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Abstract: Supervised land-use/land-cover (LULC) classifications are typically conducted using 
class assignment rules derived from a set of multiclass training samples. Consequently, 
classification accuracy varies with the training data set and is thus associated with uncertainty. In 
this study, we propose a bootstrap resampling and reclassification approach that can be applied for 
assessing not only the uncertainty in classification results of the bootstrap-training data sets, but 
also the classification uncertainty of individual pixels in the study area. Two measures of 
pixel-specific classification uncertainty, namely the maximum class probability and Shannon 
entropy, were derived from the class probability vector of individual pixels and used for the 
identification of unclassified pixels. Unclassified pixels that are identified using the traditional 
chi-square threshold technique represent outliers of individual LULC classes, but they are not 
necessarily associated with higher classification uncertainty. By contrast, unclassified pixels 
identified using the equal-likelihood technique are associated with higher classification uncertainty 
and they mostly occur on or near the borders of different land-cover. 

Keywords: land-use/land-cover (LULC); uncertainty; bootstrap resampling; chi-square threshold; 
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1. Introduction 

Remote sensing images have been widely used for earth surface monitoring [1–8], 
environmental change detection [9–14], and water resource management [15–22]. Many of these 
applications require land-use/land-cover (LULC) classifications derived from multispectral images. 
Well-documented methods for supervised LULC classification include maximum likelihood 
classification, Bayes classification, and nearest neighbor classification. New methods involving 
geostatistics [7], artificial neural networks [23,24], support vector machines [25–27], and random 
forest algorithms [28,29] are also emerging. All supervised classification methods involve using a set 
of training data to establish class assignment rules for pixels of unknown classes. A confusion matrix 
(or error matrix), which summarizes the classification results of the training data or an independent 
set of reference data, can then be used to assess the classification accuracy of individual classes. 
However, the classification accuracies, which include the user’s accuracy (UA), producer’s accuracy 
(PA), and overall accuracy (OA), of the training or reference data presented in the confusion matrix 
are estimates of the true and unknown classification accuracies of the population; that is, all the 
pixels of the individual LULC classes. The training data are samples of individual classes and the 
class assignment rules are derived from the training data; thus, classification accuracy is inherently 
associated with uncertainty. Whether the classification accuracies presented in a confusion matrix 
are representative of the entire study area is dependent on many factors including ground data 
collection, the classification scheme, spatial autocorrelation, the sample size, and the sampling 
scheme [30]. In remote sensing applications, there are also needs to compare classification accuracies 
of different images to evaluate the relative suitability of different classification techniques for 
mapping. Ideally, a comparison of thematic map accuracies should address the statistical 
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significance of differences in classification accuracy [31]. It has been suggested to fit confidence 
intervals to the estimates of classification accuracies and consider these intervals when evaluating 
the thematic map [32]. However, the confidence intervals of classification accuracies are often 
calculated under the assumptions that training data are normally distributed and they represent 
random samples of individual LULC classes. In reality, training data may be non-Gaussian and data 
independency is not guaranteed because of the spatial autocorrelation of reflectance of individual 
land-cover types. For example, ground data collection is frequently constrained because physical 
access to some sites is impractical; thus, the collection is restricted either to sites of opportunity 
(where obtaining ground data is possible) or sites for which high-quality fine spatial resolution 
images acquired at an appropriate date are available as a surrogate for actual ground observations 
[33]. Such sampling practices further complicate the statistical assessment of LULC classification 
accuracy. In addition to the training data uncertainty, other factors, such as errors in georeferencing, 
the existence of mixed pixels, and the selection of probability distribution models, can also affect the 
LULC classification accuracy. 

In most applications of LULC classification, each individual pixel is assigned to one of the 
reference classes. If a pixel falls near the tail of the multivariate distribution established by the 
training data, it may be desirable to assign that pixel as unclassified. Assuming multivariate 
Gaussian (normal) distributions for reflectance-vectors of individual LULC classes, class-dependent 
thresholds for labeling unclassified pixels can be determined on the basis of a chi-square 
distribution [34]. Unclassified pixels identified using the chi-square threshold technique represent 
the outliers of individual LULC classes, but they do not necessarily represent pixels with nearly 
identical likelihoods of belonging to different LULC classes. These situations are illustrated in 
Figure 1 by using a one-dimensional classification feature. However, in practice, pixels with nearly 
identical likelihoods of belonging to different LULC classes may need to be designated as 
unclassified pixels. Hereafter, we refer to such pixels as pixels of equal likelihood. Because the joint 
probability densities of the classification features of different LULC classes are estimated using the 
selected training data, the aforementioned training data uncertainty eventually leads to uncertainty 
in the estimated joint probability densities of the classification features of individual LULC classes 
and decision rules of the LULC classification. Consequently, the identification of pixels of equal 
likelihood is further complicated by the uncertainty in the joint probability density estimates of the 
classification features. 

 
Figure 1. Illustration of the ranges of the classification feature of unclassified pixels identified using 
the chi-square threshold and equal-likelihood techniques. 

