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Abstract: An active power dispatch method for a microgrid (MG) with multi-type loads, renewable 
energy sources (RESs) and distributed energy storage devices (DESDs) is the focus of this paper. 
The MG operates in a grid-connected model, and distributed power sources contribute to the 
service for load demands. The outputs of multiple DESDs are controlled to optimize the active 
power dispatch. Our goal with optimization is to reduce the economic cost under time-of-use 
(TOU) price, and to adjust the excessively high or low load rate of distributed transformers (DTs) 
caused by the peak-valley demand and load uncertainties. To simulate a practical environment, the 
stochastic characteristics of multi-type loads are formulated. The transition matrix of system state is 
provided. Then, a finite-horizon Markov decision process (FHMDP) model is established to 
describe the dispatch optimization problem. A learning-based technique is adopted to search the 
optimal joint control policy of multiple DESDs. Finally, simulation experiments are performed to 
validate the effectiveness of the proposed method, and the fuzzification analysis of the method is 
presented. 
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0. Nomination 

N     number of nodes  

M     number of loads 

U     number of RESs  

C     number of DESDs  
LY     position matrix of load 
RY     position matrix of RES 
SY     position matrix of DESD 
Lp     active power vector of load 
Rp     active power vector of RES 
Sp      active power vector of DESD 
Np     active power vector 
N
np     active power consumed on node n  
NP     active power flow matrix 

W     TOU price 

TrO     capacity matrix of DT  

TrL     load rate matrix of DT 
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*L     upper limit of ideal load rate range 
*L     lower limit of ideal load rate range 

L
mU    basic pu value of load m 
 L

mU    predicted value of load m 

Δ L
mU   variation value of load m 


mh     ratio of Δ ( )L

mU t  and  ( )
L
mU t  

mh     level of mh  
L
mp     maximum demand of load m 
L
mp

    
minimum demand of load m 

LO     basic value vector of load 

RO     capacity vector of RES 
R
vU     basic per-unit value of RESs 

cSOC   SOC of DESD c  

cDE    self-discharge proportion of DESD c  

SO     capacity matrix of DESDs  

csE     maximum SOC level of DESD c  

ce      SOC level of DESD c  

lD     low price periods 

mD     moderate price periods 

hD      high price periods 

1. Introduction 

1.1 MG and active-power dispatch optimization 

Microgrid (MG) technology was first introduced to meet the increasing proportion of 
renewable energy sources (RESs) in power sources. As RESs are naturally uncertain and 
non-dispatchable, distributed energy storage devices (DESDs) connect to the MG networks along 
with RESs in most MG cases [1]. To make full use of distributed sources and increase operating 
efficiency, active power dispatch optimization for MGs has received considerable attention [2-3]. By 
scheduling the output of power sources or load demands, active power dispatch optimization can 
improve economy and reliability of MG systems under different situations. In this work, we are 
interested in the situation of a grid-connected MG consisting of multi-type loads, photovoltaic (PV) 
sources and DESDs, where the controllable devices are DESDs located at different nodes in the MG 
system. The variation processes of multi-type loads in the MG are uncontrollable and stochastic, 
which is described by a Markov model. The operation to the controllable DESD (including charge, 
idle and discharge) is the action in this paper, which can be performed by power electronics 
technology in practice [4]. The actions to DESDs are known to change the active power flow 
immediately, which will lead to various costs. The cost in this paper includes the economic cost and 
the load rate cost. The economic cost is from the energy consumption of the MG under time-of-use 
(TOU) price. The load rate cost is from the excessively high or excessively low load rates (relative to 
the ideal load rate range) of distributed transformers (DTs). Excessively high or low load rates of 
DTs can be considered a performance of disadvantageous active power flow [5], where an 
excessively high load rate may damage a DT and reduce its lifetime, and low load rate reflects an 
inadequate use of the capacity of DT and may increase the loss of DT [6]. Therefore, it is important to 
find an optimal joint control policy for multiple DESDs, which can minimize the expected economic 
cost and load rate cost accumulated in one day.  
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1.2 Difficulties and solutions  

In this paper, we assume the control centre observes the system state and makes dispatch 
decisions at discrete times. The control problem of multiple DESDs is modelled as a finite horizon 
Markov decision process (FHMDP), which is a common model in stochastic dynamic programming 
[7]. To make a proper decision, the control centre should collect a variety of information at each 
decision epoch, such as the time-of-use (TOU) price, the current load at each node and the outputs of 
each RES. This means that the state space will expand geometrically when the operation information 
is transformed into system state, which is the "curse of dimensionality" problem [8]. Applying the 
traditional numerical optimization algorithm (e.g., policy iteration) to this optimization problem will 
be difficult due to the expanding dimensionality of the system state. Furthermore, it is difficult to 
build an exact model of the MG system due to the complexity of the system and stochastic dynamics. 
This "curse of modelling" problem will be more obvious when the influence of model parameters 
error is considered.  

To solve these difficulties, we first choose the most essential state components to reduce the 
state-space dimension and simplify the system model. As TOU price and RES output are correlated 
to time, we replace the TOU price and RES output states with a time state to reduce one 
dimensionality of state space, instead of considering TOU price and RES output as state 
components. Secondly, we introduce a reinforcement learning (RL)–based method to solve the 
optimization problem. RL is a machine learning algorithm which is an online optimization and 
model-free method [9]. During the optimization process of RL, action explorations under each state 
can yield a variety of samples, with which the necessary state-action values can be learned and a 
better control policy can be found. This process can be realized by observing the operation of an 
actual MG system without an exact system model. Finally, a simulated annealing method is adopted 
in this paper to construct the exploration scheme, which is efficient for avoiding local optima. 

