , 
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Where 

( ) 0 3 2 3 0 1

0 3 2 3 0 1

2 2 2

( ) ( ) ( ) ( ) ( ) ( )
; ,

( ) ( ) ( ) ( ) ( ) ( )

6 (2 ) 6 ( 2) 2 (3 ) 6 6 ( 1) .

B t B t B t B t B t B t
f t u v u v

B t B t B t B t B t B t

t t t u t vλ λ λ λ λ λ λ λ

′ ′ ′ ′ ′ ′
= − + +

′′ ′′ ′′ ′′ ′′ ′′

= − + − + − + + −

 

As a result， ( )0 0( ) 0 1t t< <P  is an inflection point of the curve ( )tp  if and only if the sign of ( ); ,f t u v  

changes when it passes through 0t . In the uv-plane, the curve ( )tp  with the potential region of inflection points 

shall be covered with a family of straight lines. By the theory of envelope [17], the envelope of the straight lines is 

( )
( )

; , 0,

; , 0.t

f t u v
f t u v

=
 ′ =

 

That is 
2 2 23 (2 ) 3 ( 2) (3 ) 3 3 ( 1) 0,

2 (2 ) ( 2) 2 2 ( 1) 0.

t t t u t v
t tu t v

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ

 − + − + − + + − =


− + − + + − =
                (8)

It is not difficult to find that u and v given by (6) are the solution of equations (8), which means that the 

envelope of the straight lines is just the curve C . 
As previously described, the curve C  is a strictly convex and continuous curve. So the swept region of 

tangent of the curve C  is S D C  . That is the potential region of inflection point(s). As shown in Fig. 2, the 

region D  is composed of two asymptotes 

1, 1
3 3

u vλ λ= − = −  

and the curve C  (not including the curve C ). The region S  includes two parts: one part is in the upper left 
part of the intersection of the two asymptotic lines, the other part is the lower right part of that. Given in Fig.2 are 
three different regional distributions of inflection point(s) corresponding to 1λ = , 2λ =  and 3λ = . 

   
a. 1λ =                   b. 2λ =                   c. 3λ =  

Fig. 2. Regional distribution of inflection point (S, single inflection point region; D, double inflection points 
region) 

For any point ( )0 0,u v S D C∈   , at least one line ( )0; , 0f t u v =  passing through ( )0 0,u v  on 

uv-plane is tangent to the curve C . Suppose ( )0 0,u v C∈  corresponds to the parameter 0.t Then we have 

( )0 0 0; , 0f t u v =  and ( )0 0 0; , 0tf t u v′ = . The Taylor expansion of ( )0 0; ,f t u v  about 0t  is 

( ) ( )( ) ( )2 2

0 0 0 0 0 0 0

1
; , ; ,

2 ttf t u v f t u v t t t tο′′= − + −  

where 

( )
2

0 0 0 0 0
0 0

2
; , 12 (2 ) 12 12 .

( 1)ttf t u v u v
t t

λλ λ λ λ′′ = − + + =
−

 

For 0(0,3], (0,1)tλ ∈ ∈ , we easily get ( )0 0 0; , 0ttf t u v′′ ≠ . So the sign of ( )0 0; ,f t u v  does not change 

when it passes through 0t . There is no inflection point on the cubic parametric curve. 
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If ( )0 0,u v S D∈  , let ( )0; , 0f t u v =  be the straight line passing through ( )0 0,u v  and be tangent to the 

curve C . The Taylor expansion of ( )0 0; ,f t u v  about 0t  is 

( ) ( )( ) ( )0 0 0 0 0 0 0; , ; ,tf t u v f t u v t t t tο′= − + − , 

where ( )0 0 0; , 0tf t u v′ ≠  (if ( )0 0 0; , 0tf t u v′ = , then ( )0 0,u v C∈ ). As a result, the sign of ( )0 0; ,f t u v  

changes when it passes through 0t . That is, 0( )tp  is the inflection point of the curve ( )tp . 

