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Abstract: According to the fact that the low convergence level on the complete elliptic integral of 

the first kind for the modulus which having values approach to one. In this paper we propose 

novelty of the complete elliptic integral consists of the new infinite series. We apply the scheme of 

iteration by substituting the common modulus with own modulus function into the new infinite 

series. We obtained so many new exact formulas of the complete elliptic integral derived from this 

method correspond to the number of iteration order. On the other hand, it has been also obtained 

a lot of new modulus functions rather than common used previously. The calculation results show 

that the number of significant figures of the new infinite series of the complete elliptic integral of 

the first kind is increased more and more. It means more fastly convergent would be obtained 

comparison values with the previous infinite series. 
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1. Introduction

The complete elliptic integral of the first kind  kK  is one of three elliptic integrals that 

getting a lot of attentions. It is not only used by mathematicians but also by engineers. On the 

development of scientifics for instance, the complete elliptic integral of the first kind are commonly 

used by Glasser [1] in studying a wide variety of problems involving three dimensional lattices, for 

creating Pi formula via Arithmetic Geometric Mean popularized by Salamin [2], and Borwein, et.al 

[3], for building analytical solution of the nonlinear pendulum performed by Karlheinz [4], as the 

basis for generalizing incomplete elliptic integral of the first kind [5], as the basis of development 

hypergeometric series [6], etc. Whereas in the fields of application, it is widely used in the design of 

electromagnetic devices, namely as basic function in conformal mapping which is mathematical 

tool for solving Electromagnetic problems [7],[8],[9], as mathematical model for designing parallel 

plate capacitor used by Palmer [10], curved patch capacitor [11], and micro-strip [12] that 

encountered in the fields of communication especially on antennas application and detectors, etc. 

The first kind  kK  can be used to obtain the complete elliptic integral of the second kind  kE , 

because both of these functions having relationship of ordinary differential equation [13], and 

Legendre relation [14]. However,  kK  can be calculated in several ways, that is by using power 

series, Fourier series, theta functions, and Landen transformations. The first three methods are only 

convenient and useful for small k (approaching zero), unfortunately they are not convergent for 

the value of large k (approaching one). On the other hand, the Landen transformations are rapidly 

convergent, but are non-trivial to be applied [15]. Therefore enhancement of convergence level of 

the  kK  which consists of large k remains interesting to be considered. 
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In this early assignment, we focus to enhance the convergence level of the complete elliptic 

integral of the first kind  kK  by transforming the value of modulus k  into an appropriate 

modulus functions to produce transformation functions. From the literature review that we have 

conducted, there are two well known examples of such modulus transformation, namely 
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kK , in which 1i , where 21' kk   is the complementary of modulus 

k [16]. Nevertheles, it is necessarry to find the other forms of transformation function that provide 

higher degree of convergence level. For this purpose we perform modification to the original 

integral form of  kK  to obtain its new infinite series. Further, from this new infinite series will be 

known the new transformation function, which is useful for determining the modulus function. 

The modulus function of k will be useful to enhance the level of  kK  convergence through 

employing the other scheme of iteration beyond, that has been applied on previous work as 

mentioned in Borwein’s book[17]. 

I.1 Formulation of the New Infinite Series of the Complete Elliptic Integral of the First Kind 

 In order to obtain the new infinite series version of the  kK we firstly recall 

the definition of the complete elliptic integral of the first kind as appear on mathematical text books 

authorized respectively by Carlson [16], Borwein [17], and Boas [18], 
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We call Eqn.(1) as the original complete elliptic integral of the first kind which its infinite series is in 

the following form as appears in Eqn.(1.3.6) on Borwein’s book [17], 
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where for the first five terms (the highest term corresponds to 4n ) as following, 
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The fact that the double factorial of (2n-1) can be represented as following, 
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then the infinite series in Eqn.(2) can be written in the following form,
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In formulating the new version of such  kK  infinite series, we firstly modify 

the integral form in Eqn.(1) by varying the angle   into the double angle 2  through 

relationship of the following trigonometry identity,   

 .2cos1
2

1
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By substituting Eqn.(6) into Eqn.(1) gives, 
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where the subscript N is included to distinguish from its original integral form. The new version of 

the elliptic integral is also in infinite series form, i.e, 
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or, it can be written as, 
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On both Eqn.(8) and Eqn.(9) above, we have employed the following relationship of double 

factorial and factorial in Eqn.(4) by replacing n with n2 , namely, 
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Other form of the new version of the complete elliptic integral of the first kind is of form, 
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that having infinite series form, 
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where for the first four terms as following, 
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which can further be simplified to, 
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It appears that Eqn.(14) equals to Eqn.(8) and/or with Eqn.(9). 