This study has two objectives: (1) to propose an approach for assessing the uncertainty in 
LULC classification results resulting from uncertainty in the training data; and (2) to comparatively 
investigate the characteristics of unclassified pixels that are identified using the chi-square 
threshold technique and an equal-likelihood technique proposed in this study. In Section 2, we 
describe the study area and data used in this study. In Section 3, we detail the Bayes classification, 
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bootstrap resampling technique, application of bootstrap resampling to multispectral remote 
sensing images, and the assessment of LULC classification uncertainty. In Section 4, we present the 
LULC classification results derived from the original training data and reclassification results 
derived from the bootstrap-training samples. Detailed discussions on the uncertainty of various 
classification accuracies and the characteristics of unclassified pixels that are identified using the 
chi-square threshold technique and equal-likelihood technique are also included in Section 4. A 
summary of the findings and concluding remarks are presented in Section 5. 

2. Study Area and Data 

The Greater Taipei area was selected as the study area. It encompasses approximately 360 km2 
and has a highly populated urban area, a national park in the northeast corner, and mountains in the 
southeast corner. The confluence of three major rivers in northern Taiwan is in the northwest corner 
of the Taipei City. Advanced Land Observing Satellite (ALOS) multispectral images of the study 
area (acquired on 5 April 2008, by the AVNIR2 sensor) were collected. The AVNIR2 sensor acquires 
images in four spectral bands, namely blue (0.42–0.50 µm), green (0.52–0.60 µm), red (0.61–0.69 µm), 
and near infrared (NIR, 0.76–0.89 µm), at a spatial resolution of 10 × 10 m. All of these satellite 
images are preprocessed for radiometric and geometric corrections by the Japan Aerospace 
Exploration Agency [35]. Thus, all images were georeferenced to map-projection coordinates. A 
true-color image of the study area and an official land-use map obtained from the Ministry of 
Interior of Taiwan [36] are presented in Figure 2. 

 
Figure 2. (a) True-color Advanced Land Observing Satellite (ALOS) image of the study area; and (b) 
land-use map for the year 2009 (Ministry of Interior, Taiwan). The purple-circled area, the Beitou 
Depot of the Taipei mass rapid transit (MRT), is identified as unclassified by the chi-square 
threshold technique (see details in Section 4.2.3). The coordinates of the lower-left corner of panel (a) 
are 121°25′50″E, 24°59′12″N. 

Eleven land-use types namely transportation, residential, industrial, business, educational and 
cultural, water, forests, parks and green spaces, agriculture, Yang Ming Shan National Park, and 
others, are presented in the land-use map, which was prepared through interpreting aerial 
photographs and many other ancillary data. Such detailed LULC classification cannot be achieved 
using only remote sensing images because of the spectral similarities between LULC classes. Thus, 
five LULC classes, namely forest, water, grass (including shrubs), buildings, and roads (including 
areas with paved surfaces), were adopted for LULC classification in our study. Training data of the 
five LULC classes were chosen by conducting field visits and referring to the land-use map. The 
number of training pixels for each individual LULC class is listed in Table 1. These numbers 
approximate the areal percentages for individual LULC classes in the study area. To illustrate the 
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scattering of different LULC classes in a three-dimensional feature space, digital numbers of the 
green, red, and near infrared (NIR) bands were selected as classification features in this study. 

Table 1. Numbers and proportions of training pixels of individual land-use/land-cover (LULC) classes. 

LULC Classes Forest Water Buildings Grass Roads 
Number of training pixels 7005 2771 5956 2445 3924 

Proportions (%) 31.70 12.54 26.95 11.06 17.75 

Figure 3 is a scatter plot of training pixels of different LULC classes in the three-dimensional 
green–red–NIR feature space. In the figure, the training pixels of the forest and water land-cover 
types are more concentrated than the other land-cover types. By contrast, the training pixels of 
buildings and roads are widely dispersed and mutually mixed. 

 
Figure 3. Scatter plot of the training pixels of LULC classes in the green–red–NIR feature space. 

3. Methods 

The supervised Bayes classification method was chosen for the LULC classification task in this 
study. The bootstrap resampling technique was also applied to the original training data set 
described in Section 2 to generate resampled training data sets that were used in the subsequent 
Bayes classification task. 

3.1. Bayes Classification 

In the Bayes classification method, the a priori probabilities of individual land-cover types in 
the study area are considered. The a priori probability of a particular class represents the 
probability of a randomly selected pixel belonging to that class. Although not necessary, most 
LULC applications assume multivariate Gaussian distributions for the classification features of 
different LULC types. Let T

kxxX ),,( 1 =  be a k-dimensional feature vector of a particular pixel 

and let ),,1()( Nip i =ω  be the a priori probabilities of N LULC classes. The joint Gaussian 

density of the ith class )( iω  is expressed by 

( ) ( )1
1 2

1 1( | ) exp
22π

T

i i i ik

i

f X X Xω μ μ− = − − Σ −  Σ
 (1)
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where iμ  and iΣ  are, respectively, the mean vector and covariance matrix of the classification 
features of the i-th class. The class-dependent discriminant function of the Bayes classification 
method is defined as follows: 

( ) ( ) .,,2,1,
2
1ln

2
1)(ln)( 1 NiXXpXd ii

T
iiii =−Σ−−Σ−= − μμω  (2)

A pixel with feature vector X is assigned to the i-th class if )(Xdi  is the highest of all 
class-dependent discriminant functions; that is, 

.every for ),()( ijXdXd ji ≠>  (3)

The work of LULC classification by using multispectral remote sensing images can be 
perceived as the partitioning of a k-dimensional feature space into different regions associated with 
different LULC classes. Pixels with equal values of discriminant functions form the class boundaries 
in the feature space. An example of the three-class partitioning of a two-dimensional feature space 
by using the Bayes classification method is illustrated in Figure 4. The classification features of the 
individual classes in Figure 4a,b, are assumed to follow bivariate Gaussian distributions with the 
parameters listed in Table 2. 

