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Abstract

In this paper we consider type II bivariate generalized power series Poisson distribution as a compound Poisson

distribution with bivariate generalized power series compounding distribution. We obtain some properties, p.m.f

and conditional distributions. In addition we also give a brief discussion about the multivariate extension of this

case. Then we introduce type II bivariate generalized power series Poisson process and consider a bivariate risk

model with type II bivariate generalized power series Poisson model as the counting process. For this model we

derive distribution of the time to ruin and bounds for the probability of ruin. We obtain partial integro-differential

equation for the ruin probabilities and express its bivariate transform through two univariate boundary transforms,

where one of the initial capitals is fixed at zero.

Keywords: bivariate generalized power series distribution; ruin probability; aggregate claims distribution

1. Introduction

Bivariate discrete random variables taking non-negative integer values, have received considerable attention in

the literature. The type II bivariate Polya - Aeppli distribution was introduced by Minkova and Balakrishnan(2014).

Kostadinova and Minkova(2014) applied bivariate Poisson negative binomial distribution to bivariate risk processes.

Furthermore Kostadinova(2015) introduced a bivariate risk model in which distribution of claim counting process5

is the bivariate Polya-Aeppli distribution. In the literature it has been found that bivariate compound Poisson

distributions are very flexible and can be used efficiently in bivariate risk modeling. With this as motivation,

different bivariate compound Poisson distributions have been constructed.

The family of bivariate generalized power series distribution is basically used for counting paired events. It con-

tains many important families like bivariate Poisson, bivariate binomial, bivariate negative binomial and bivariate10
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logarithmic series distributions. The PMF of bivariate generalized power series distribution is given by

P (i, j) =
ai,jθ

i
1θ
j
2

g(θ1, θ2)
, (i, j) ∈ T , (1)

where g(θ1, θ2) =
∑
i,j ai,jθ

i
1θ
j
2, ai,j ≥ 0 and T is a subset of cartesian product of the set of nonnegative integers.

In this paper we consider compound Poisson distribution with bivariate generalized power series compounding

distribution. The bivariate type II Polya-Aeppli distribution and the bivariate Poisson negative binomial distribu-

tion are the special cases of bivariate generalized power series Poisson distribution.15

For the univariate case, where X1, X2, X3... are independent and identically distributed random variables,

independent of N1 and N1 has a Poisson distribution with parameter λ, denoted by N1 ∼ Po(λ). Suppose that

X1, X2, X3... follow generalized power series distribution with PGF

P (s) =
g(θs)

g(θ)
,

where g(θ) =
∑
i aiθ

i, ai ≥ 0.

Now consider the random sum

N = X1 +X2 + ...+XN1 ,

The distribution of N is called generalized power series Poisson distribution.

The PGF of the random variable N is given by

ΨN (s) = e−λ(1−P (s)) = e−λ(1−
g(θs)
g(θ)

).

Then the corresponding PMF is given by

P (N = m) = e−λ , m = 0

= e−λθm
∞∑
j=1

Cm(j)( λ
g(θ) )

j

j!
, m = 1, 2, . . . ,

where

Cm(j) =
∑

k1+k2+...+kj=m

a(k1), a(k2)...a(kj), If (k1, k2, ..., kj) is the ordered j-tuple of

positive integers in the range set of the random variable X which sum up to m.

This paper is organised as follows . In section 2 the joint probability mass function, correlation coefficient

and covariance of type II bivariate generalized power series Poisson distribution are derived. In section 3 marginal20

distribution and conditional distribution of type II bivariate generalized power series Poisson distribution are given.

2
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A multivariate extension of the generalized power series Poisson distribution and its properties are discussed in

section 4. Bivariate counting processes with type II bivariate generalized power series Poisson distribution is

introduced in section 5. In section 6 we consider type II bivariate generalized power series Poisson risk model and

derive the distributions of bivariate aggregate claims and sum of aggregate claims of two classes. Section 7 presents25

three types of ruin probabilities and an expression for ruin probabilities for a type II bivariate generalized power

series Poisson risk model is derived. In addition, the bounds for the ruin probabilities are developed. In section 8

a system of partial integro differential equation for the ruin probabilities is developed and the Laplace transform

is derived. Section 8 deals with multivariate generalized power series Poisson risk model and the ruin probabilities

for the defined risk model.30

2. Bivariate Generalized Power Series Poisson Distribution

Let us consider the sequence (Xi, Yi), i = 1, 2, ... of independent and identically distributed random variables,

distributed as (X,Y ).

Define

N1 = X1 +X2 + ...+XN and N2 = Y1 + Y2 + ...+ YN ,

where N is independent of the compounding random vector (X,Y ) and has a Poisson distribution with parameter λ.35

Suppose that (X,Y ) has a bivariate generalized power series distribution with PGF

P (s1, s2) =
g(θ1s1, θ2s2)

g(θ1, θ2)
.

Then, the joint PGF of the bivariate random vector (N1, N2) is given by

Ψ(s1, s2) = e−λ(1−P (s1,s2)) = e
−λ(1− g(θ1s1,θ2s2)

g(θ1,θ2)
)
. (2)

The PGF in (2) can be written as

Ψ(s1, s2) = e−λ
∞∑
k=1

(
λ

g(θ1,θ2)

)k
k!