I.2 Formulation of New Transformation Function for the Complete Elliptic integral of the First 

Kind 

Before performing the step formulation for finding the new transformation function of  kK  
and/or  NkK , it is necessary to show that really both original and new version of the complete

elliptic integral of first kind are the same. Both integrals are different only in the convergence level 

of its infinite series. Of course  NkK will reduce to  kK  when 2  is varied back into  .

Nevertheles, because  2cos
 has two definitions, then varying the cosine of such 2  must be

performed one by one. Begin by introducing the following variable, 
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Into Eqn.(16), we firstly subtitute the following cosine of 2 , 

 2sin212cos  , (17) 

that giving the following integral form, 
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With the above values of 1A and kk N 1 , it appears  that Eqn.(18) has verified the equality of 
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Eqn.(26) indicates that there is the other form of the original of the complete elliptic integral of first 

kind  kK  aside from its original form on Eqn.(1), namely in the form, 
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By involving the new definition of  kK  then from Eqn.(26) we obtain the following 

transformation function, 
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Due to an equality in Eqn.(21), then from the Eqn.(28) it can also be formed the following 
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after applying the following identity, 
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then Eqn.(33) becomes, 
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In addition, applying the cosine of 2 from Eqn.(17), then the Eqn.(35) can be simplified as, 
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Like previously explanation, from the Eqn.(36)  appears that  applying the cosine of 2  as in 

Eqn.(21) only gives an equality,i.e, 
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So, by using Eqn.(27) then Eqn.(38) produces the following transformation function, 
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Similarly, by noticing Eqn.(32), then we obtain, 

  ,
'2

'1

'

1












 


ki

k
K

k
kK N (40) 

Finally, we obtain a new transformation function in the following form, 
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I.3 Enhancement the Level of Convergence of the Complete Elliptic Integral of the First Kind by 

Applying the Scheme of Iteration to Its New Transformation Function 

As mentioned previously that the infinite series of the complete elliptic integral of the first kind 

is slowly convergent. To enhance the level of its convergence, we implement the scheme of iteration 
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to the transformation functions of  kK . Here, we just involving two transformation functions in 

Eqn.(30) and Eqn.(41). Starting with Eqn.(30), after exerting the change of modulus
'k

ik
k   into 

Eqn.(8) to forms 
Nk

ik
K 









'
so we obtain, 

 
 

   
,

'
21

1

!2!2

!4

'2

1
12

'

1

2

2
0

232
1

n

n
n

N

ik

knn

n

k

ik
k

kK








































 





(42) 

substituting the complementary modulus 21' kk  into Eqn.(42), then we have, 

 
 

   

n

n
n

N
k

k

nn

n

k

kK

2

2

2

0
232

1
2!2!2

!4

22

2

















 





(43) 

Due to Eqn.(43) can reduce to Eqn.(8), we conclude that the scheme of iteration by 

the change modulus 
'k

ik
k   can not be used to enhance the level of convergence of the complete 

elliptic integral of the first kind. Therefore, implemetation of the iteration scheme is now focused on 

Eqn.(41), 

  











 
  3,2,1,

'2

'1

'

1
1 m

ki

k
K

k
kK

N

mNm (44) 

here m is the step of iteration, whereas  
N

kK
0 is the infinite series of the new version of elliptic 

integral in Eqn.(8) and/or Eqn.(9). But for simplicity we choose the form of infinite series of Eqn.(9), 

where for the first iteration ( 1m ), we obtain 

  ,
'2

'1

'

1
01

N

N
ki

k
K

k
kK 












 
 (45) 

After exerting the change of modulus 
'2

'1

ki

k
k


 into on Eqn.(9), we obtain the following infinite 

series of  kK1 , namely: 

 
 

 
 





















 



0

4

2

2

222
1

'6'1

'1

!2

!!14

'6'1

2

n

n

n
N

kk

k

n

n

kk
kK


(46) 

Further, for the second iteration ( 2m ) we obtain, 

  .
'2

'1

'

1
12

N

N
ki

k
K

k
kK 









 
 (47) 
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However, before applying the change of modulus 
'2

'1

ki

k
k


 into  NkK1 on Eqn.(46), we must 

substitute 21' kk  so that Eqn.(47) forms the following infinite series, namely; 

 
 

 
,

162

11

!2

!!14

162

2

'

1

0

4

22

2

2222
2 



 























n

n

n
N

kk

k

n

n

kk
k

kK


(48) 

Finally, the change of modulus 
'2

'1

ki

k
k


 into Eqn.(48) gives, 

 
 

 

 
 

 
.