 
Figure 4. Exemplary illustration of the three-class partitioning of a two-dimensional feature space 
derived from the Bayes classification method. The classification features (X1 and X2) of individual 
classes in Panels (a) and (b) are characterized by multivariate Gaussian distributions with the 
parameters listed in Table 2. The ellipses represent the 95% probability contours of individual 
classes, and the dashed lines are the boundaries of different classes. Regions belonging to different 
classes are shown in different colors. A sample point (marked by ) is classified into different 

classes under different distribution parameters. 

Changes in the parameters of individual classes result in changes in the class boundaries, as 
shown in Figure 4. In LULC classification, the parameters of the multivariate Gaussian distributions 
of the individual classes were estimated from the training data. Thus, uncertainty in the selection of 
the training data (i.e., training data uncertainty) leads to parameter uncertainty in the multivariate 
Gaussian distribution, which inevitably gives rise to the uncertainty in the classification results of 
the training data as well as all other non-training pixels in the study area. In this study, the 
bootstrap resampling technique was used to tackle the problem of training data uncertainty. 
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Table 2. Parameters of the bivariate Gaussian distributions of the individual classes in Figure 4. 

 Parameters for Figure 4a Parameters for Figure 4b 
 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Mean vector 







120
80  









150
140









85

190








130
70









160
148  









95

188

Covariance matrix 







−

−
400525
5251225  









400390
390900









−

−
2255.112

5.112100








−

−
900546
546784









3241.285

1.285484  








−

−
144108
108225

A priori probability 0.25 0.45 0.3 0.25 0.45 0.3 

3.2. Bootstrap Resampling and Its Application to Multispectral Remote Sensing Images 

Bootstrapping, which was first introduced by Efron [37], is a statistical technique of generating 
random samples and estimating the distribution of an estimator of a population by sampling with 
replacement from a random sample or a model estimated from a random sample of that population. 
It amounts to treating the data as if they were the population for the purpose of evaluating the 
distribution of interest. Bootstrapping provides a means to substitute computation for mathematical 
analysis when calculating the asymptotic distribution of an estimator or statistic is difficult [38]. 
Bootstrap resampling has been applied to LULC classification using remote sensing images to 
improve the characterization of classification errors, determine the uncertainty resulting from 
sample site variability, and calculate the confidence limits of classification errors [39]. 

Let nXX ,,1   be a random sample of size n from a probability distribution whose cumulative 

distribution function (CDF) is 0F . The empirical CDF of nXX ,,1   is denoted as nF . Let 0F  
belong to a finite- or infinite-dimensional family of distribution functions, F. If F is a 
finite-dimensional family indexed by the parameter θ , whose population value is 0θ , we write 

),( 00 θxF  for )( xXP ≤  and ),( θxF  for a general member of the parametric family. Let 

),,( 1 nn XXtT =  be a statistic and )(),( 0 ττ ≤≡ nn TPFG  denote the exact, finite-sample CDF of nT . 

In addition, let ),( FGn ⋅  denote the exact CDF of nT  when the data are sampled from the 

distribution whose CDF is F . The bootstrap estimator of ),( 0FGn ⋅  is ),( nn FG ⋅  which can be 
estimated through the following Monte Carlo simulation procedure, in which random samples are 
drawn from nXX ,,1   [38]: 

1. Generate a bootstrap sample of size n, **
1 ,, nXX   by sampling with replacement from the 

random sample nXX ,,1  . Note that using an asterisk to indicate bootstrap samples is 
customary. 

2. Calculate * * *
1( , , )n nT t X X =  . 

3. Repeat Steps 1 and 2 many times and use the resultant BiT i
n ,,1,* =  to derive the empirical 

CDF of *
nT ; that is, 

)(),( * ττ ≤= nnn TPFG . (4)

When the bootstrap resampling technique is applied to remote sensing LULC classification, the 
training data of a particular LULC class are considered as the original sample nXX ,,1  , and the 
bootstrap samples 

jnj XXX ),,()( **
1

* =  ( Bj ,,1= ) are generated by resampling from 

nXX ,,1  . This process is detailed as follows. 

Suppose N land-cover classes ),,1,( Nii =ω  are present in the study area. Let 

NiSS i
n

i

i
,,1,,, )()(

1  =  represent the training pixels of the i-th class, where ),,1( Nini =  is the 

number of training pixels. Each training pixel, for example, )(
1
iS , corresponds to a k-dimensional 

feature vector )(
11

)(
1 ),,( i

k
i XXX = . The following simulation and calculation steps are performed 

to generate multispectral and multiclass bootstrap training samples: 
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1. Obtain the bootstrap training samples NiSS i
n

i

i
,,1,,, )*()*(

1  =  by sampling with replacement 

from the original training samples of the individual land-cover classes (i.e., 
NiSS i

n
i

i
,,1,,, )()(

1  = ).  

2. Collect the corresponding multispectral feature vectors NiXXX i
n

ii

i
,,1),,,( )*()*(

1
)*(  ==  

with )*(
11

)*(
1 ),,( i

k
i XXX = . Note that NiX i ,,1,)*( =  represents feature vectors of one set of 

multispectral and multiclass bootstrap training samples. 
3. Repeat Steps 1 and 2 to obtain B sets of multispectral and multiclass feature vectors of 

bootstrap training samples; that is, ( ) BjNiXXX j
i

n
i

j
i

i
,,1;,,1,),,( )*()*(

1
)*(  === . 

4. Estimate the parameters of the multivariate Gaussian distribution for every set of multispectral 
and multiclass feature vectors of the bootstrap training samples. Let estimates of the mean 
vector and covariance matrix of the multispectral and multiclass feature vectors be represented 
by ( )

j

i)*(μ̂  and [ ] BjNij
i ,,1;,,1,ˆ )*(  ==Σ , respectively. 

5. For every set of multispectral and multiclass bootstrap training samples, calculate the 
class-dependent discriminant functions (Equation (2)) of the individual land-cover classes by 
using the parameters estimates from Step 4 and perform LULC classification for all pixels in 
the study area. Note that all bootstrap training samples are associated with known LULC 
classes and are treated as training data in the bootstrap-sample-based LULC classification. 
However, in contrast to the original training samples, these bootstrap samples are not 
associated with specific geographic locations in the study area. 

A schematic diagram of the aforementioned bootstrap resampling and classification 
procedures is depicted in Figure 5. Notably, by using B sets of bootstrap training samples for LULC 
classification, we can assess not only the uncertainty in the classification of the bootstrap training 
samples, but also the uncertainty in the class assignment of individual pixels in the study area. 

3.3. Assessing Classification Uncertainty by using Bootstrap Samples 

The classification accuracy of the training data can be evaluated by using the 
training-data-based confusion matrix. In a confusion matrix, the class-dependent producer’s 
accuracy (PA) and user’s accuracy (UA), and the overall accuracy (OA) are presented. However, the 
training-data-based confusion matrix can assess only the classification accuracy (or errors) of the 
training data. Furthermore, studies have also evaluated classification accuracy by applying decision 
rules derived from training data to an independent set of reference data. For such applications, 
reference-data-based confusion matrices have been established to evaluate the classification 
accuracy of the reference data. When only one set or a limited number of sets of reference data are 
used, the reference-data-based confusion matrices are unlikely to represent the classification 
accuracy of the entire study area. In light of the uncertainties, several questions that require 
consideration in remote sensing LULC classification are as follows: 

 What is the probability that a pixel that is randomly and equally likely to be selected from the 
set of all pixels in the study area is correctly classified? This probability is referred to as the 
global OA (as opposed to the OA of the training data set). 

 Let the set of all pixels that are assigned to the i-th class be denoted as )(i
AS . What is the 

probability that a pixel that is randomly and equally likely to be selected from )(i
AS  is correctly 

classified? This probability is referred to as the class-specific global UA. 
 For any specific pixel in the study area, what are the probabilities of that pixel being classified 

into individual LULC classes when various sources of uncertainty are considered? These 
probabilities are referred to as the pixel-specific (or location-specific) class probabilities. 
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Figure 5. Schematic of bootstrap resampling of the training samples and its application to 
multispectral and multiclass LULC classification. 

Estimating these probabilities is complex when all of the sources of uncertainty addressed in 
the Introduction require consideration. These probabilities cannot be exactly known, and we can 
estimate them only according to the classification results derived from the training data set. In this 
study, we focused on estimating these probabilities by considering only the training data 
uncertainty. A bootstrap-resampling-based approach is proposed in this study. The details of the 
approach are as follows: 

1. Determine the a priori probabilities of individual LULC classes; that is, ),,1()( Nip i =ω . 
These probabilities are estimated on the basis of ancillary data or the investigator’s knowledge 
of the study area. 

2. Collect training data of individual LULC classes. The proportions of training pixels of the 
individual LULC classes in the training data set should be consistent with the a priori 
probabilities of the individual LULC classes for the training-data-based classification accuracy 
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and uncertainty to be representative of the entire study area or be considered estimates of the 
classification accuracy and uncertainty for the entire study area. 

3. Conduct bootstrap resampling to obtain B sets of bootstrap training samples. 
4. For each set of the bootstrap training samples, determine the Bayes classification decision rules 

of the individual LULC classes and conduct LULC classification for the entire study area. 
Subsequently, establish the corresponding bootstrap-training-sample-based confusion matrices. 
Because bootstrap samples have different distribution parameter estimates and 
class-dependent discriminant functions, their confusion matrices vary among different 
bootstrap samples, enabling the assessment of the uncertainty in the classification accuracy. 