∑
i,j

Cij(k)(θ1s1)i(θ2s2)j , (3)

where40

Cij(k) =
∑

i1+i2+···+ik=i
j1+j2+···+jk=j

ai1j1 ai2j2 · · · aik jk , if (i1, i2, · · · , ik) is the ordered k tuple of elements in the range of X

which sum up to i and (j1, j2, · · · jk) is the ordered k tuple of elements in the range of Y which sum up to j .

3
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Differentiation in (3) leads to the following derivatives

Ψ(i,j)(s1, s2) = e−λ
∞∑
k=1

(
λ

g(θ1,θ2)

)k
k!

∑
l≥i,m≥j

Cl,m(k)l(i)m(j)θl1θ
m
2 s

l−i
1 sm−j2 , (4)

where l(i) = l!
(l−i)! ,m

(j) = m!
(m−j)! and Ψ(i,j)(s1, s2) = ∂i+j

∂si1∂s
j
2

Ψ(s1, s2).

Setting s1 = s2 = 1 in (4),we obtain the (i, j)th factorial moments of (N1, N2)

EN1(N1 − 1) · · · (N1 − i+ 1)N2(N2 − 1) · · · (N2 − j + 1)

= e−λ
∞∑
k=0

(
λ

g(θ1,θ2)

)k
k!

∑
l≥i,m≥j

Clm(k)l(i)m(j)θl1θ
m
2 .

2.1. Covariance and Correlation

The means are given by45

µ1 = E (N1) = λθ1
∂
∂θ1

log g(θ1, θ2) and µ2 = E (N2) = λθ2
∂
∂θ2

log g(θ1, θ2).

Similarly the variances are obtained as

Var (N1) = θ1
∂
∂θ1

µ1 + 1
λµ

2
1,Var (N2) = θ2

∂
∂θ2

µ2 + 1
λµ

2
2.

From (2), we obtain

∂2

∂s1∂s2
Ψ(s1, s2) =

(
λ

g(θ1, θ2)

∂2

∂s1∂s2
g(θ1s1, θ2s2) +

(
λ

g(θ1, θ2)

)2
∂

∂s1
g(θ1s1, θ2s2)

∂

∂s2
g(θ1s1, θ2s2)

)
Ψ(s1, s2),

(5)

Setting s1 = s2 = 1 in (5), we easily obtain

EN1N2 = θ2
∂

∂θ2
µ1 +

(
1 +

1

λ

)
µ1µ2.

The covariance and correlation between N1 and N2 are respectively given by

Cov (N1, N2) =θ2
∂

∂θ2
µ1 +

1

λ
µ1µ2

Corr (N1, N2) =
θ2

∂
∂θ2

µ1 + 1
λµ1µ2√∏2

i=1

(
θi

∂
∂θi
µi + 1

λµ
2
i

) .
2.2. Joint Probability Mass Function50

The joint probability mass function of (N1, N2) is obtained by expanding the PGF, Ψ(s1, s2) in powers of s1

and s2.

Let f(i, j) = P (N1 = i,N2 = j), i = j = 0, 1, 2... denote the joint PMF of (N1, N2).

On the other hand, from Johnson et al., it is known that

f(i, j) =
Ψ(i,j)(s1, s2)

i!j!

/
s1 = s2 = 0.

4
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Using the PGF in (2) and the derivatives in (4) we obtain the joint PMF of (N1, N2) and is given by

f(0, 0) = e
−λ
(
1− a0,0

g(θ1,θ2)

)
,

f(i, j) = e−λθi1θ
j
2

∞∑
k=1

Cij(k)
(

λ
g(θ1,θ2)

)k
k!

, i, j = 0, 1, · · · , (i, j) 6= (0, 0) ,

where Cij(k) =
∑

i1+i2+···+ik=i
j1+j2+···+jk=j

ai1,j1ai2,j2 · · · aik,jk , if (i1, i2, · · · , ik) is the ordered k tuple of elements in the range

of X which sums up to i and (j1, j2, · · · jk) is the ordered k tuple of elements in the range of Y which sums up to

j .

3. Marginal Distributions

The PGFs of the marginal compounding distributions are given by

P1(s1) = P (s1, 1) = g(θ1s1,θ2)
g(θ1,θ2)

=
∑
i bi(θ1s1)

i∑
i biθ

i
1

, where bi =
∑
j aijθ

j
2, is independent of θ1,

P2(s2) = P (1, s2) = g(θ1,θ2s2)
g(θ1,θ2)

=
∑
j cj(θ2s2)

j∑
j cjθ

j
2

, where cj =
∑
i aijθ

i
1 , is independent of θ2.

Therefore the above marginal PGFs can be written in the form

P1(s1) =
h1(θ1s1)

h1(θ1)
,

P2(s2) =
h2(θ2s2)

h2(θ2)
. (6)

From which it follows that the random variable X has a generalized power series distribution with series function

h1(θ1) =
∑
i biθ

i
1, where bi =

∑
j aijθ

j
2 and θ2 are treated as constants.

Analogously, Y has a generalized power series distribution with series function h2(θ2) =
∑
j cjθ

j
2, where cj =∑

i aijθ
i
1 and θ1 are treated as constants.