''112'6'1

'1

!2

!!14

''112'6'1

22
4

2

2

0
222

2

n

n
n

N

kkkk

k

n

n

kkkk

kK




















 






 

(49) 

The same procedure to the second iteration, for the third iteration ( 3m ), we obtain 

 
N

N
ki

k
K

k
kK 












 


'2

'1

'

1
23 (50) 

and we obtain, 

 
     

 

       

n

n
n

N

kkkkkkk

kk

n

n

kkkkkkk

kK

4

22

2

0
22

22
3

''12'112''112'6'1

'2'1

!2

!!14

''12'112''112'6'1

24




























 















(51) 

By similarly way for the fourth iteration ( 4m ), we obtain 

 
N

N
ki

k
K

k
kK 







 


'2

'1

'

1
34 (52) 

that giving the following infinite series, 

 

         

 

 

 

         
































 





















 



0

4

2
22

2

22

2
22

4

''122'1'2'112''12'112''112'6'1

''122'1

!2

!!14

''122'1'2'112''12'112''112'6'1

28

n

n

n

N

kkkkkkkkkkkk

kkk

n

n

kkkkkkkkkkkk

kK


(53) 

After performing the simplification of algebra processes, the fourth exact formulas of  Nm kK

infinite series above can be expressed in each transformation function, namely, 

   
'2

'1
,

'

1
111

ki

k
kkK

k
kK

NN


 (54) 
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 
 

 

 
  '4'12

'1
,

'4'1

2
2

2
2

2

kki

k
k

kk

kK
kK N

N








 (55) 

 
 

   

 
    '4'12'12

'4'1
,

'4'12'1

4
2

4

3
3

3

kkki

kk
k

kkk

kK
kK N

N








 (56) 

and 

 
 

     

 

     44

2
4

4

44

4
4

'4'14'12'4'12

'4'14'1

,

'4'14'12'4'1

8

kkkkki

kkk

k

kkkkk

kK
kK N

N










 







(57) 

where 1k , 2k , 3k , and 4k  are the corresponding modulus functions, that we call as own 

modulus function. 

2. Discussion

The discussion about the enhance of the convergence level of the complete elliptic integral 

of the first kind here is focused to give some comments to achievement the number of significant 

figures obtained after performing all calculations by using the facilities of integral, summation, and 

evaluation of function that available on MapleV-Soft. Beginning by presenting the calculations 

results of the significant figures of infinite series of the original  kK  in Eqn.(2) as shown in Table.1. 

Table.1 Significant figures of infinite series of the original  kK for the number of terms multiple of ten

 10/1k 10/9k

0 1.570796326… 1.570796326… 

10 1.574745562… 2.262667579… 

20 1.574745562… 2.279280028… 

30 1.574745562… 2.280439683… 

40 1.574745562… 2.280538812… 

Here,   denotes the highest term in each infinite series of  .K  After comparing the 

numerical values of the original integral form in Eqn.(1) i.e, 







15173561.57474556

10

1
K and 









84227702.28054913

10

9
K , the number of significant figures for the modulus .

10

9
k  that 

are too little and slow for the number of terms multiple of ten comparing with the 

achievements of .
10

1
k  It has verified the statement in [14] that power series of the complete 

elliptic integral of the first kind is slowly convergent for the value of modulus k  approaches 

one. Further, to verify our statement above that really the exact values of the original elliptic 

integral in Eqn.(1) and both of its new version in Eqn.(7) and Eqn.(11) are the same, we 

present the results of calculation in Table.2 below. Here we truncate numerical value of all 

calculations only until 16 significant figures. 
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   Table.2 The exact value of the original and new version of the complete elliptic integral of the first kind 

k  kK   NkK

10

1 1.574745561517356… 1.574745561517356… 

2

1 1.685750354812596… 1.685750354812596… 

2

1 1.854074677301372… 1.854074677301372… 

10

9 2.280549138422770… 2.280549138422770… 

However, as shown in the following Table.3, the numerical values of both infinite series 

 kK  and  
NkK are still different. Although to reach 16 significant figures are still required 

so many terms, but it appears that for all of modulus k  the number of terms required by the

 
NkK are more little. This fact as a guarantee that the new version of the complete elliptic 

integral of the first kind is faster to converg than its original version. 