1.3 Related works 

MG technology can provide high efficiency and flexible access to the integration and utilization 
of RES and DESD. In recent years, a large amount of research has been performed concerning 
dispatch optimization for MGs.  

In dispatch optimization for MGs, economic dispatch has become vital and mostly accessible 
with the wide applications of electricity price technologies (e.g., real-time price, TOU). The TOU 
price mechanism is increasingly applied in daily life, which can lead to grid consumption a better 
state [10]. Considering the relationship between TOU price and economic dispatch for MGs, a key 
observation is that MG can achieve economic benefits from the operation of units inside only if the 
TOU price difference among different grid operation periods exceeds economic losses of units in 
[11]. According to this observation, the problem of optimal dispatch for the MG under TOU is solved 
[12]. A demand-side energy management system for a grid-connected MG with forecasted loads is 
developed in [13], where the responsive behaviours of customers under TOU are modelled by a 
matrix of self-elasticity and cross-elasticity. With the application of a genetic algorithm, the active 
power flow is optimized by multiple DESDs control in [14] and TOU cost management program is 
tested.  

Due to other concerns, for example reliability improvement, solely economic optimization 
would no longer be satisfactory for the MG dispatch problem. A variety of significant studies have 
been made concerning dispatch optimization with multiple goals for MGs [15-18]. Some main 
objectives are shown in [19], including maximizing the power availability of customer, minimizing 
operation cost and decreasing greenhouse gas emissions. All these objectives should be achieved 
under constraints, such as system power balance, power transmission constraints and the output 
limitation of devices. An energy dispatch model with socio-economic and environmental concerns is 
presented in [20], and a Fuzzy Self-Adaptive Modified Particle Swarm algorithm is adopted to solve 
the dispatch problem. Furthermore, there is a large amount of research about active power dispatch 
optimization by the control of DESD. An expert energy management system for a grid-connected 
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MG by the control of DESD is studied in [21]. In [22], an optimal dispatch method for a multi-region 
MG is proposed, where the variation processes of multiple loads are described by a discrete time 
Markov model, and long-term interaction currents between the MG and external grid are reduced 
by the control of multiple DESDs.  

In this paper, besides economic dispatch, another goal of active power dispatch optimization is 
to adjust the unexpected load rate of distributed transformers. Load rate of DT is defined by the ratio 
of the total peak load to its capacity. In reality, the load rate is a key factor affecting the service life of 
a transformer, which varies continuously. Considering annual load rate, a method for predicting 
and monitoring the service lifetime of DT is presented in [23]. Supposing the capacity of DT is 
determined, an algorithm for calculating the optimal load rate of DT is proposed in [24]. Although it 
is important for DT and network operation, there is little consideration of the load rate adjustment 
for DT when the dispatch optimization problems are solved. Therefore, with concern for economy 
improvement and load rate adjustment, we study a dispatch optimization problem for the MG.  

Among the dispatch optimization studies for MGs, several algorithms are used to solve the 
“curse of modelling” and “curse of dimensionality” problems. Considering uncertainties of RES and 
electric vehicle (EV) load in the MG, schedule optimization for the charging process of EVs is 
presented in [25], where the Simulation-based Policy Improvement (SBPI) method is adopted to 
solve the “curse of modelling” problem. An approximate dynamic programming technique is 
adopted in [26] to solve the “curse of dimensionality” occurring in the energy dispatch optimization 
for the MG with thermo-electric load and RES. However, these two algorithms are not suitable for 
this work due to the number of the samples that SBPI needs increasing geometrically as the state 
space expands, and the application of ADP technique adopted in [26] to this work needs the exact 
model of the MG. The algorithm that we use to solve the optimization problems is associated with 
simulated-annealing Q-learning (SAQ) [27], in which the simulated annealing is introduced in 
Q-learning algorithm to balance exploration and exploitation. SAQ will avoid not only the curse of 
modelling and the curse of dimensionality but also the local optima problem, which often occurs 
with Q-learning. 

1.4 Main contributions 

In this paper, a dispatch optimization method for the grid-connected MG is proposed to 
minimize the economic cost and adjust the load rates of DTs. To establish a more practical model, the 
stochastic characteristics of multi-type loads are discussed. The contributions of this paper can be 
summarized as follows: 
• We consider a general approach to model the active-power dispatch of the MG with RES, DESD 

and load, in which the numbers and positions of units (e.g., RES, DESD) can be set adaptably. 
• We describe a stochastic dispatch model for the MG using a finite-horizon markov decision 

model, where the uncertainties of multi-type loads and the adjustment for load rate of DT are 
considered.  

• We adopt a SAQ method to solve the dispatch optimization problem, and the method can 
perform online learning optimization.  
The remainder of this paper is organized as follows. In section 2, we describe the architecture of 

the MG with multi-types loads. In section 3, we formulate the problem into FHMDP mathematically. 
In section 4, we present the SAQ algorithm for the dispatch optimization problem. We provide 
simulation results in section 5 and some brief conclusions in section 6. 

2. The physical model of MG 

The MG consists of loads, RESs, DESDs, and a Point of Common Coupling (PCC) connected to 
an external power system. The MG can be viewed as a controllable unit as it connects to or 
disconnects from the external power system by PCC. In the connecting mode, the MG can transfer 
power with the external power system and consume the power from the external power system as a 
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regular load or provide power as a generator unit. We assume that the MG network consists of N 
nodes. M loads, V RESs and C DESDs connect to these nodes dispersedly.  

Let τ ×= ∈1[ ,..., , ..., ]L L L L N M
n NY Y Y Y R be the position matrix of load, where 

=[ (1),..., ( ),..., ( )]L L L L
n n n nY Y Y m Y M  consolidates the information of the loads connecting to node n , 

satisfying 

( )
0 ,
1 ,L

n

if load m connect to node n
Y m

otherwise


= 
                 

(1) 

Similarly, let ( )R
nY v and ( )S

nY c  be the element consolidating the information of the RES v  

and DESD c connecting to node n  respectively, and denote =  [ (1), , ( ), , ( )]R R R R
n n n nY Y Y v Y V ,

= [ (1),..., ( ),..., ( )]S S S S
n n n nY Y Y c Y C , τ ×= ∈1 2[ , , ..., ]R R R R N V

VY Y Y Y R  and τ ×= ∈1 2[ , ,..., ]S S S S N C
NY Y Y Y R .  

Let ( )L
mp t  be the active power demand of load m at time t , and denote

τ= 1( ) [ ( ),..., ( )]L L L
Mp t p t p t ×∈ 1MR . Similarly, let ( )R

vp t  be the active power output of RES m , ( )S
cp t  

be the active power output of DESD c  and denote ×= ∈ 1
1( ) [ ,..., , ..., ]R R R R V

v Vp t p p p R , 
×= ∈ 1

1[ ,..., , ..., ]S S S S C
c Cp p p p R . We assume that the RESs do not consume power and the loads do not 

provide power in this work, which implies that the elements of ( )Rp t  are non-positive and the 

elements of ( )Sp t  are non-negative. As opposed to these two units, DESD can make a bi-directional 

power transfer with outside environments. When DESD c  charges, ( )S
cp t  is positive, and ( )S

cp t  is 
negative when DESD c  discharges. The power consumed on node n  consists of the power from 
the units connected to the node, so the active power vector τ= 1 ,..., ,( ) [ ]...,N N N N

n Np p p pt satisfies 

( ) ( ) ( ) ( )L LN R R S SY p t Y p t Y pp t t= + +                    (2) 

From Equation (3) and (4), it is observed that the vectors , ,L R Sp p p  and Np  can be obtained if 
information about all units in the MG is known. Then, all the active power flow information of the 
MG can be obtained. We describe the structure of node n  to introduce the working mode of each 
node in the MG. 

 
Figure 1 Structure diagram of node n  

Figure 1 shows the structure diagram of node n . The active power consumed on node n  at 
time t  can be expressed as follows: 

= + +( ) ( ) () )( L L R R S S
n n n np Y p t Y p t Y p tt                    (3) 

τ τη η= +( ( ))  ( (( ) ( )) ( ))N
N

N
n

N
N P t tn pe n P te                 (4) 

Here,  
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11 1 1

1

1

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )( )

( ) ... ( ) ... ( )

N N N
q N

N N NN N N
n nq nN

N N N
N Nq NN

P P P

P P PP

P P P

t t t

t t tt R

t t t

×

 
 
 
 = ∈ 
 
 
  

    

    

            

(5) 

ηN  is a row vector with each element equal to 1 and ( )e n  is a column unit vector with the n-th 
element equals to 1 and others equal to 0. 

Without loss of generality, we let node 1 be the external power grid and PCC is located between 
node 1 and node 2. We denote ( )W t  as the TOU price at time t and the economic cost between t  
and + Δt t  can be calculated as 

+Δ +Δ
Δ = =   1( , ) { ( ) * ( )} { ( ) * ( )}

t t t t N
e G qt t

q
f t t W t P t dt W t P t dt

         
(6) 

In addition to the economic cost, another type of information about the MG which we focus on 
is the load rate of DT as mentioned in section 1. Load rate has a large impact on DT, so the two types 
of unexpected load rates mentioned in section 1 are attempted to be avoided. The capacity matrix of 
transformers in the MG is denoted as N N

TrO R ×∈  with element ( , )TrO n q  being the rated capacity 
of DT located between node n  and node q , and the power factor matrix of DT is denoted as 

N N
TrF R ×∈  with element ( , )TrF n q  being the power factor of DT located between node n  and node

q . We assume that ( , )TrO n x  and ( , )TrF n x  are ∞  if there is no transformer between node n  and 

node x . The matrix TrO  depends on the network structure of the MG, which has no correlation 

with the state of the devices. From TrO  and Equations (3) and (4), the load rate matrix TrL can be 
calculated as follows: 

[ ( ]( ))Tr T
N

r TrP tL F Ot ∅ ∅=                       (7) 

in which ∅  denotes element-wise division operation. 
The ideal range of the load rate of DT is denoted as * *[ , ]L L . When ( )TrL t  is calculated, we can 

determine the operation quality of DTs by comparing the non-zero elements in ( )TrL t  with the 

upper bound *L  and lower bound *L . As excessively high or low load rates will have adverse 

effects on DT and TrL  is uncontrollable for a structure-known MG, we can change NP  and Np  to 
adjust the load rate of DTs according to Equation (6).  

