Preprint
Article

Electrolyte Additive Concentration for Maximum Energy Storage in Lead-Acid Batteries

This version is not peer-reviewed.

Submitted:

20 September 2016

Posted:

20 September 2016

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The paper presents a method to assess the effect of electrolyte additives on the energy capacity of Pb-acid batteries. The method applies to any chemically unreactive additive, including suspensions and gels. The approach is thermodynamically based and it leads to the definition of a region of admissible concentrations –the battery’s admissible range– where the battery can undergo an indefinite number of charge/discharge cycles without suffering permanent damage. An experimental procedure to determine this range is presented. The obtained results provide a way to assess the potential of electrolyte additives to improve the energy capacity of Pb-acid batteries. The same results also provide a means to determine the additive concentration that produces the maximum energy capacity increase of the battery. The paper closes with an example of application of the proposed approach to a practical case.
Keywords: 
Pb-acid batteries, electrolyte additives, battery energy capacity, electrolyte additive concentration
Subject: 
Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

1907

Views

984

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated