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Abstract: The radar sensor described realizes healthcare monitoring capable of detecting subject 
chest-wall movement caused by cardiopulmonary activities, and wirelessly estimating the 
respiration and heartbeat rates of the subject without attaching any devices to the body. 
Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of 
bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse 
radio ultra-wideband (IR-UWB) radar to achieve low power consumption and convenient 
portability, with a flexible detection range and desirable accuracy. A noise reduction method based 
on improved ensemble empirical mode decomposition (EEMD) and a vital sign separation method 
based on the continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-
noise ratio (SNR) in order to acquire accurate respiration and heartbeat rates. Experimental results 
illustrate that respiration and heartbeat signals can be extracted accurately under different 
conditions. This noncontact healthcare sensor system proves the commercial feasibility and 
considerable accessibility of using compact IR-UWB radar for emerging biomedical applications. 

Keywords: impulse radio ultra-wideband (IR-UWB) radar; noncontact; short-range; vital signs; 
ensemble empirical mode decomposition (EEMD); continuous-wavelet transform (CWT) 

 

1. Introduction 

Radar sensors have been widely used in a number of applications since the 1930s [1], from 
primary vehicle speed measurement to advanced air-defense and marine radars, all of which are 
usually developed for ranging, targeting, or tracking moving subjects at large distances. Due to its 
non-invasive and noncontact properties, short-range radar has been an appealing approach in 
healthcare applications since the 1970s, when the first short-range non-invasive radar for respiration 
measurement was introduced [2]. Based on the principle of electromagnetic backscattering [3], radar 
is capable of wirelessly detecting both chest-wall movements caused by respiration and extremely 
small heart beats. Conventional medical devices like an electrocardiograph (ECG) and respiration 
belt rely on electrodes alone and an inductive plethysmograph, respectively, which make subjects 
uncomfortable, and may even worsen the quality of physiological measurements. In long-term 
monitoring (i.e., for obstructive sleep / coma subjects), an alarm connected to a radar processor can 
be triggered to either wake the subject or send a message to the subject’s nursing assistants so that 
they can take measures immediately to avoid possible danger or accidents [4]. In contrast, wearable 
devices require that the subject be attached to electric poles twisted together with several wires for 
heartbeat monitoring or a vacuum belt for respiratory monitoring during sleep, which may have a 
negative impact on sleep quality [5]. 

Ultra-wideband (UWB) radar is a technology used for transmitting electromagnetic waves 
spread over a large bandwidth (normally larger than 500MHz). Typically, most UWB radars transmit 
via large bandwidth over short pulse periods, usually on the order of a nanosecond, or even a 
picosecond; we generally refer to this type of UWB signalling as impulse radio UWB (IR-UWB) radar 
[6-8]. This has gained popularity in social and military applications in through-wall imaging, ground 
penetrating radar, detection of moving targets, and so on owing to its high penetrability and high 
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range resolution [9]. These characteristics make IR-UWB radar attractive for noncontact vital sign 
detection because it is capable of measuring absolute distance while carrying more vital sign 
information [10-12]. Apart from IR-UWB radar, continuous-wave (CW) radar is a basic type of radar 
used to detect phase information related to Doppler shift due to a moving chest wall. CW radar falls 
into three basic subcategories: single-tone, stepped frequency CW (SFCW), and frequency-modulated 
CW (FMCW) [13]. Each type of radar has its specific advantages. Single-tone CW radar also has a 
simple system architecture considering high-level chip integration [14], and the phase difference 
between transmitted and received signals is directly proportional to the target’s motion. On the other 
hand, FMCW radars can obtain range information, and researchers have also successfully integrated 
FMCW radar on silicon chips [15]. Moreover, SFCW radars carry some advantages of both single-
tone CW radars and FMCW radars and thus have been used successfully in cardio-respiration 
detection [16]. In addition, Li et al. reported a hybrid radar system combining the advantages of 
single-tone and FMCW radars [17]. With very high-range resolution owing to its wideband nature, 
IR-UWB radars have been efficiently implemented on silicon [18] and have the potential for realizing 
accurate detection of respiratory rate and apnea in adults and infants [19]. Above all, each type of 
radar system can implement the noncontact vital sign detection, depending on the specific 
application. In this paper, we develop short-range vital sign detection methods using IR-UWB radar 
based on a fully integrated nano-scale radar transceiver chip, which has a low power consumption, 
flexible dynamic range and configurable output frequency.  