The goal of dispatch optimization is to reduce the economic cost of the MG and adjust the 
unexpected load rate of DTs. As in most cases, the maximum power point of RES is expected to be 
traced and the load demand should be met in this paper. Therefore, we control the output of DESDs 
in each period when required to change the active power flow in the MG network. The control 
actions are defined by = 1 2( , , ..., )S S S

Ca p p p , where csp  is the output power of DESD c . During peak 
periods, DESDs can provide energy for the MG to ease the supply pressure. On the other hand, the 
charging action of DESD in the valley period can improve the low power-demand level of the MG. 
However, considering the limited capacity of DESDs, there are two special cases as follows: 

Case 1. The state of charging (SOC) of one DESD reaches the upper limit for charging actions. In 
this case, charging operation will not elevate the energy level of this DESD obviously. On the 
contrary, high temperature caused by redundant charging action will significantly reduce the 
lifetime or may damage the device, so the charging action in this case is forbidden. 
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Case 2. The SOC of one DESD reaches the lower limit for discharging actions. Discharging 
operation to DESD is forbidden in this case, as the over-discharging operation would lower the 
performance of DESD.  

As we focus on the daily dispatch for the MG in this work, we let = 0BT  and = 24DT . In the 
following section, models of each component in the MG are discussed. 

2.1 Multi-type loads

Normally, electricity load in daily life can be divided into three types: residential load, 
commercial load, and industrial load. In this paper, we consider the case that the loads in the MG 
consist of the residential load and commercial load. Figure 2 and 3 show the daily per-unit (pu) 
profile of the commercial and residential load. In these figures, interval a  denotes the difference 
between the maximal load value and forecasted load value, and interval b  denotes the difference 
between the forecasted load value and minimal load value. As shown in the figures, the real-time 
value of load varies within an interval. These variations appear during each day because of the 
random behaviour of power consumers [28]. Considering this uncertain characteristic, we model the 
power demand with randomness in Figures 2 and 3. 

 

Figure 2 Daily profile of the commercial load  Figure 3 Daily profile of the residential load 

Let [ (1), , ( ), , ( )]L L L LO O O m O M=    be the basic value vector of load in which ( )LO m  is 

the basic value of the load m, ( )L
mU t  be the pu value of load m,  ( )

L
mU t  be the predicted pu value 

and Δ ( )L
mU t  be the variation value (pu). Then, for load ∈ {1, , }m M , the load demand can be 

expressed as follows: 

( ) ( ) * ( ) ( ( ) ( )) * ( )
L

L L L
mm m L m Lt U t O m U t U t O mp = = + Δ               (8) 

We let 

*( ) * ( )
L

L
mm mU t h U tΔ =                          (9) 

where ( )L
mp t  is the maximum load value, ( )L

mp t  is the minimum load value. Then, Equation (8) can 

be translated into 

*( ) (1 ) * ( ) * ( )
L
mm L

L
m t hp U t O m= +                    (10) 

satisfying the following constraints: 

( ) ( ) ( )L L L
m m mt t p tp p ≤≤

                        
(11) 
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( ) ( ) * ( )L L
Lm mt U t Op m=                        (12) 

( ) ( ) * ( )L L
Lm mt U t Op m=

                       
(13) 

Because  is correlated to ( )LO m  and it is non-random when ( )LO m  is set, the 

randomness of load m can be viewed as the randomness of *
mh . For each type of load, the predicted 

load value  ( )
L
mU t  and variation characteristic of *

mh  vary. The predicted value of residential load 
and commercial load at different periods [29-30] can be viewed as their basic values. The variation 
characteristic of *

mh  is associated with time, the type of load m and environment conditions, which 
can be modelled as a markov process and demonstrated by different state and transition 
probabilities [31].  

2.2 DESD 

Considering the charging and discharging efficiency, the SOC of DESD ∈{1,..., }c C  in this 
paper is calculated using Equation (14):  

 

( )

( )

( ) / ( ) ( )
( ) ( ) , ( ) 0

( )

( ) ( ) ( )
( ) ( ) , ( ) 0

( )

S
t t c dis c S S

c c ct
S

S
t t c cha c S S

c c ct
S

p t t DE O c
SOC t t SOC t p t

O c

p t t DE O c
SOC t t SOC t p t

O c

η

η

+Δ

+Δ

 − ⋅
 + Δ = + ≤



⋅ − ⋅
+ Δ = + >






(14) 

The SOC of DESD c and the action to DESD c satisfy the following constraints:  

≤ ≤ max0 ( )c cSOC t SOC                                                             (15) 

≤ ≥( ) 0 ( ) uplS
c c cp t if SOC t SOC                                              (16) 

≥ ≤( ) 0 ( )S downl
c c cp t if SOC t SOC                                            (17) 

Where ηdis  and ηcha  are the discharging and charging efficiency. cDE and ( )SO c  are the 
self-discharge power proportion and the nominal capacity of battery c . Moreover, the charging 
action to DESD c is forbidden once the SOC reaches upl

cSOC  and the discharging action to DESD c 

is forbidden once the SOC reaches downl
cSOC . 

We divide the SOC of DESD c into cB  intervals corresponding to cB  levels. cB  intervals can 

be denoted as −
max max max max

max[0, ),[ ,2 ),...,[( 1) * , ]c c c c
c c

c c c c

SOC SOC SOC SOC
B SOC

B B B B
. Given ( )cSOC t

and ( )cp t , the interval containing + Δ( )cSOC t t  can be calculated by Equation (14) and the SOC 
level at + Δt t  can be further known. Considering the two special cases of the action to DESD 
mentioned in Section 1, the SOC information of DESDs should be observed at each decision epoch, 
so we denote the SOC level of DESDs as state components in the problem-solving process. 