5. For any pixel in the study area, calculate the frequency it is assigned to an individual LULC 
class. Let )(ib  represent the frequency that a particular pixel is assigned to ),,1( Nii =ω ; 

then, its class probability vector (CPV) is defined as 















=

















=
BNb

Bb

p

p

P

N
/)(

/)1(
1



ω

ω

ω . The 

pixel-specific CPV represents the probabilities that a pixel will be assigned to individual LULC 
classes (i.e., pixel-specific class probabilities). These probabilities can then be used to 
characterize the location-specific classification uncertainty and generate a set of 
class-probability images. 

6. Reclassify the study area by assigning individual pixels to the class of the highest class 
probability. In this study, this process is referred to as bootstrap-based LULC reclassification. 

7. Identify unclassified pixels by using the predetermined threshold *
maxp  (for example,

9.0*
max =p ) for the highest class probability. A pixel with class probabilities 







=

B

Nb

B

b
P T )()1( ω

 is identified as unclassified if *
maxmax

)(,,)1(max p
B

Nb

B

b
p <






=  . 

An analytical flowchart of the proposed LULC classification by using bootstrap-based LULC 
reclassification is depicted in Figure 6. 

 
Figure 6. Flowchart of the bootstrap-based LULC reclassification approach. 
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4. Results and Discussion 

4.1. LULC Classification Results Based on the Original Training Data Set 

Derived from the original training data set (Table 1), the training-data-based confusion matrix 
and Bayes LULC classification results of the study area are shown in Table 3 and Figure 7a, 
respectively. Misclassifications primarily occurred between the forest and grass land-cover classes 
and between the buildings and roads land-cover classes. In particular, a significant portion 
(approximately 23%) of the pixels of the buildings class were misclassified into the roads class, 
whereas only 7.5% of the pixels of the roads class were misclassified into the buildings class. 

 
Figure 7. LULC classification results: (a) based on the original training data set; and (b) based on the 
bootstrap training data sets and the highest class probability. The purple-circled area is the main 
structure of the Beitou Depot of the Taipei MRT (see Section 4.2.3). (c,d) Magnified images of the 
red-square-enclosed areas in Panels (a) and (b), respectively. 

Table 3. Confusion matrix of LULC classification by using the original training data set. 

Assigned Classes 
Referenced Classes

Forest Water Buildings Grass Roads Sum User’s Accuracy (%)
Forest 6676 0 1 167 0 6844 97.55 
Water 0 2763 1 0 0 2764 99.96 

Buildings 2 3 4595 19 225 4844 94.86 
Grass 327 0 28 2259 49 2663 84.83 
Roads 0 5 1331 0 3650 4986 73.20 
Sum 7005 2771 5956 2445 3824 22,101  

Producer’s accuracy (%) 95.30 99.71 77.15 92.39 93.02  Overall accuracy 90.24 
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4.2. Bootstrap-Based LULC Reclassification Results 

Bootstrap resampling of the original training data set was implemented in this study, yielding 
B sets of bootstrap training samples. As illustrated in Figure 6, the Bayes LULC classification results 
vary among the bootstrap training data sets. Because the uncertainty of classification accuracy was 
evaluated on the basis of B sets of bootstrap-training-data-based confusion matrices, we 
investigated the effect of the number of bootstrap samples (B) on the uncertainty in the LULC 
classification accuracy. We repeatedly generated bootstrap training data sets with the total number 
of bootstrap samples; specifically, B varied from 10 to 1000 in increments of 10. On the basis of B 
sets of training-data-based confusion matrices, we calculated the mean and standard deviation for 
each of the UA, PA, and OA. Figure 8 shows that the mean classification accuracy remains nearly 
constant, regardless of the value of B. By contrast, the standard deviation of the classification 
accuracy changes with the number of bootstrap samples for 40010 ≤≤ B  but remains 
approximately constant for 500≥B . These results indicate that, based on our original training data 
set, at least 500 sets of bootstrap training samples must be used when assessing the uncertainty of 
classification accuracy. Therefore, the subsequent analysis of the classification accuracy was based 
on the results obtained from 500 sets of bootstrap training samples, and this is also considered in 
the discussion of the classification results and uncertainty assessment. 

 
(a)

 
(b)

Figure 8. Means and standard deviations of the classification accuracy values derived from multiple 
sets of bootstrap training samples and their corresponding confusion matrices: (a) Overall accuracy 
(OA) and producer’s accuracy (PA); and (b) User’s accuracy (UA). Note: The letters F, W, B, G, and 
R represent forest, water, buildings, grass, and roads, respectively. 
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4.2.1. LULC Reclassification and Uncertainty of the Classification Accuracy 

Bayes LULC classification by using 500 sets of bootstrap training samples yielded a total of 500 
confusion matrices. The variations of PA and UA are depicted in Figure 9. Both the forest and water 
LULC classes were associated with high (>95%) classification accuracy and lower uncertainty in PA 
and UA because of their highly concentrated feature values in the feature space (see Figure 3). By 
contrast, the feature values of the grass, building, and roads classes were more scattered in the 
feature space and, therefore, were associated with higher uncertainty in PA and UA. Generally, 
under the training data uncertainty, the PA and UA of individual LULC classes in our study do not 
vary by more than 5%. The OA of the 500 sets of confusion matrices varied within only a very small 
range (89.52%–90.88%). Assuming that the proportions of the training pixels of individual LULC 
classes are consistent with the a priori probabilities of the individual LULC classes, the global OA 
and the class-specific global UA can be estimated using the mean values of the OA and 
class-specific UA of the 500 bootstrap-training-samples-based confusion matrices, respectively. In 
this study, the global OA was estimated as 90.25%, and the class-specific global UAs of the forest, 
water, buildings, grass, and roads were estimated as 96.62%, 99.96%, 94.30%, 86.20%, and 73.81%, 
respectively. 