Furthermore, if ( )0 0,u v S∈ , then there exists only one straight line that is tangent to the curve C  and 

passing through ( )0 0,u v , and the corresponding cubic parametric curve ( )tp  has only one inflection point. If 

( )0 0,u v D∈ , then there exist two straight lines that are tangent to the curve C  and passing through ( )0 0,u v , 

and the corresponding curve ( )tp  has double inflection points. 

Fig. 2 shows that double inflection region of Ball curve is smaller than that of the cubic Bézier curve. But 
single inflection regions of these two kinds of curves are of the same size. 
 
4.1.3 About the double point 
 
The curve ( )tp  has a double point if and only if there are 1 20 1t t≤ < ≤  such that 

1 2( ) ( ) 0t t− =p p , 

which, according to equation (4), leads to the following system of equations 

0 2 0 1

2 2 3 2 2 1 3 1

3 1 3 2

2 2 3 2 2 1 3 1

( ) ( )
,

( ) ( ) ( ) ( )

( ) ( )
,

( ) ( ) ( ) ( )

B t B tu
B t B t B t B t

B t B tv
B t B t B t B t

− = + − −
 − =
 + − −

                            (9) 

where ( ) ( ){ }2
1 2 1 2 1 2, , 0 1t t t t t t∈ Δ = ∈ ≤ < ≤R . 

The system of equations (9) defines a topological mapping 2 2: ( )F FΔ ⊂ → Δ ⊂R R . The image region 

( )L F= Δ  is simply connected region on uv-plane. The three boundary lines of region Δ : 1 2 1, 0t t t= =  and 

2 1t =  correspond to the three boundary curves of the image region L : the curve C  (does not belong to L ), 

the curve 1L  and 2L  (both belong to L ), where 

2

1

( 1)
1,

(2 3)
: (0 1),

( 1)
1,

2 3

tu
t tL t

tv
t

λ

λ

 −= − − < ≤
− = − −

 

2 2

1,
2 1

: (0 1).
1,

( 1)(2 1)

tu
t

L t
tv

t t

λ

λ

 = − + ≤ <
 = −
 − +

 

For the curve 1L , (0,3], 0 1tλ ∈ < < , we know 

2d
0

d ( 1)( 3)

v t
u t t

= − <
− −

, 
( )

3
2

2

d 2 (2 3)
0

d 1 ( 3)

v t t
u t tλ

 −= ⋅ < − − 
, 

0
lim
t

u
+→

= −∞ , 
0

lim 1
3t

v λ
+→

= − . 

For the curve 2L , similarly 
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2

d ( 2)
0

d ( 1)

v t t
u t

+= − <
−

, 

32

2

d 2 2 1
0

d 1

v t
u tλ

+ = ⋅ < − 
, 

1
lim 1

3t
u λ

−→
= − , 

1
lim
t

v
−→

= −∞ . 

As a result，both the curves 1L  and 2L  are monotonically decreasing and strictly convex continuous curves. 

The curve 1L  intersects the curve 2L  at the point ( 1, 1)− − . What is more, the curve 1L  has the asymptote 

1
3

v λ= −  and the curve 2L  has the asymptote 1
3

u λ= − , and the curve C  does not intersect 1L  and 2L , 

as shown in Fig. 3. 
In summary, the curve C  (does not belong to L ), and the curves 1L  and 2L  (both belong to L ) round 

into simply connected region L . If ( )0 0,u v L∈ , the corresponding cubic parametric curve ( )tp  has only one 

double point. 
 

Example. For a given set of control points 2 ( 0,1, 2,3)i i∈ =P R , a few different cubic parametric curves 

contain singularities can be designed according to the conditions discussed above. Fig. 3 illustrates that the 
singularity can be removed by changing the value of the shape factor λ .  