  

 ( )
L

mU t

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2016          doi:10.20944/preprints201609.0005.v1 

 

http://dx.doi.org/10.20944/preprints201609.0005.v1


 9 of 20 

 

2.3 Distributed generation and TOU price 

 

Figure 4 Daily profile (pu) of PV 

In MGs, the RES usually includes photovoltaic (PV), wind power, etc. In this paper, we assume 
that the RESs in the MG are PV sources. If there are multi-type RES in the MG, the method in this 
work is still feasible with the model of each RES. The output of PV is the maximum at midday and is 
approximately symmetric in one day. Figure 4 shows the output value (pu) of a 450KW PV system 
during a 24-hour period, where the data can found in [32]. For a given PV system, we can 
approximately predict the output power during a certain time according to this curve and its 
capacity.  

In this paper, the output of PV v  at time t  can be defined by 

( ) ( ) ( )R R
v vRt O v Up t= ⋅                       (18) 

Here, RO is the capacity vector of PV sources, where ( )RO v  is the capacity of the RES v , and 

( )R
vU t  is the output value (pu) of RES v at time t . The mapping function from time to R

vU  can be 
expressed as follows:  

=











∈ ∈
∈ ∈
∈ ∈
∈ ∈
∈ ∈
∈

0 [0,4) [22,23]
0.2 [4,6) [18,22)
0.4 [6,8) [17,18)
0.6 [8,9) [16,17)
0.8 [9,11) [14,16)
1 [11,14)

( )R
v

t and t
t and t
t and t
t and t
t and t
t

U t

                   

(19) 

We assume that the TOU price consists of three periods: high price period, moderate price 
period, low price period. The mapping function from time to TOU prices can be expressed as: 

 ( )
R t Dlow l
R t Dmid m
R t Dhigh h

W t =







∈
∈
∈

                       

(20) 

From Equations (18-20), we can obtain the PV output and TOU price for each period once the 
TOU price scheme and capacity of each PV are known. 

3. Mathematical model and optimization method 

In this section, we formulate the dispatch optimization problem as a finite-horizon Markov 
decision process (FHMDP) with Markovian state transition. We model this problem as a FHMDP 
due to the following reasons： 
1. The natural uncertainties and randomness of the load and PV can be described by Markov 

models as in numerous MGs and smart grid research [33-36]. 
2. Considering the effects of current actions to later system states, power dispatch of the power 

system in a given period of time can be modelled by discrete-time finite-state Markov chains [37]. 
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The FHMDP can be described by the tuple < >, , , ,T S A P f . To model the optimization 
problem into FHMDP, we transform the continuous states and actions into discrete variables. 
Various components of the tuple and their discretization processes are described in detail as 
follows:  

 

Figure 5 Decision epoch and periods 

Action and decision epoch: Figure 5 shows the decision epochs and operation periods of the 
MG system. We denote a set of decision epochs as = −{0,1,..., 1}T K  and the time duration of one 

period is −Δ = 124T K . The action chosen in decision epoch ∈ −{0,1,..., 1}k K  which will be 

performed in the period k is denoted by = 1 2( ) ( ( ), ( ),..., ( ))S S S
Ca k p k p k p k ， where 

∈ = × × × × 1 ,c Ca A A A A = − ∈ { ,0, }, c {1, ,C}c s sA p p . We assume ( )sp t  is constant when 
∈ Δ + Δ[ * , ( 1) * )t k T k T . There is no action at decision epoch K , when system reaches the 

terminate state.  
State: Denote state in period k  as = ×∈1 1( ),..., ( ), ( )( ) ( , ,..., ( =)) K Lo

M
ad

Cs k k h h b b S S Sk k k k × BatS , 

where ( )mh k  represents the level state of ( )mh k  at period k  and ( )cb k  denotes the SOC level 

state of DESD c  at period k . Let = × ×1 ...L L LMS S S  be the state space of the load variation level, 
and = × ×1 ...D D DCS S S  be the state space of the level. The discretization process from * ( )mh k  to 

( )mh k  is shown as follows:  

First, the load-variation state is denoted as ∈ − −( ) { ,..., 1,0,1,..., }m m mk Z Zh . Then, we 

discretize  ( ), ( ), ( )
L L L
m m mU k U k U k  and determine the value of these variables in each period as Figure 

2 and Figure 3, where these values are constant in one epoch. The value of Δ L
mU  when =( )mh k z  

is defined by 






=

−
 >



= =


Δ

 <


−

( )

( ) ( ) ,

( )

(

0

) (

( )| , 0

0) ,

m

LL
m m

L
L

mm h
L L
m m

k z

k U k z
Z

U U k

U k k z

U

z
Z

z

k z

U

                 

(21) 

Then, ( )L
mp k can be calculated by Equation (10), the output of RES m  can be calculated as 

Equations (18-19) and operation information of the MG is known once the action to multiple DESDs 
are chosen. 

Transition: = × × → [1,0]P S A S  represents the state transition function, which can be 
described by the transition of the state component as follows: 

The period state transition can be characterized by the state transition probability ( '| )TP k k , 
satisfying  

 = +
=  ≠ + ,

1 , ' 1
( '| )

0 ' 1T

k k
k k

P k k
                      

(22) 

k TΔTΔ 24( 1)K T− Δ
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The SOC state transition can be characterized by the state transition probability
+( 1)| ( ), ( )( )B c cb bP k k a k . The SOC level changes over time depending on the actions taken. 