 
Figure 9. Uncertainties of the producer’s and user’s classification accuracies based on the Bayes 
LULC classification results derived from 500 sets of bootstrap training samples. 

LULC reclassification is achieved by assigning individual pixels to classes with the highest 
class probability. The reclassification results (Figure 7b) are visually indistinguishable from the 
original classification results (Figure 7a). However, differences can be observed in Figure 7c,d, 
which shows magnified images of the red-square-enclosed areas in Figure 7a,b, respectively.  
Table 4 shows that areal coverage in the original classification and reclassification results differ by 
5.33 km2 and 4.79 km2 for the buildings and grass classes, respectively. Areal percentages of the 
individual LULC classes in the original classification and reclassification results are nearly identical, 
and the a priori probabilities of the forest, water, buildings, grass, and roads classes are estimated as 
26.41%, 4.53%, 24.89%, 20.05%, and 24.13%, respectively. However, the corresponding proportions 
(31.70%, 12.54%, 26.95%, 11.06%, and 17.75%, respectively) of training pixels of the individual 
LULC classes in the original training data set are not completely consistent with these estimates of 
the a priori probabilities. The effect of such inconsistency is further discussed in the following 
section. 
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Table 4. Comparison of pixel numbers and areal coverages of the individual LULC classes obtained 
using original classification and reclassification.  

 Forest Water Building Grass Roads 
Original classification      

No. of pixels 965,039 163,544 927,127 701,231 860,663 
Areal percentage 26.68 4.52 25.63 19.38 23.79 

Reclassification      
No. of pixels 945,607 164,173 873,766 749,180 884,878 

Areal percentage 26.14 4.54 24.15 20.71 24.46 
Areal Coverage difference (in km2) 1.9432 −0.0629 5.3361 −4.7949 −2.4215 

In a confusion matrix, the class-specific PA and UA, and OA are presented and used to 
evaluate the LULC classification results. Among these three types of classification accuracy, the PA 
of a given class is calculated solely on the basis of training pixels of that class. The numbers of 
training pixels in other classes and their classification do not affect the PA of a given class. By 
contrast, calculations of the class-specific UA and OA involve the numbers of training pixels that 
are assigned to all individual classes. Consequently, changing the proportions of the training pixels 
of individual LULC classes affects the UA and the OA. For example, the training pixels of the 
buildings and roads LULC classes respectively account for 27% and 17% of all pixels in the training 
data (see Table 1). Approximately 30% (1331/4595) of the training pixels of the buildings class were 
misclassified into the roads class, and approximately 93% of the training pixels of the roads class 
were correctly classified (Table 3), resulting in 73.20% UA for the roads class. Suppose that the 
proportions of the training pixels of the buildings and roads LULC classes in the original training 
data set were changed to 32% and 12%, respectively, and the estimated parameters of the 
multivariate Gaussian distributions of the individual LULC classes remain the same. Under this 
situation, we can expect that approximately 30% of the training pixels of the buildings class would 
be misclassified into the roads class, and 93% of the training pixels of the roads class would be 
correctly classified. However, the UA of the roads class would decrease to below 73.20% because a 
higher number of pixels from the buildings class would be misclassified into the roads class, and 
the number of correctly classified pixels of the roads class would be low because of changes in the 
proportions of training pixels of the buildings and roads classes. 

A comparison of the estimates of the class-specific a priori probabilities and the proportions of 
class-specific training samples in Table 1 reveals that the forest and water classes were given an 
excess number of training pixels (overrepresented), whereas the grass and roads classes were given 
insufficient training pixels (underrepresented) in the original training data set. The buildings class 
was adequately represented in the original training data set. The confusion matrix in Table 3 shows 
that the pixels that were misclassified into the grass class primarily belong to the forest class. 
Because the forest and grass LULC classes were respectively over- and underrepresented in the 
original training data set, we expect that the UA of the grass class (84.83%) in the training-data-based 
confusion matrix and the global UA of the grass class (86.20%) were underestimated. Similarly, 
most of the pixels that were misclassified into the roads class actually belong to the buildings class. 
The roads class was underrepresented in the original training data set, and thus the UA of the roads 
class (73.20%) in the training-data-based confusion matrix and the global UA of the roads class 
(73.81%) were also likely to be underestimated. 

4.2.2. Pixel-Specific Classification Uncertainty and Identification of Unclassified Pixels 

In this study, the pixel-specific CPV was used to characterize the location-specific classification 
uncertainty. Various measures of classification uncertainty for remote sensing LULC classification 
have been proposed [40,41]. In the present study, two measures (i.e., the Shannon entropy and 

max1 p− ) were adopted. 
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The maximum class probability, maxp , in the CPV of a pixel is used for LULC reclassification. 