Then , from (2) and (6), we obtain the corresponding marginal PGFs of N1 and N2

ΨN1
(s1) = Ψ(s1, 1) = e−λ(1−h1(θ1)),

ΨN2
(s2) = Ψ(1, s2) = e−λ(1−h2(θ2)). (7)

The corresponding marginal distributions of N1 and N2 are easily obtained from (7),respectively, to be

P (N1 = m) = e−λ , m = 0

= e−λθm1

∞∑
j=1

Cm(j)( λ
h1(θ1)

)j

j!
, m = 1, 2, . . . ,

where

Cm(j) =
∑

k1+k2+...+kj=m

bk1 , bk2 ...bkj , If (k1, k2, ..., kj) is the ordered j-tuple of

positive integers in the range set of the random variable X which sum up to m.

5
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and

P (N2 = m) = e−λ , m = 0

= e−λθm2

∞∑
j=1

Dm(j)( λ
h2(θ2)

)j

j!
, m = 1, 2, . . . ,

where

Dm(j) =
∑

k1+k2+...+kj=m

ck1 , ck2 ...ckj , If (k1, k2, ..., kj) is the ordered j-tuple of

positive integers in the range set of the random variable Y which sum up to m.

Then from it follows that marginal distributions of N1 and N2 belongs to univariate generalized power series Poisson55

distribution.

3.1. Conditional Distribution

From Johnson et al.(1997), the conditional P.G.F. of N2 given N1 written ΨN2/N1=k(s2), is

ΨN2/N1=k(s) =
Ψ(k,0)(0, s2)

Ψ(k,0)(0, 1)
, (8)

where Ψ(k,0)(s1, s2) = ∂k

∂sk1
Ψ(s1, s2).

Substituting (i, j) = (k, 0) and s1 = 0 in (4), we get

Ψ(k,0)(0, s2) = e−λ
∞∑
m=1

∑
j

(
λ

g(θ1,θ2)

)m
m!

Ckj(m)k!θk1 (θ2s2)j . (9)

Using (8) and (9) we obtain60

ΨN2/N1=k(s2) =

∑∞
m=0

∑
j

(
λ

g(θ1,θ2)

)m
m! Ckj(m)θk1 (θ2s2)j∑∞

m=1

∑
j

(
λ

g(θ1,θ2)

)m
m! Ckj(m)θk1θ

j
2

. (10)

For k = 0, we get

ΨN2/N1=0(s2) =
Ψ(0, s2)

Ψ(0, 1)

= e
−λ g(0,θ2)

g(θ1,θ2)

[
1− g(0, θ2s2)

g(θ1, θ2)

]
.

It follows immediately that the conditional mean is

E[N2/N1 = k] =

∑∞
m=1

∑ (
λ

f(θ1,θ2)

)m
m! Ckj(m)jθj2∑∞

m=1

∑ (
λ

f(θ1,θ2)

)m
m! Ckj(m)θj2

.

In particular

E(N2/N1 = 0) = λtθ2

∂
∂θ2

g(0, θ2)

g(θ1, θ2)
.

6
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4. Multivariate Extension

Let X = (X1, · · ·Xk) be a k-dimensional random vector of generalized power series random variables.

The PGF of X is given by

P (s1, s2, · · · , sk) =
g(θ1s1, θ2s2, · · · , θksk)

g(θ1, θ2, · · · , θk)
.

Define

Ni = Xi1 +Xi2 + ...+XiN , i = 1, 2, ..., k,

where N is independent of compounding random vector X and has a Poisson distribution with parameter λ.

Then, the joint PGF of (N1, N2, · · · , Nk) is given by

Ψ(s1, s2, · · · , sk) = e−λ(1−P (s1,s2,···sk)) = e
−λ
(
1− g(θ1s1,θ2s2,··· ,θksk)

g(θ1,θ2,··· ,θk)

)
. (11)

The PGFs of the marginal compounding distributions are given by65

PXi(si) = P (1, · · · , si, · · · , 1) =
g(θ1, · · · , θisi, · · · θk)

g(θ1, · · · , θk)
=
hi(θisi)

hi(θi)
, i = 1, 2, · · · k, (12)

Where hi(θi) =
∑
xi bi(xi)θ

xi
i and bi(xi) =

∑
x1···xi−1xi+1···xk ax1x2···xkθ

x1
1 · · · θ

xi−1
i−1 θxi+1

i+1 · · · θ
xk
k .

Therefore from (12) it follows that the random variable Xi has a generalized power series distribution with series

function hi(θi) =
∑
xi bi(xi)θ

xi
i as expanded in powers of θi, other θ’s treated as constants.

The marginal PGFs of Ni, i = 1, 2, . . . k are obtained from (11) and (12), and are given by

ΨNi(si) = Ψ(1, . . . , si, . . . , 1) = e
−λ
(
1−hi(θisi)

hi(θi)

)
, i = 1, 2, . . . , k.

Then from it follows that Ni, i = 1, 2, . . . k belongs to univariate generalized power series Poisson distribution.

The corresponding marginal P.M.Fs are given by

P (Ni = m) =


e−λ, m = 0

e−λθmi
∑∞
j=1

(
λ

hi(θi)

)j
j

Cim(j), m = 1, 2, . . . ,

where Cim(j) =
∑
k1+k2···+kj=m bi(k1)bi(k2) . . . bi(kj) If (k1, k2, . . . , kj) is ordered j-tuple of positive integers in the

range set of Xi which sum up to m.

4.1. Joint Probability Mass Function

The P.G.F. in (11) can be written as

Ψ(s1, s2, . . . , sk) = e−λ
∞∑
j=1

∑
i1,i2,...ik

(
λ

g(θ1,θ2,...,θk)

)j
j!