Therefore, we can calculate continuous SOC values as (14) and renew current SOC-level states at 
each decision epoch.  

The load-variation state transition can be characterized by the state transition probability
+( 1)| ( ))( mL mP h hk k , which will be evaluated by estimating the variation given the current state 

and load type. The transition of the load variation level state is independent of the transition of the 
SOC level state, so the overall state transition probabilities can be defined by 

= =

+ = × + × +∏ ∏
1 1

( 1)| ( ), ( )) ( '| ) ( 1)|( ( (( )) ( 1)| ( ), ( ))
M C

T B m m L c c
m c

s k s k a k P k k P k k P k k a kP h h b b (23) 

Cost function: The cost function consists of economic cost and load rate cost and is denoted as  

 ( ) ( )( ( ), ( )) ( ), ( ) ( ), ( )e Tre Trf s k a k s k a k s k af f kθ θ+=                (24) 

where 

                                                                   
1 2

{1,..., } {1,..., } {1,..., } {1,..., }
( ( ), ( )) ( ( ), ( )) ( ( ), ( ))Tr h ij l ij

i N j N i N j N
f s k a k y s k a k y s k a kθ θ

∈ ∈ ∈ ∈

= +           (25) 

= Δ( ( ), ( )) ( ( )) * ( ( ), ( )) *e Gf s k a k W s k P s k a k T                   (26) 

 
In (22),  

 1 ( ), ( )
*1 ( , )

( ( ), ( ))
0

Tr s k a k
ij

L i j
y s k a k

else

L >= 


                                            (27) 

*
2 ( ), ( )1 0 ( , )
( ( ), ( ))

0
Tr s k a k

ij

L i j L
y s k a k

else

 < <= 


                                      (28) 

For FHMDP, the system obtains the terminate cost once the terminate state is reached. The 
terminate cost is correlated to the terminate state, and the terminate cost is defined by a function of 
SOC levels of multiple DESDs, 

θ= ( ( ))) (g cseg Ks K
                      

(29) 

From Equations (22-25), we can see that values of θ θ θ, ,e TRH TRL  will affect the optimization 
process, and these values can be adjusted to realize various objectives such as solely economic 
optimization withθ = 0TR . The control policy is denoted by π π→ ∈Ω: ,S A  where Ω  is the set 
of the policy. The cost expected to be minimized is the average sum of each cost during the entire 
day, which can be defined by 

 π π
−

=

= +
1

0
[ ( ( ), ( ( ))) ( ( ))]

K

k
J E f s k s k g s K

               
(30) 

The objective of the proposed method is to find an optimal policyπ *  which minimizes the 
average total cost of the MG during one day，that is 

 π

π
π

∈Ω
=* arg min J

                       
(31) 
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To find the optimal policy, we propose a SAQ based method according to the FHMDP model. 
SAQ is a typical reinforcement learning method, which can evaluate the expected utility of the 
available actions without a certain model of the environment. The method can effectively solve 
problems with stochastic transitions and costs. Additionally, SAQ can be implemented to solve 
optimization problems by simulating or observing a running system and learning the state-action 
value.  

In SAQ, the Q-factor is denoted as ( ( ), ( ))Q s k a k  and its updating function for FHMDP is 
shown as Equations (32-33): 

When the next state of ( )s k  is a terminate state, = − 1k K , 

( ( ), ( )) ( ( ), ( )) ( ( ) ( ( ), ( )) ( )) )( ), (sQ s k a k Q s k a k f Q s k a k Vk a k Kβ α= + − + (32) 

When it is not a terminate state, -1k K≠ , 

*( ( ), ( )) ( ( ), ( )) ( ( ) ( ( ),( ( )) min ( ( 1)), ,( )) )
a A

s k a kQ s k a k Q s k a k f Q s k a k Q s k aβ α
∈

= + − + + (33) 

In Equation (31), ( )V K is a function that depends on terminate state ( )s K . In this paper, we 
define it by 

ω= ⋅ )) (( ( )g s KV K                                       (34) 

where ω is a coefficient.  
The ε-greedy scheme is commonly used in Q-learning to trade off exploration and exploit. 

However, geometrically expanding state space will make a great impact on the effect of ε-greedy 
scheme. Therefore, we introduce simulated annealing to construct the exploration scheme. Detailed 
information about the algorithm can be acquired from the flow chart in Figure 6. 

 

Figure 6 Flow chart of SAQ 

4. Numerical results and analysis 

In this section, we present several results to illustrate the effectiveness of the dispatch method 
proposed. Without loss of generality, we assume that the number of load at each node is 1 at most, 
as well as the number of RES and DESD. A MG system including commercial loads, residential 

( ), ( )), ( ( ), ( )), ( 1)s k a k f s k a k s k< + >

(0)s

1samp samp= +

1k k= + 1k K= − ？

*samp samp= ？

( )gra k ( )rna k

sampβ

sampβ

τ

( ( ( ), ) ( ( ), ))
exp( ) (0,1)gr rnQ s k a Q s k a

random
ZH

− −
> ( ) ( )rna k a k=

( ) ( )gra k a k=

*H H τ=

( )500 intsamp eger= ？
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loads, PV, DTs and DESDs is shown in Figure 7. As the focus of this work is the active power 
dispatch, we assume that the power factor of each DT is 0.95. The basic value of commercial load 1 
and 2 and residential load 1 are 120 KW, 90KW and 100KW, respectively, and their pu-values are 
shown in Figure 1 and Figure 2. The other parameters of the MG are as follows: parameters of 
DESDs are listed in Table 1. Nominal capacity and the limits of each DT are summarized in Table 2. 
Parameters involved in discretization and learning optimization are listed in Table 3. The price of 
different TOU mechanisms at each period is shown in Appendix A, which is used to make several 
comparisons with the proposed method. 