Fig. 3a shows two segment cubic curves containing double inflection points when 2.4λ =  and 3λ = . Fig. 
3b is two segment cubic curves containing a single inflection point. Fig. 3c is two segment cubic curves 
containing a double point. For the same control polygon, Fig. 3d~f denote cubic curves containing double 
inflection points, cusp, double point, respectively. In particular, when 3λ = , the red curve is a cubic Bézier 
curve in Fig. 3.  

     
a. double inflection points      b. single inflection point         c. double point 

     
d. double inflection points           e. cusp                f. double point  

Fig. 3. The position of the singularity is adjusted by changing the shape factor 
Figure 3 tells us that we can construct the curve with the desired geometric characteristics by adjusting the 

shape factor value. Cubic parametric curve can construct more abundant geometric characteristics than cubic 
Bézier curve in geometric design. 
 
4.1.4 About the convexity 
 

We will discuss the case of 2( , ) ( )u v N C S D L∈ = \   R , meanwhile there are no cusp, double points or 

inflection points on the cubic parameter curve. And the direction of the binormal vector ( ) ( )t t′ ′′×p p  does not 

change. 
The upper left part of the area surrounded by the curves 1L  and 2L  (not including the curves 1L  or 2L ) 

is marked as 1N , and the lower right part of the area surrounded by the curves 1L  and 2L  is marked as 2N . 

Set 0 1 2\ ( )N N N N=  , as shown in Fig.3. 

Let  
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1 3( ) (0) [ ( ) (0)] ( ; , )( )t t t u vϕ′= × − = ×m p p p q q ,                      (10) 

1 3( ) [ ( ) (0)] ( ) ( ; , )( )t t t t u vψ′= − × = ×n p p p q q .                      (11) 

According to equations (4) and (5), we have 

{ } [ ]2
3 2 3( ; , ) ( ) [ ( ) ( )] (3 ) ( 2) (3 2 ) .t u v B t v B t B t t t t vϕ λ λ λ λ= + + = − + − + −               (12) 

{ }
{ }

0 3 3 0 2 3 3 2 3 3

0 2 3 0 2 3

( ; , ) [1 ( )] ( ) ( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )

[1 ( )][ ( ) ( )] ( )[ ( ) ( )] .

t u v B t B t B t B t u B t B t B t B t B t B t

v B t B t B t B t B t B t

ψ ′ ′ ′ ′ ′= − + + + − +
′ ′ ′+ − + + +

    (13) 

For any 0 (0,1)t ∈ , if none of the directions of the vectors ( )tm , ( )tn  and ( ) ( )t t′ ′′×p p  changes when 

they pass through 0t , the curve ( )tp  is globally convex. If the direction of the binormal vector ( ) ( )t t′ ′′×p p  

does not change when it passes through 0t , but the direction of ( )tm  or ( )tn  changes, then the curve ( )tp  

is locally convex [13]． 

As described above, if 0 1 2( , )u v N N N N∈ =   , the sign of the function ( ; , )f t u v  does not change, and 

the direction of the binormal vector ( ) ( )t t′ ′′×p p  does not change.  

From equation (12), if 

3 0

2 0 3 0 0

( )
1

( ) ( ) 2 2(2 3)

B tv
B t B t t

λ λ= − = − +
+ −

, 

then 0( ; , ) 0t u vϕ = , and the direction of the vector ( )tm  changes when it passes through 0t  and the range of 

v  is 1 1
3

v λ− < < − . And so, if 1( , )u v N∈ , the direction of either ( ) ( )t t′ ′′×p p , or ( )tn  does not change 

when they pass through 0t , but the direction of ( )tm  changes, the curve ( )tp  is locally convex. In fact, 1N  

happens to be the area covered by the tangent of 2L  in the region N . 