Ci1,i2,...ik(j)(θ1s1)i1(θ2s2)i2 . . . (θksk)ik . (13)

7
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Differentiation in (13) leads to the following derivatives70

Ψ(r1,r2,...,rk)(s1, . . . , sk) = e−λ
∞∑
j=1

∑
i1≥r1,...,ik≥rk

(
λ

g(θ1,θ2,...,θk)

)j
j!

Ci1,i2,...,ik(j)i
(r1)
1 θi11 s

i1−r1
1 . . . i

(rk)
k θikk s

ik−rk
k , (14)

where i
(rj)
j =

ij !
(ij−rj)! , j = 1, 2, . . . , k and Ψ(r1,r2,...,rk)(s1, . . . , sk) = ∂r1+r2+···+rk

∂s
r1
1 ∂s

r2
2 ,...∂s

rk
k

Ψ(s1, s2, . . . , sk). From Johnson

et al.(1997), it is known that for r1 . . . , rk = 0, 1 . . . , and (r1, r2, . . . , rk) 6= (0, . . . , 0) ,

f(r1, r2, . . . , rk) =
Ψ(r1,r2,...,rk)(s1, . . . , sk)

r1! . . . rk!

/
s1 = · · · = sk = 0.

Denote by f(i1, . . . , ik) = P (N1 = i1, . . . , Nk = ik), i1 . . . ik = 0, 1, 2, . . . the joint PMF of (N1, N2, . . . , Nk) and is

given by

f(0, . . . , 0) = e
−λ
(
1− a0,...,0

g(θ1,...,θk)

)
,

f(i1, i2, . . . , ik) = e−λ
∞∑
j=1

(
λ

g(θ1,...,θk)

)j
j!

Ci1,i2,...,ik(j)θi11 θ
i2
2 . . . θikk ,

i1, i2, . . . , ik = 0, 1, . . . , (i1, i2, . . . , ik) 6= (0, 0, . . . 0),

where

Ci1,i2,...,ik(j)
∑

i11+i12,+...,+iij=i1

...
ik1+ik2+···+ikj=ik

a(i11, i21, . . . , ik1)a(i12, i22, . . . , ik2) . . . a(i1j , i2j , . . . , ikj).

If (il1, il2, . . . , ilj) is the ordered j tuple of elements in the range set of Xl which sum up to il, l = 1, 2, . . . , k.

Setting s1 = s2 = · · · = sk = 1 in (14), we obtain the joint factorial moment of (N1, N2, . . . , Nk).

E[N1(N1 − 1) . . . (N1 − r1 + 1) . . . Nk(Nk−1) . . . (Nk − rk+1)]

= e−λ
∞∑
j=1

∑
i1≥r1,...,ik≥rk

(
λ

g(θ1,...θk)

)j
j!

Ci1,i2,...,ik(j)i
(r1)
1 θi11 . . . i

(rk)
k θikk .

4.2. Conditional Distribution

From Johnson et al.(1997),the conditional PGF of (N2 . . . Nk), given N1 written

ΨN2...Nk/N1=i1(s2, . . . , sk), is

ΨN2...Nk/N1=i1(s2, . . . , sk) =
Ψ(i1,0,...,0)(0, s2, . . . , sk)

Ψ(i1,0...,0)(0, 1, . . . , 1)
, (15)

where

Ψ(i1,0,...,0)(s1, . . . , sk) =
∂i1Ψ(s1, . . . , sk)

∂si11
.

8
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Substituting (r1, r2, . . . , rk) = (i1, 0, . . . , 0) and s1 = 0 in (14), we get

Ψ(i1,0,...,0)(0, s2, . . . , sk) = e−λ
∞∑
j=1

∑
i2,...,ik

(
λ

g(θ1,...,θk)

)j
j!

Ci1,i2...,ik(j)i1!θi11 (θ2s2)i2 . . . (θksk)ik . (16)

Using (15) and (16) we obtain

ΨN2...Nk/N1=i1(s2, . . . , sk) =

∑∞
j=1

∑
i2,...,ik

(
λ

g(θ1,...,θk)

)j
j! Ci1,i2...,ik(j)i1!θi11 (θ2s2)i2 . . . (θksk)ik∑∞

j=1

∑
i2,...,ik

(
λ

g(θ1,...,θk)

)j
j! Ci1,i2...,ik(j)i1!θi11 θ

i2
2 . . . θikk

.

For i1 = 0, we get

ΨN2...Nk/N1=0(s2, . . . , sk) =
Ψ(0, s2, . . . , sk)

Ψ(0, 1, . . . , 1)

= e
−λ g(0,θ2,...,θk)

g(θ1,θ2,...,θk)

(
1− g(0, θ2s2, . . . , θksk)

g(θ1, θ2, . . . , θk)

)
.

The conditional PGF of Nk given (N1, N2, · · · , Nk−1) is

ΨNk/N1=i1,...,Nk−1=ik−1
(sk) =

Ψ(i1,...,ik−1,0)(0, . . . , 0, sk)

Ψ(i1,...,ik−1,0)(0, . . . , 0, 1)

=

∑∞
j=1

∑
ik

(
λ

g(θ1,...,θk)

)j
j! Ci1,i2...,ik(j)i1!i2! . . . ik!θi11 θ

i2
2 . . . θ

ik−1

k−1 (θksk)ik∑∞
j=1

∑
ik

(
λ

g(θ1,...,θk)

)j
j! Ci1,i2...,ik(j)i1!i2! . . . ik−1!θi11 θ

i2
2 . . . θikk

.