The higher the maxp , the lower the uncertainty in assigning a pixel to the class of the highest class 

probability. Thus, max1 p−  indicates possible confusion with other classes. However, the 

uncertainty measure based on maxp  fails to capture the entire distribution of the class probabilities 
because it considers only the highest class probability in the CPV [41]. By contrast, the Shannon 
entropy considers all class probabilities and is defined as follows: 


=

−=
N

i
ii

ppH
1

)ln( ωω . (5)

The entropy can assume a maximum value of lnN if all classes have the same class 
probabilities. A pixel with 1max =p  is associated with zero entropy. 

Empirical CDFs of the pixel-specific maximum class probability and entropy are shown in 
Figure 10. Approximately 93% of the pixels in the study area have 1max =p  and Shannon entropy 
H = 0, indicating that using different bootstrap training samples in LULC classification affected the 
classification results of only 7% of the pixels in the study area. A pixel with zero entropy is always 
classified into the same LULC class, regardless of the training data uncertainty. However, having 
zero entropy does not necessarily indicate that the pixel is correctly classified. 

 
Figure 10. Empirical cumulative distribution functions of: (a) the maximum class probability ( maxp ); and 

(b) the Shannon entropy (H). 

Pixels of higher classification uncertainty can be identified using the predetermined threshold 
values *

maxp  and *H  of the maximum class probability and the Shannon entropy, respectively. 

When the identification of unclassified pixels is desired, these pixels of higher uncertainty can be 
considered unclassified pixels. Threshold values *

maxp  and *H  are associated with a specified 

cutoff probability cp  (which represents the exceedance probability for *H  and the cumulative 

probability for *
maxp ); that is, 

( ) cppp =< *
maxmaxProb  (6)

( ) cpHH => *Prob  (7)
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Figure 10 shows that at a 3% cutoff probability ( 03.0=cp ), the values of *
maxp  and *H  are 

0.9 and 0.325, respectively. Similarly, for 01.0=cp , *
maxp  and *H  are 0.667 and 0.642, 

respectively. All pixels with a Shannon entropy exceeding *H  or with maxp  value lower than 
*
maxp  are designated as unclassified pixels. The two sets of unclassified pixels, identified by *

maxp  

and *H , respectively, are not identical because a single-value relationship between maxp  and H 

does not exist, as depicted in Figure 11. However, a single-value monotonic relationship exists 
between maxp  and the minimum conditional entropy, that is, ( )maxmin pH , as depicted by the red 

curve in Figure 11. The ( )maxmax min~ pHp  single-value relationship is expressed as follows: 

( ) ( )
( ) ( )





<≤−−−−

<≤−−−−
= 5.0

3
1,21ln21ln2

15.0,1ln1ln
)|min(

maxmaxmaxmaxmax

maxmaxmaxmaxmax

max ppppp

ppppp
pH  (8)

The values of ( )maxmin pH  and *H  are similar for 1
3
1

max ≤≤ p . For example, given 

667.0max =p , the corresponding values of ( )maxmin pH  and *H  are 0.636 and 0.642, respectively. 

Thus, in practice, substituting ( )maxmin pH  for *H  may be convenient, and the corresponding 

two sets of unclassified pixels, *
maxp  and ( )maxmin pH , are associated with similar exceedance (or 

cumulative) probability cp . Notably, such unclassified pixels mostly fall near the class boundaries 
in the feature space and are thus referred to as unclassified pixels identified using the 
equal-likelihood technique (see Figure 1).  

 
Figure 11. Relationship between the maximum class probability maxp  and Shannon entropy H.  

4.2.3. Comparison of Unclassified Pixels Identified Using the Chi-square Threshold Technique and 
Equal-Likelihood Technique 

In addition to the equal-likelihood technique, unclassified pixels can also be identified using 
the following chi-square threshold technique. In this section, we compare the characteristics of 
unclassified pixels identified using the two methods. 

Let T
kxxX ),,( 1 =  be the k-dimensional feature vector of a pixel that has been assigned 

through Bayes classification to a particular land-cover class (e.g., iω ). Assuming the feature vector 
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X can be characterized by a multivariate Gaussian distribution, the well-known Hotelling’s 2T  
statistic is defined as follows: 

( ) ( )ii
T

i mXSmXT −−= −12  (9)

where im  and iS  are, respectively, the sample mean vector and sample covariance matrix of X. 

Hotelling’s 2T  is distributed as a multiple of an F-distribution. However, if im  and iS  are 
calculated based on random samples of a large sample size (i.e., sample size of the training data in 
our study), then Hotelling’s 2T  can be approximated by a chi-square distribution with k degrees of 
freedom [42]. The chi-square threshold technique for identifying unclassified pixels can thus be 
implemented by choosing a threshold value cv , which corresponds to an exceedance probability 

cp  of the chi-square distribution with k degrees of freedom. A value of 0.05 is commonly used for 

the exceedance probability cp . In this study, digital numbers of three channels (green, red, and 

NIR) of the ALOS images were selected as classification features; thus, 815.7=cv . Pixels with 2T  

values exceeding cv  fall in the tail of the multivariate Gaussian distribution and are identified as 
unclassified pixels. In contrast to the equal-likelihood technique, the chi-square threshold technique 
identifies unclassified pixels without considering possible confusion between land-cover classes. 