Similarly, solving the equations  

( ; , ) 0,

( ; , ) 0.t

t u v
t u v

ψ
ψ

=
 ′ =

 

for ,u v  verifies that the envelope of the family of straight lines ( ; , ) 0t u vψ =  happens to be the curve 1L . If 

2( , )u v N∈ , the direction of either ( ) ( )t t′ ′′×p p  or ( )tm  does not change when they pass through 0t , but 

the direction of ( )tn  changes, so the curve ( )tp  is locally convex. The region 2N  is the area covered by the 

tangent of 1L  in the region N . As shown in Fig. 4, where ( )1 : 1 1l v u= − < −  and ( )2 : 1 1l u v= − < − . 

If 0( , )u v N∈ , none of the directions of ( )tm , ( )tn  and ( ) ( )t t′ ′′×p p  changes when they pass through 

0t . Therefore the curve ( )tp  is globally convex. 

     
a. 1λ =                     b. 2λ =                      c. 3λ =  

Fig.4. The shape distribution of the cubic parameter curve (C is cusp region; L is double point region; S is single 
inflection point region; D is double inflection points region; N0 is global convexity region; 1 2N N  is local 

convexity region) 
In summary, we have the following conclusions. 
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Theorem 2. When edge vectors 1q  and 3q  are non-parallel, let 2 1 3u v= +q q q . Shape features of the plane 

cubic parametric curve ( )tp  depend on the following distribution of points ( , )u v  in the uv-plane (As shown 

in Table. 1). 
Table. 1. The shape distribution of the plane cubic parameter curve 

( , )u v  
Shape features of the plane cubic parametric curve ( )tp  

convexity cusp double point inflection point 
C  / one no no 

L  / no one no 
S  / no no one 

D  / no no two 

0N  global convexity no no no 

1 2N N  local convexity no no no 

 
4.2 Edge vectors 1q  and 3q  are parallel 

 
If 1 3||q q , without loss of generality, edge vectors 1q  and 2q  are the base vectors of the plane. Let 3 1α=q q . 

From equation (3), we have 

[ ] [ ]0 0 3 1 2 3 2( ) 1 ( ) ( ) ( ) ( ) .t B t B t B t B tα= + − + + +p P q q                       (14) 

 
4.2.1 about the cusp 
 
We discuss the curve ( )tp  similarly to section 4.1.1. The curve ( )tp  having cusp is equivalent to 

( ) 0, (0,1)t t′ = ∈p . From equation (14), we have 

[ ] [ ]0 3 1 2 3 2( ) ( ) ( ) ( ) ( )t B t B t B t B tα′ ′ ′ ′ ′= − + + +p q q . 

Because edge vectors 1q  and 2q  are linearly independent, we know ( ) 0, (0,1)t t′ = ∈p  is equivalent to 
2 2[3( 2) 2(3 2 ) ] [3( 2) 2(3 ) ] 0

6 (1 ) 0

t t t t
t t

λ λ λ α λ λ − + − + + − + − =


− =
                 (15) 

It is obvious that equations (15) has no solution for t  in (0,1) . So the plane cubic parameter curve ( )tp  has 

no cusp. 
 
4.2.2 About the inflection point 
 

The point ( )0 0( ) 0 1t t< <p  is the inflection point of the curve ( )tp  if and only if the direction of 

( ) ( )t t′ ′′×p p  changes when it passes through 0t . According to equation (14), we have 

( )( )1 2( ) ( ) ;t t f t α′ ′′× = ×p p q q , 

where 

( ) 0 2 3 3 2 3

0 2 3 3 2 3

2 2

( ) ( ) ( ) ( ) ( ) ( )
;

( ) ( ) ( ) ( ) ( ) ( )

6 (1 ) .

B t B t B t B t B t B t
f t

B t B t B t B t B t B t

t t

α α

λ α

′ ′ ′ ′ ′ ′+ +
= − +

′′ ′′ ′′ ′′ ′′ ′′+ +

 = − − 

 

When 0α > ,  

( ) ( ); 12 1 0tf t t tα λ α′ = − − < . 