For i1 = i2 = · · · = ik−1 = 0, we get

ΨNk/N1=N2=···=Nk−1=0 =
Ψ(0, . . . , 0, sk)

Ψ(0, . . . , 0, 1)

= e
−λ g(0,...,0,θk)

g(θ1,...,θk)

(
1− g(0, . . . , 0, θksk)

g(θ1, . . . , θk)

)
.

It follows immediately that the conditional mean is

E(Nk/N1 = i1, N2 = i2, . . . , Nk−1 = ik−1)

=

∑∞
j=1

∑
ik

(
λ

g(θ1,...,θk)

)j
j! Ci1,i2...,ik(j)i1! . . . ik−1!θi11 . . . θ

ik−1

k−1 (θksk)ik∑∞
j=1

∑
ik

(
λ

g(θ1,...,θk)

)j
j! Ci1,i2...,ik(j)i1!i2! . . . ik−1!θi11 (θ2)i2 . . . θikk

.

In particular

E(Nk/N1 = · · · = Nk−1 = 0) =
λtθk

∂
∂θk

g(0, . . . , 0, θk)

g(θ1, . . . , θk)
.

5. Type II bivariate Generalized Power Series Poisson Process75

Consider a compound Poisson process with bivariate generalized power series compounding distribution, given

in (1). The resulting bivariate counting process (N1(t), N2(t)) has type II bivariate generalized power series Poisson

9
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distribution with parameters λt, θ1 and θ2. i.e,

f(0, 0) = e
−λt

(
1− a0,0

g(θ1,θ2)

)
,

f(i, j) = e−λtθi1θ
j
2

∞∑
k=1

Cij(k)
(

λ
g(θ1,θ2)

)k
k!

, i, j = 0, 1, · · · , (i, j) 6= (0, 0) ,

where Cij(k) =
∑

i1+i2+···+ik=i
j1+j2+···+jk=j

ai1,j1al2,j2 · · · aik,jk , if (i1, i2, · · · , ik) is the ordered k tuple of elements in the range

of X which sums up to i and (j1, j2, · · · jk) is the ordered k tuple of elements in the range of Y which sums up to

j .

To express {(N1(t), N2(t)), t ≥ 0} is type II bivariate generalized power series Poisson process with parameters

λt, θ1 and θ2 we use the notation (N1(t), N2(t)) ∼ BGPSII(λt, θ1, θ2).80

Remark: 1. 1.In the case of g(θ1, θ2) = (1 − θ1 − θ2)−r, θ1 = α, θ2 = β and a(i, j) =
(
i+j
j

)(
r+i+j−1
i+j

)
, the type II

bivariate generalized power series Poisson process coincides with bivariate Poisson negative binomial process; see

Kostadinova and Minkova(2014).

2.In the case of g(θ1, θ2) = (1 − θ1 − θ2)−1, θ1 = α, θ2 = β and a(i, j) =
(
i+j
j

)(
r+i+j−1
i+j

)
, the type II bivariate gen-

eralized power series Poisson process coincides with type II bivariate Polya-Aeppli process; see Kostadinova(2015).85

6. Type II Bivariate Generalized Power Series Poisson Risk Model

Let us assume that there are two kinds of claims X1i and X2i belonging to two classes. We will investigate a

two dimensional model

U1(t) = u1 + c1t− S1(t),

U2(t) = u2 + c2t− S2(t),

(17)

where ui, i = 1, 2, is the initial capital, ci > 0, i = 1, 2, is the constant premium income per unit time, Ni(t) is the

number of claims up to time t, Xik is the size of the kth claim and Si(t) =
∑Ni(t)
j=1 Xij , i = 1, 2 is the aggregate90

claims amount for ith class.

For fixed i = 1, 2, {Xik}k≥1 are independent and identically distributed (i.i.d) nonnegative random variable with

distribution function Fi(Xi) such that Fi(0) = 0 and finite mean µi = E(Xi). Assume that {Ni(t), t ≥ 0} , {(X1k, X2k)}k≥1

are mutually independent and {(X1k, X2k)}k≥1 is a sequence of i.i.d bivariate random vectors with joint distribution

function F (x1, x2). Here we assume that bivariate counting process {(N1(t), N2(t)), t ≥ 0} has a type II bivariate95

generalized power series Poisson process and will call the process the bivariate generalized power series Poisson risk

model.

Now we consider the sum of both risk process (17), the joint capital for the two classes is given by:

U(t) = U1(t) + U2(t) = u+ ct− S(t),

10
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where u = u1 + u2, c = c1 + c2 and S(t) = S1(t) + S2(t).

Central problem in risk theory is the modeling of the probability distribution for the aggregate claims. The

aggregate claims distribution is mainly used to compute ruin probabilities. Hesselarger(1996) introduced recursive

formulas for the joint distribution of the bivariate aggregate claims random variables. Clark and Homer(2003) used

Fast Forier Transformation(FFT) to compute bivariate aggregate claims distribution. Here we derive bivariate

aggregate claims distribution from type II bivariate generalized power series Poisson risk model via convolution.