 

Figure 7 Structure diagram of MG with multiple types of load 

Table 1. Parameters of DESDs 

 
ηdis  

(%) 

ηcha  

(%) 

cDE  

(%) 

( )SO c  

(KWh) 
upl
cSOC  downl

cSOC  

DESD1 98 98 0.5 100 0.80 0.20 
DESD2 97 97 0.7 80 0.75 0.25 

Table 2. Parameters of DTs 

 Capacity 
(KVA) 

*L  
(%) 

 
(%) 

DT1 300 100 40 
DT2 120 100 40 
DT3 100 100 40 

Table 3. Parameters of SAQ 

Parameter 1E  2E  K  1Z  2Z  eθ  Trθ  θg  

value 5 4 24 3 2 1 1 10 

Parameter lθ  hθ  H Z τ  β  α  ω  

value 40 100 10 1 0.95 0.96 0.98 40 

*L
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 Figure 8 Average economic cost curve Figure 9 Average load rate cost curve 

Figure 8 and Figure 9 show the optimization curves of the average economic cost and load rate 
cost. From many repeated and independent runs, we observed that the SAQ usually finds a better 
policy than the Q-learning algorithm as shown in the figures above. With SAQ, the economic cost of 
the system is reduced by 25%, which is approximately 3% better than Q-learning. Additionally, we 
can observe that the optimization convergence rate is fast for both methods, but the fluctuations at 
the early stage are obvious in both. The fast convergence rate is due to some obvious and easily 
accessible transition laws for the controller, such as the transition laws of PV generation and TOU 
price, which only depend on the current decision epoch. The early fluctuation range is obvious 
because high price periods have a large impact on the average cost of the system, during which 
different policies will lead to large differences in the average cost. The load rate cost is reduced by 
approximately 80% more than the economic cost, but still cannot be eliminated completely. As the 
capacity of each DESD is limited, the DESDs are not able to assist in adjusting the load rate when 
the loads reach continuously low or high conditions. Therefore, the load rate cost still exists after 
optimization. 

 

Figure 10 Economic cost under different ( ( ))g s K  Figure 11 Load rate cost under different ( ( ))g s K  

Figure 10 and Figure 11 show the average economic cost and load rate costs with different 
termination cost function 1( ( )) * ( ( ))g csg s K e Kθ=   and 2( ( )) - * ( ( ))g csg s K e Kθ=  . From the 

two figures above, we can obtain the following two conclusions. 
First, when the terminated cost is 1( ( ))g s K , the convergence rate of economic cost is faster. 

This occurs because when the termination cost is 1( ( ))g s K , the system can learn such a fact 
faster: It is advantageous to sell out the electrical energy at the last time in a day. As samples 
are mutually independent when we study a FHMDP problem, the energy stored in the DESDs 
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will not be used after the current day sample in this paper. This information will guide the 
smart control agent to sell the energy and decrease the economic cost.  

Second, different than the economic cost, the convergence rate of the load rate cost is slower 
when the termination cost is 1( ( ))g s K . In this case, the agent will learn quickly that it is 
advantageous to store a number of energy at later periods in the day. As the excessively low load 
rate mainly occurs at the valley periods, the charging actions of DESDs will increase the load rate of 
DTs effectively. Therefore, the load rate cost decreases quickly when the termination cost is 

2 ( ( ))g s K and the economic cost decreases slowly. 
Figure 10 and Figure 11 show that the definition of termination costs can affect the 

optimization process of the system to an extent. However, when the termination cost is defined 
differently, there is little difference in the final optimization results of each cost, although the 
convergence rates vary dramatically. This is due to that the effect of termination cost to optimization 
will decline as the optimization process undergoing and the agent will eventually learn the optimal 
policy irrespective of the termination cost. Termination cost is still important, especially considering 
the online optimization. For different systems and objectives in online cases, we can choose the 
corresponding termination costs to make the optimization process faster and more accurate. 

 

    Figure 12 Active Power of each unit in one day 

Figure 12 shows the power of loads and DESDs in a 24-hour sample where the MG system 
operates under the optimal policy. In this sample, the initial SOC of two DESDs are 0.202 and 0.157. 
The load demands are light in the MG between hours 1~7, at this time, DESDs store energy from the 
network within its power range to take advantage of the low-price periods. When the MG reaches 
the first middle-price duration, the actions of the DESDs vary. In hour 8, DESD1 takes a charging 
action to prepare for the peak-load and high-price periods, but DESD2 takes a discharging action to 
avoid the high load rate as the residential-load demand becomes high at this time. In hour 9, DESD1 
takes an idling action as the SOC reaches the upper limit and DESD2 takes a charging action. 
Between hours 11~16, DESDs never take charging actions, as the TOU price is high and a peak-load 
period of commercial load appears at this time. DESD1 take discharging actions at hour 11, 12, 14 
and 15 when the load rate of DT2 will be excessively high without the supply of DESD. The load 
rate will inevitably become high once the peak-load duration exceeds the maximal supply time of 
DESDs. For later periods, DESDs take charging actions once the load demands are excessively low, 
meanwhile the energy is sold out to decrease the economic cost given that the discharging will not 
cause an excessively low load rate. 
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(a)                                          (b) 