Unclassified pixels identified using the equal-likelihood technique with 9.0*
max =p  and those 

identified using the chi-square threshold technique with 05.0=cp  are shown in Figure 12. Spatial 
distribution patterns of unclassified pixels identified using the two techniques differ considerably. 
Unclassified pixels identified using the equal-likelihood technique, which account for 3% of the 
total study area, are widely scattered and mostly fall on or near the boundaries of different 
land-cover types. By contrast, unclassified pixels identified using the chi-square threshold 
technique are mostly clustered, forming geometric shapes and accounting for approximately 4.5% 
of the entire study area. Differences in these spatial distribution patterns can be attributed to the 
characteristics of the two unclassified pixel identification techniques; specifically, the 
equal-likelihood technique identifies pixels of higher classification uncertainty (confusion between 
LULC classes), whereas the chi-square threshold technique identifies pixels that are outliers of the 
assigned LULC class. To illustrate these characteristics more clearly, scatterplots shown in  
Figures 13 and 14 respectively show pixels assigned to individual LULC classes and unclassified 
pixels identified using the chi-square threshold and equal-likelihood techniques in a 
three-dimensional feature space. Unclassified pixels identified using the chi-square threshold 
technique are far from centers of the individual classes, whereas the unclassified pixels identified 
using the equal-likelihood technique lie on or near the layers of the class boundaries. Taking the 
Beitou Depot of the Taipei MRT (purple-circled area in Figures 2, 7 and 12) as an example, the 
pixels of its main structure fall in the circled area of the feature space in Figures 13 and 14. 
Although the feature vectors of these pixels represent outliers of the multivariate Gaussian 
distribution of the buildings class, it is unlikely that they would be classified into other classes, 
regardless of the classification method used. Thus, identifying these pixels as unclassified may 
undermine using the chi-square threshold to define pixels that have a higher probability of 
misclassification. By contrast, the equal-likelihood technique did not identify pixels of the Beitou 
Depot as unclassified because they all had maxp  values exceeding 0.9 and were associated with 
very low classification uncertainty. 
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Figure 12. (a) Unclassified pixels (white) identified using the equal-likelihood technique with 

9.0*
max =p ; (b) unclassified pixels identified using the chi-square threshold technique with 

05.0=cp ; and (c) the Beitou Depot of the Taipei MRT (i.e., the purple-circled area in (b)) (source: 

https://zh.wikipedia.org/wiki/%E5%8C%97%E6%8A%95%E6%A9%9F%E5%BB%A0).  

 
Figure 13. Three-dimensional scatterplots showing: (a) pixels assigned to individual LULC classes 
(excluding unclassified pixels) by the Bayes classification method; (b) unclassified pixels identified using 
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the chi-square threshold technique with 05.0=cp ; and (c) details of the blue box in (b). Pixels of the 

Beitou Depot of the Taipei MRT (purple-circled area) were identified as unclassified pixels.  

 
Figure 14. Three-dimensional scatterplots showing: (a) pixels assigned to individual LULC classes 
(excluding unclassified pixels) through reclassification; (b) unclassified pixels identified using the 
equal-likelihood technique with 05.0=cp ; and (c) details of the blue box in (b). Pixels of the Beitou 

Depot of the Taipei MRT (purple-circled area) were classified into the buildings class. 

5. Conclusions 

This study proposes a nonparametric bootstrap resampling approach for assessing uncertainty 
in LULC classification results. Two techniques for identifying unclassified pixels were also 
evaluated. The conclusions are as follows: 

1. The bootstrap resampling technique can be used to generate multispectral and multiclass 
bootstrap training data sets. 

2. The proposed bootstrap resampling and reclassification approach can be applied for assessing 
not only the classification uncertainty of bootstrap training samples, but also the class 
assignment uncertainty of individual pixels. 

3. Investigating the effect of the number of bootstrap samples on uncertainty in LULC 
classification accuracy is advantageous. In our study, 500 sets of bootstrap training samples 
were sufficient for assessing the uncertainty in the classification accuracy. 

4. From the results of the Bayes LULC classification based on 500 sets of bootstrap training 
samples, the global OA and the class-specific global UA can be estimated as the mean values of 
the OA and class-specific UA of the 500 bootstrap-training-samples-based confusion matrices, 
respectively. 

5. Changing the proportions of training pixels of individual LULC classes can affect the UA and 
the OA. The proportions of training pixels of the individual LULC classes should be consistent 
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with the class-specific a priori probabilities. Training samples that over- or underrepresent 
certain LULC classes may result in errors in the accuracy of the global UA and OA estimates. 

6. Unclassified pixels identified using the chi-square threshold technique represent the outliers of 
individual LULC classes but are not necessarily associated with higher classification 
uncertainty. 

7. Unclassified pixels identified using the equal-likelihood technique are associated with higher 
classification uncertainty and they mostly occur on or near the borders of different land-cover 
types. 
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Abbreviations 

The following abbreviations have been used in this manuscript: 

LULC Land-use/land-cover 
CPV Class-probability vector 
ALOS Advanced Land Observing Satellite 
NIR Near infrared 
CDF Cumulative distribution function 
UA User accuracy 
PA Producer accuracy 
OA Overall accuracy 
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