Let H(u1, u2, t) denotes the joint cumulative distribution function of bivariate aggregate claims, (S1(t), S2(t)) and

and F ∗n(x) is the n-fold convolution of claim amount distribution which can be calculated recursively as

F ∗n(x) =

∫ x

0

F ∗n−1(x− y)f(y)dy.

The joint CDF of aggregate claims is given by

H(S1(t),S2(t))(x, y, t) = P (S1(t) ≤ x, S2(t) ≤ y)

=

∞∑
i,j=0

P (N1(t) = i,N2(t) = j)F ∗i1 (x)F ∗j2 (y)

= e−λt
(

1− a0,0
g(θ1, θ2)

)

+ e−λt
∞∑

i,k=1

Ci,0(k)θi1

(
λt

g(θ1,θ2)

)k
k!

F ∗i1 (x)

+ e−λt
∞∑

j,k=1

C0,j(k)θj2

(
λt

g(θ1,θ2)

)k
k!

F ∗j2 (y)

+ e−λt
∞∑

i,j,k=1

Ci,j(k)θi1θ
j
2

(
λt

g(θ1,θ2)

)k
k!

F ∗i1 (x)F ∗j2 (y).

(18)

Let N(t) = N1(t) +N2(t) denotes the total number of claims happened in both classes.

Then the PMF of N(t) is given by

P (N(t) = k) =


e−λt(1− a0,0

g(θ1,θ2)
), k = 0

e−λt
∑∞
j=1

∑k
i=0

(
λt

g(θ1,θ2)

)j
j!

Ci,k−i(j)θ
i
1θ
k−i
2 , k = 1, 2, · · ·

Now we consider the sum of aggregate claims of two classes

S(t) = S1(t) + S2(t)

Case 1:two classes have different claim size distribution

In this case

S(t) =

N1(t)∑
j=1

X1j +

N2(t)∑
j=1

X2j

11
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and the corresponding CDF G(u) is given by100

G(u) = P (S(t) ≤ x)

=

∞∑
i,j=0

P (N1(t) = i,N2(t) = j)F ∗i1 ∗ F
∗j
2 (x) ,

= e
−λt

(
1− a0,0

g(θ1,θ2)

)
+ e−λt

∞∑
i,k=1

Ci,0(k)θi1

(
λt

g(θ1,θ2)

)k
k!

F ∗i1 (x)

+ e−λt
∞∑

j,k=1

C0,j(k)θj2

(
λt

g(θ1,θ2)

)k
k!

F ∗j2 (x) + e−λt
∞∑

i,j,k=1

Ci,j(k)θi1θ
j
2

(
λt

g(θ1,θ2)

)k
k!

F ∗i1 ∗ F
∗j
2 (x).

(19)

Case 2:two classes have the same claim size distribution

In this case

S(t) = X1 +X2 + · · ·+XN(t),

where N(t) = N1(t) +N2(t).

Denote by G(x) the CDF of S(t) and is given by

G(x) = P (S(t) ≤ x)

=

∞∑
i=0

P (N(t) = i)F ∗i(x) ,

= e
−λt

(
1− a0,0

g(θ1,θ2)

)
+ e−λt

∞∑
i,j=1

i∑
r=0

(
λt

g(θ1,θ2)

)j
j!

Cr,i−r(j)θ
r
1θ
i−r
2 F ∗i(x).

(20)

7. Ruin probabilities

Ruin theory for the bivariate risk model has been extensively considered in the literature. It has been found

that ruin probabilities are often fundamental interest in risk management purpose. Chan et al.(2003) discussed

various ruin concept for bivariate risk process.

The time of ruin for the ith class (i = 1, 2) is defined by

τi = inf{t ≥ 0;Ui(t) < 0},

and the corresponding probability of ruin is

Ψi(ui) = P (τi <∞/Ui(0) = ui).

If for each i, the process Ui(t) ≥ 0 for all t ≥ 0 (no ruin occurs), we indicae this by writing τi =∞.

105
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Here we consider three kinds of ruin time as follows. The first one is τmax(u1, u2) = inf{t ≥ 0/max (U1(t), U2(t)) <

0}, representing the first time when both U1(t) and U2(t) became negative, whereas the second one is τmin(u1, u2) =

inf{t ≥ 0/min (U1(t), U2(t)) < 0}, representing the first time when either U1(t) or U2(t) became negative, and last

one is τsum = inf{t ≥ 0/U(t) < 0}, representing the time when the joint capital for the two classes U(t) became neg-

ative. The associated ruin probabilities will be respectively denoted by Ψmax(u1, u2),Ψmin(u1, u2) and Ψsum(u1, u2).

First we derive the expression for the ruin probability Ψmax(u1, u2)

Ψmax(u1, u2) = P (τmax <∞/U1(0) = u1, U2(0) = u2)

= P (max(U1(t), U2(t)) < 0)

= P (U1(t) < 0, U2(t) < 0)

= P (S1(t) > u1 + c1t, S2(t)) > u2 + c2t)

= H̄(u1 + c1t, u2 + c2t).

where H̄(u1, u2) is the joint survival function of (S1(t), S2(t)).