 

(c)                                          (d) 

Figure 13 Load rate records for DTs  

Figure 13 (a-c) shows the load rate record of DT 1-3 under three different policies. Non-policy 
indicates that DESDs take no actions irrespective of the solutions provided by the MG. At each 
decision period, random policy indicates that the DESDs select an action randomly in admissible 
action space. The load rate under non-policy demonstrates the inherent load-factor performance of 
the MG. (a) shows the load rate of DT1 in one day (one sample), which shows that the excessively 
low load rate occurring in night periods is regulated. In some samples, excessively low load rates 
still exist because of the uncertainty of the initial SOC and the duration of peak load periods, just 
like the early period in (b). Between hours 10 to 14, the power outputs of DESDs increase to 
decrease the load rate as the load demand in the MG rises in (c). (d) shows the statistical data of 
excessively high and low load rate within a month. H-DT1 is the number of periods when 
excessively high load rate occurs, and L-DT1 is the number of periods when excessively high load 
rate occurs. The regulation effect of high load rate is more obvious than the effect of low load rate, 
as excessively high load rates will cause more cost to the MG system.  

 

Fig 14 Fuzzification results 
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Moreover, the fuzzification result of the proposed method is presented in Figure 14, where we 
let + 2e Trθ θ = . The objective of the dispatch will be economic optimization or load rate 

optimization when Trθ is 0 and 2. From the figure, the load rate cost under optimal policy when 

=0Trθ  is obviously lower than the cost under random policy when =2Trθ  because the actions for 
economic dispatch simultaneously regulate the load rate to an extent in some periods, such as the 
discharging action at high-price periods, which are peak periods. On the other hand, the economic 
cost and load rate cost of the multi-objective dispatch model are slightly larger than those under 
single-objective dispatch. This shows that the multi-objective optimization method in this paper can 
find a variety of solutions for decreasing the load rate cost and economic cost to achieve DT security 
and economic benefits. Therefore, for different MGs and controllers, the parameters Trθ and θe  
can be set differently to realize various optimization results. 

 

Figure 15 Economic cost comparison under different TOU mechanism 

To illustrate the adaptability of the proposed method, we perform experiments under different 
TOU to test the economic reduction. The results of these tests are shown in Figure 15. The price of 
TOU1-TOU6 and their respective data sources are listed in Appendix A. As economic dispatch has a 
strong correlation with the load demand and price in each period, reduction of economic cost varies 
with different TOU mechanisms, but the differences are all obvious. 

5. Conclusions  

In this work, a dispatch optimization problem for a grid-connected MG with multi-objective is 
studied. Considering the reduction of economic cost and load rate cost, a dispatch optimization 
method by the control of multiple DESDs is introduced. First, we presented an MG model that 
includes the physical and stochastic characteristic of each unit inside. Second, we formulate the 
problem as a FHMDP model. Finally, a SAQ optimization method is adopted to solve the problem 
online. In this method, the optimal action under each state can be obtained by the state-action value, 
and those state-action pairs are used to form an optimal policy.  

In this paper, we consider the control of active power flow and assume that the power factor of 
DTs is constant in each period. More realistically, we can consider the case that the reactive power 
flow is scheduled by the static var compensators (SVCs) or capacitor banks (CBs), and time-delay 
phenomena are considered. These two topics are interesting for further work. Other future work 
includes considering using neural networks (e.g., BP and RBF) to approximate the compact 
Q-factors, which are maintained in a list in this paper. 
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Appendix A：Several TOU price mechanisms 

Durati
on 

0:00 
~ 

1:00 

1:00 
~ 

2:00 

2:00 
~ 

3:00 

3:00 
~ 

4:00 

4:00 
~ 

5:00 

5:00 
~ 

6:00 

6:00 
~ 

7:00 

7:00 
~ 

8:00 

8:00 
~ 

9:00 

9:00 
~ 

10:00 

10:00
~ 

11:00 

11:00
~ 

12:00 
TOU1(

$) 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.175 0.175 0.175 0.175 0.128 

TOU 
2($) 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.128 0.128 0.128 0.128 0.175 

TOU 
3($) 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.076 0.076 0.167 0.167 0.167 

TOU 
4($) 0.111 0.111 0.111 0.090 0.090 0.090 0.090 0.090 0.111 0.111 0.128 0.152 

TOU 
5($) 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.166 0.166 0.166 0.166 0.114 

TOU 
6($) 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.132 0.132 0.132 0.132 

Durati
on 

12:00
~ 

13:00 

13:00
~ 

14:00 

14:00
~ 

15:00 

15:00
~ 

16:00 

16:00
~ 

17:00 

17:00
~ 

18:00 

18:00
~ 

19:00 

19:00
~ 

20:00 

20:00
~ 

21:00 

21:00
~ 

22:00 

22:00
~ 

23:00 

23:00
~ 

24:00 
TOU 
1($) 0.128 0.128 0.128 0.128 0.128 0.175 0.175 0.083 0.083 0.083 0.083 0.083 

TOU 
2($) 0.175 0.175 0.175 0.175 0.175 0.128 0.128 0.083 0.083 0.083 0.083 0.083 

TOU 
3($) 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 

TOU 
4($) 0.152 0.152 0.111 0.111 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.111 

TOU 
5($) 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.166 0.166 0.166 0.166 0.065 

TOU 
6($) 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.118 0.118 0.118 
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