Table.3 Highest term   of  kK  and  
NkK infinite series to reach 16 significant figures 

k  of  kK  of  
NkK

10

1 6 4 

2

1 24 8 

2

1 45 14 

10

9 150 41 

The enhancement convergence level of the complete elliptic integral of the first kind can be 

traced by noticing the significant figures resulted for each highest term of the original version of the 

complete integral  kK  on Eqn.(2),  
NkK of the new version on Eqn.(12), and the iterative 

version  NkK1 on Eqn.(42). The calculation results for the values of modulus ,
10

1
,

2

1
and 

10

9

can be seen in Table.4 below, 
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Table.4 Significant figures of the first six terms of the original, new, and iterative version of the complete elliptic 

integral of the firs kind 



 kK   
NkK  

NkK
1

10

1
k

2

1
k

10

9
k

10

1
k

2

1
k

10

9
k

10

1
k

2

1
k

10

9
k

0 3 1 0 5 2 1 12 3 2 

1 5 1 0 10 3 2 23 8 5 

2 7 2 1 15 3 2 29 10 7 

3 9 2 1 20 5 2 41 15 8 

4 11 2 1 24 6 2 55 19 10 

5 13 3 1 30 7 2 67 23 12 

The results of calculation for the three values of modulus k ranging from small until big values as 

shown in Table.4, confirm again, the significant figures of the new version of the complete elliptic 

integral of the first kind are more than the significant figures of the original integral form. 

In closing this discussion, we present the sequential of approximation formulas obtained by 

setting the highest of term 0  into all of new infinite series formulas in Eqn.(46), Eqn.(49), 

Eqn.(51), and Eqn.(53), namely: 

  ,

'6'1

2

2
0,1

kk

kK N






 (58) 

 
 

,

''112'6'1

22

2
0,2

kkkk

kK N






 (59) 

 
     

,

''12'112''112'6'1

24

22
0,3

kkkkkkk

kK N






(60) 

and

 

         

.

''122'1'2'112''12'112''112'6'1

28
'

2
22

0,4

kkkkkkkkkkkk

kk N








 


  (61) 

Comparing with the results of applying the iteration scheme of Eqn.(44) but here we replace

N

m
ki

k
K 







 


'2

'1
1 with 







 


'2

'1
1

ki

k
Km , where  kKm  corresponds to the infinite series of the original 

complete elliptic integral in Eqn.(2). The sequential approximation formulas for the first term of 

 kKm  are obtained in the following forms, 

  ,
'2

0,1
k

kK


 (62) 

 
 

,

'4'1
0,2

kk

kK






(63)
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 
   

,

'4'12'1

2
0,3

kkk

kK






(64) 

and 

 
     

.

'4'14'12'4'1

4

44
0,4

kkkkk

kK






(65) 

On all of sequential approximation formulas  Nm kK , in Eqn.(58) until Eqn.(61) and  kKm , in 

Eqn.(62) until Eqn.(65) we have put the subscript   to indicate the highest term used in each 

infinite series. As previously, we set 0  which means that all of the sequential formulas contain 

only one term. Finally we present the comparison of the numerical values of Eqn.(58)-Eqn.(61) and 

Eqn.(62)-Eqn.(65) are shown in Tabel.5, 

Table.5  Significant figures of the sequential approximation formulas of  Nm kK , and  kKm ,

for the first term ( 0 ) 

k 1m  2m  3m  4m  

 NkK 0,1  kK 0,1  NkK 0,2  kK 0,2  NkK 0,3  kK 0,3\  NkK 0,4  kK 0,4  

10

1 12 6 25 12 50 24 101 51 

2

1 5 3 13 6 27 13 54 27 

2

1 3 2 10 4 21 11 43 21 

10

9 2 1 6 3 13 7 30 15 

Although the number of its significant figures for all of modulus k  as shown in Table.4 

increase with increasing the number of terms, however we can not specify how much the number 

enhancement of such significant figures. But from the significant figures of the sequential 

approximation formulas of the first term of  Nm kK , as shown in Table.5, it can be known that the 

ratio between the number of significant figures of two successive sequential approximation 

formulas is approximately 2, that also holds for  kKm , . Here, it means that the enhancement of 

convergence level of the complete elliptic integral by applying both iteration schemes

 
N

mNm
ki

k
K

k
kK 









 
 

'2

'1

'

1
1 for the new complete elliptic integral and   









 
 

'2

'1

'

1
1

ki

k
K

k
kK mm for 

the original integral form correspond to the level of quadratic convergence. However, the fact that 
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the number of significant figures of  Nm kK 0, that always twice than  kKm 0,  as shown in Table.5 

are interesting to be researched further. 

3. Conclucions

From explanation and discussion above we take several conclusions. The complete elliptic 

integral of the first kind can be modified into the new form by varying the argument of angle   

into the double angle 2 . Applying the scheme of iteration by substituting the common modulus 

k  with the modulus function 
'2

'1

ki

k
into the new infinite series produces so many new exact 

formulas of the complete elliptic integral correspond to the number of iteration order. On the other 

hand, from the new transformation functions has been also obtained a lot of new modulus 

functions rather than common used previously. The calculation results show that the enhancement 

of the number of significant figures of the new infinite series of the complete elliptic integral of the 

first kind corresponds to the level of quadratic convergence. 
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