Next we consider the expression for the ruin probability Ψmin(u1, u2)

Ψmin(u1, u2) = P (τmin <∞/U1(0) = u1, U2(0) = u2)

= P (min(U1(t), U2(t)) < 0)

= 1− P (min(U1(t), U2(t)) > 0)

= 1− P (U1(t) > 0, U2(t)) > 0)

= 1− P (S1(t) < u1 + c1t, S2(t) < u2 + c2t)

= 1−H(u1 + c1t, u2 + c2t) ,

where H(u1, u2) is the joint CDF of (S1(t), S2(t)) given by (18).

Finally we derive the expression for the ruin probability Ψsum(u1, u2)

Ψsum(u1, u2) = P (τsum <∞/U1(0) = u1, U2(0) = u2)

= P (U(t) < 0)

= P (S(t) > u+ ct)

= G(u+ ct)

where G(x) is the survival function of S(t) .
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7.1. Bounds for Ruin Probability

Most of the papers in the literature of bivariate risk theory are concerned with ruin probabilities. Exact so-

lutions of these probabilities are rarely available, and existing result are mostly in the form of bounds. Chan et

al.(2003) , Cai and Li(2005) and Yuen et al.(2006) derived bounds for the ultimate ruin probability Ψmin(u1, u2).110

Simple bounds for Ψmax(u1, u2) was given by Cai and Li(2005, 2007).

The lower and upper bounds on Ψmax(u1, u2) and Ψmin(u1, u2) are respectively described by the following

inequalities.

Ψ1(u1) Ψ2(u2) ≤ Ψmax(u1, u2) ≤ min(Ψ1(u1), Ψ2(u2))

max(Ψ1(u1), Ψ2(u2)) ≤ Ψmin(u1, u2) ≤ Ψ1(u1) + Ψ2(u2)−Ψ1(u1)Ψ2(u2),

(21)

where the final expression in the second equation is exactly the ruin probability in the case where {U1(t)}t≥0 and115

{U2(t)}t≥0 are independent.

If there is no initial capitals (u1 = u2 = 0), then the above relations becomes

Ψ1(0) Ψ2(0) ≤ Ψmax(0, 0) ≤ min(Ψ1(0), Ψ2(0))

max(Ψ1(0), Ψ2(0) ≤ Ψmin(0, 0) ≤ Ψ1(0) + Ψ2(0)−Ψ1(0)Ψ2(0)

(22)

In the case of univariate generalized power series Poisson risk model the ruin probabilities are given by

Ψi(0) =
λµih

′
i(θi)

cihi(θ1)
i = 1, 2. (23)

Using the equations (22) and (23) we can obtain bounds for the ruin probabilities Ψmax(0, 0) and Ψmin(0, 0) for

the type II bivariate generalized power series Poisson risk model and are given by

λ2µ1µ2h
′
1(θ1)h′2(θ2)

c1c2h1(θ1)h2(θ2)
≤ Ψmax(0, 0) ≤ min

(
λµ1h

′
1(θ1)

c1h1(θ1)
,
λµ2h

′
2(θ2)

c2h2(θ2)

)
.

max

(
λµ1h

′
1(θ1)

c1h1(θ1)
,
λµ2h

′
2(θ2)

c2h2(θ2)

)
≤ Ψmin(0, 0) ≤ λµ1h

′
1(θ1)

c1h1(θ1)
+
λµ2h

′
2(θ2)

c2h2(θ2)
− λ2µ1µ2h

′
1(θ1)h′2(θ2)

c1c2h1(θ1)h2(θ2)
.

Moreover, we have

Ψmin(u1, u2) = Ψ1(u1) + Ψ2(u2)−Ψmax(u1, u2).

In the case of no initial capital above relation is

Ψmin(0, 0) = Ψ1(0) + Ψ2(0)−Ψmax(0, 0).

and hence,we obtain

Ψmin(0, 0) =
λµ1h

′
1(θ1)

c1h1(θ1)
+
λµ2h

′(θ2)

c2h2(θ2)
−Ψmax(0, 0).
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8. Two Dimensional Integro Differential Equation

In this section we will derive partial integro differential equation for the bivariate survival probability for the

bivariate surplus process (17) defined in section 6.

Define the infinite time joint survival probability

Φ(u1, u2) = P (U1(t) ≥ 0, U2(t) ≥ 0; for all t ≥ 0).

and infinite time joint ruin probability is Ψ(u1, u2) = 1− Φ(u1, u2).

In a small time interval (0, h] , there are following possible cases: no claim, one claim from class 1 and no claim

from class 2, no claim from class 1 and one claim from class 2, one or more than one claims from each class. It

follows that

Φ(u1, u2) =

(
1− λh

(
1− a0,0

g(θ1, θ2)

)
+ o(h)

)
Φ(u1 + c1h, u2 + c2h)

+

(
a10θ1h

g(θ1, θ2)
+ o(h)

)∫ u1+c1h

0

Φ(u1 + c1h− x, u2 + c2h)dF1(x)

+

(
a01θ2h

g(θ1, θ2)
+ o(h)

)∫ u2+c2h

0

Φ(u1 + c1h, u2 + c2h− y)dF2(y)

+

 ∞∑
i,j=1

ai,jθ
i
1θ
j
2h

g(θ1, θ2)
+ o(h)

∫ u1+c1h

0

∫ u2+c2h

0

Φ(u1 + c1h− x, u2 + c2h− y)dF ∗i1 (x)dF ∗j2 (y),

where F ∗mi (x), i = 1, 2.,m = 1, 2, · · · is the distribution function of Xi1 +Xi2 + ...+Xim.