Because  

( )0; 6 0f α λ= >  

and  
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( )1; 6 0f α λα= − < , 

the sign of ( );f t α  changes when it passes through a unique 0

1

1
t

α
=

+
. If and only if 0α >  (i.e. the 

direction of 1q  is the same as that of 3q ), the cubic parametric curve ( )tp  has one and only one inflection 

point unless otherwise the four control points are collinear. 
 
4.2.3 About the double point 
 
The curve ( )tp  has double points if and only if there are 1 20 1t t≤ < ≤  such that 1 2( ) ( ) 0t t− =p p , which 

leads to the following system of equations by (14) 

0 2 0 1

3 2 3 1

2 2 3 2 2 1 3 1

( ) ( )
,

( ) ( )

( ) ( ) ( ) ( )

B t B t
B t B t

B t B t B t B t

α − = −
 + = + ，

 

where the second equation can be written as 
2 2

1 1 2 2(3 2 ) (3 2 )t t t t− = − .                                   (16) 

Equation (16) implies that there exists 1 2, ) [0,1]t tη ∈ ⊆（  such that 2 33 -2 ) | 0,tt t η=′ =（  i.e., - 0,η η =（1 ）  

which contradicts (1 ) 0.η η− >  Hence the plane cubic parametric curve ( )tp  has no double point. 

 
To sum up, we have the following conclusions. 
 

Theorem 3. Suppose 1 3||q q .  

(1) The cubic parametric curve of ( )tp  has no cusp or double point; 

(2) If and only if when 0α >  (i.e. the direction of 1q  is the same as that of 3q ), the cubic parametric curve 

( )tp  has one and only one inflection point unless otherwise the four control points are collinear. 

 
5 The influence of the shape factor on the cubic parametric curve  
 
According to Theorem 2 and Theorem 3, We can further discuss the influence of the shape factor λ  on the cubic 
curve ( )tp . The change of the shape factor affects almost all regions. For example, when the curve ( )tp  has 

only one inflection point, we can adjust the shape factor λ  to eliminate it. So by adjusting the shape factor λ , 
one can control the shape of the curve flexibly, which brings about much convenience in practical geometric 
design. 

(1) Shape distribution of the cubic parametric curve ( )tp  is symmetric about the straight line u v= . 

(2) When 0λ = , the cubic parametric curve ( )tp  reduces to a straight line, and the effect of shape factor 

λ  disappears. When 2λ = , ( )tp  degenerates into the Ball curve. If 3λ = , ( )tp  degenerates into the 

cubic Bézier curve. 
(3) As the shape factor λ  increases, the curve C  is drawn towards the origin (0,0) , the curve 1L  is 

pulled toward the u-axis, and 2L  is pulled toward the v-axis. So the region S  and 0N  decrease, the region 

D , 1 2N N  and L  increase gradually. 

(4) When 
( , ) {( , ) | 1 , 0} \{( 1, 1)}u v u v u v∈ − ≤ < − − , 

then the first edge and the last edge of the control polygon intersects (except for that the first point and the last 
point coincide), there are likely singularity points, single inflection points or double inflection points on the curve 

( )tp . What is more, the curve ( )tp  may also be globally convex, but cannot be locally convex. Adjusting the 

shape factor can make the curve ( )tp  become a global convex curve. 
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6 Conclusion 
 
In this paper, we construct a class of cubic parametric curves with a variable shape factor. Ball curve, cubic 
Bézier curve and cubic Timmer curve are special cases of the curve. Geometric features of this cubic parametric 
curve with a shape factor are analyzed by means of the theory of envelope and topological mapping. The effects 
of the shape factor on the cubic parametric curve are made clear. Necessary and sufficient conditions are derived 
for this curve to have one or two inflection points, a loop or a cusp, or to be locally or globally convex. Those 
conditions are completely characterized by the relative position of the edge vectors of the control polygon and the 
shape factor. The results are summarized in a shape diagram. The conditions are useful for classifying and 
modifying the cubic parametric curve.  
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