Rearranging the terms leads to

Φ(u1 + c1h, u2 + c2h)− Φ(u1, u2)

h
= λ

(
1− a0,0

g(θ1, θ2)

)
Φ(u1 + c1h, u2 + c2h)

+
a10θ1
g(θ1, θ2)

∫ u1+c1h

0

Φ(u1 + c1h− x, u2 + c2h)dF1(x)

+
a01θ2
g(θ1, θ2)

∫ u2+c2h

0

Φ(u1 + c1h, u2 + c2h− y)dF2(y) +

∞∑
i,j=1

ai,jθ
i
1θ
j
2

g(θ1, θ2)∫ u1+c1h

0

∫ u2+c2h

0

Φ(u1 + c1h− x, u2 + c2h− y)dF ∗i1 (x)dF ∗j2 (y) + o(h).

As h tends to zero, we get120

c1
∂

∂u1
Φ(u1, u2) + c2

∂

∂u2
Φ(u1, u2) = λ

(
1− a0,0

g(θ1, θ2)

)
Φ(u1, u2)

+
a10θ1
g(θ1, θ2)

∫ u1

0

Φ(u1 − x, u2)dF1(x)

+
a01θ2
g(θ1, θ2)

∫ u2

0

Φ(u1, u2 − y)dF2(y)

+

∞∑
i,j=1

ai,jθ
i
1θ
j
2

g(θ1, θ2)

∫ u1

0

∫ u2

0

Φ(u1 − x, u2 − y)dF ∗i1 (x)dF ∗j2 (y)

(24)

It is difficult to solve this two dimensional integro differential equation.
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8.1. Laplace Transforms of the Survival Probabilities

Having obtained the partial integro differential equations(PIDE) for the survival probabilities Φ(u1, u2) of the

surplus process (17), in the following we will derive the Laplace transforms for the survival probabilities.

Firstly, we define the following Laplace transforms

Φ̌(s1, u2) =
∫∞
0
e−s1u1Φ(u1, u2)du, f̃i(si) =

∫∞
0
e−sixdFi(x), i = 1, 2. and

ˇ̌Φ(s1, s2) =
∫∞
0

∫∞
0
e−s1u1−s2u2Φ(u1, u2)du.

Taking Laplace transform on both sides of the PIDE (24) with respect to u1, we get

c1(s1Φ̌(s1, u2)− Φ(0, u2)) + c2
∂

∂u2
Φ̌(s1, u2) = λ

(
1− a0,0

g(θ1, θ2)

)
Φ̌(s1, u2) +

a10θ1f̃1(s1)

g(θ1, θ2)
Φ̌(s1, u2)

+
a01θ2
g(θ1, θ2)

∫ u2

0

Φ̌(s1, u2 − y)dF2(y)

+

∞∑
i,j=1

ai,jθ
i
1θ
j
2f̃
∗i
1 (s1)

g(θ1, θ2)

∫ u2

0

Φ̌(s1, u2 − y)dF ∗j2 (y),

On simplification we get

c2
∂

∂u2
Φ̌(s1, u2) = c1Φ(0, u2) + (λ

(
1− a0,0

g(θ1, θ2)

)
− c1s1 +

a10θ1f̃1(s1)

g(θ1, θ2)
)Φ̌(s1, u2)

+
a01θ2
g(θ1, θ2)

∫ u2

0

Φ̌(s1, u2 − y)dF2(y) +

∞∑
i,j=1

ai,jθ
i
1θ
j
2f̃
∗i
1 (s1)

g(θ1, θ2)

∫ u2

0

Φ̌(s1, u2 − y)dF ∗j2 (y),

(25)

Taking Laplace transform on both sides of the PIDE (25) with respect to u2, we get

c2(s2
ˇ̌Φ(s1, s2)− Φ̌(s1, 0)) = c1Φ̌(0, s2) + (λ

(
1− a0,0

g(θ1, θ2)

)
− c1s1 +

a10θ1f̃1(s1)

g(θ1, θ2)
) ˇ̌Φ(s1, s2)

+
a01θ2f̃2(s2)

g(θ1, θ2)
ˇ̌Φ(s1, s2) +

∞∑
i,j=1

ai,jθ
i
1θ
j
2f̃
∗i
1 (s1)f̃∗j2 (s2)

g(θ1, θ2)
ˇ̌Φ(s1, s2)

Finally we get

ˇ̌Φ(s1, s2) =
c1s1Φ̌(0, s2) + c2s2Φ̌(s1, 0)

c1s1 + c2s2 − λ
(

1− a0,0
g(θ1,θ2)

)
− a10θ1f̃1(s1)

g(θ1,θ2)
− a01θ2f̃2(s2)

g(θ1,θ2)
−
∑∞
i,j=1

ai,jθi1θ
j
2f̃

∗i
1 (s1)f̃

∗j
2 (s2)

g(θ1,θ2)

9. Conclusion

In this paper we introduced the type II bivariate generalized power series Poisson distribution as a compound125

Poisson distribution with generalized power series compounding distribution. We have considered the bivariate

risk model with type II bivariate generalized power series Poisson distribution as claim number distribution. Three

models of ruin and the probabilities of ruin for the type II bivariate generalized power series Poisson risk model are

investigated. Also the bounds for ruin probabilities are developed. We obtained PIDE for the survival probability

and derived an expression for bivariate Laplace transform of ruin probabilities.130
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