Significant research has been performed on noncontact monitoring of vital signs through IR-
UWB radar systems from various aspects [20-26]. In [23] the mathematical modelling of the received 
waveforms was presented considering the magnitudes of different breathing harmonics and 
intermodulation, and then non-invasive monitoring of breathing and heartbeat rates was realized 
using an independent complex generator and sampler, which inevitably made the system heavy. To 
decrease the weight of the radar system, Khan et al. made it feasible to monitor the vital signs of a 
non-stationary human using an IR-UWB transceiver chip, but this work did not optimize the 
complete implementation procedures from the signal mathematical model to the experimental results 
under practical scenarios [24]. Moreover, Huang et al. utilized another kind of UWB radar to monitor 
infant respiration, but made no reference to heartbeat detection [25]. Typically, in relaxed human 
beings, the heart can experience heart displacements of 0.6 mm and respiration displacements are 
between 12 mm and several centimeters, depending on the person [26]. However, the spectrum of 
the detected signal contains several harmonics of the breathing signal that can be much stronger than 
the frequency component of the heartbeat signal [23]. Therefore, it is much more difficult to extract 
heartbeat signals from complicated radar echo signals. In this paper, the breathing rate and heartbeat 
frequency are detected remotely and are separated based on a one time-frequency analysis method 
which combines ensemble empirical mode decomposition (EEMD) with continuous-wavelet 
transform (CWT). The proposed method can increase the signal-to-noise ratio (SNR) to a certain 
degree compared with the traditional filtering method [11]. Moreover, experimental results illustrate 
that respiration and heartbeat signals can be extracted accurately under different conditions. 

The remainder of this paper is organized as follows. Section 2 presents a mathematical model of 
vital signs. The signal processing techniques used to detect the respiration and heart rates are 
presented in Section 3. We describe the proposed IR-UWB sensor system and the experimental setup 
in Section 4. In Section 5, Experimental results and comparisons are presented. Section 6 concludes 
this paper. 

2. Mathematical Model of Vital Sign 

By observing the changes in the propagating time delay of the echo signal from a subject, we can 
detect the range remotely. When the transmitted pulse illuminates a human subject, part of it is 
reflected back to the radar because of the high reflectivity of the body. 

For further digital signal processing, slow-time ݐ is discrete: ݐ = ݊ ௦ܶ	(݊ = 0,1, …ܰ − 1), where ௦ܶ is the effective pulse repetition time and ܰ discrete-time sequences are stored after the received 
signal is sampled.  
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In order to explain this clearly, we show the schematic map of the reflected signal with one 
respiratory motion and no static targets in Figure 1. The dashed line shows the fast-time bin. The 
location of the chest changes because of breathing, so the propagation time delay of the reflected 
signal changes. ߬ is the propagation fast-time of the electromagnetic wave. If the fast-time is sampled 
with sampling interval ௙ܶ , and ݉ = 0,1, … ܯ, − 1 are the fast-time sampling points, the discrete 
signal can be expressed as an	ܯ × ܰ matrix	ࡾ, the elements of which are [23]: 

 [ ] ( ) ( )( ), ,i f i v f v s
i

R n m a s mT a s mT nTτ τ= − + −  (1) 

where	(ݐ)ݏ	represents the transmitted signal. ܽ݅  and ߬݅  are the amplitude and propagation time 
delay of static target ݅ in fast-time and ܽݒ is the amplitude. ߬௩(ݐ) is the propagation time delay of 
object reflection in fast-time, and ݐ is the slow-time in which the reflected signal is obtained. 

t

τ 

Fast-time

Slow-time
 

Figure 1. Schematic map of received signal with one respiratory motion and no static targets. ݐ and ߬ 
represent the slow-time and fast-time, respectively. 

In a static environment, the clutter can be considered as a DC-component in the slow-time 
direction. From (1) we can see background clutter does not depend on slow-time	ݐ. Thus, we can use 
a basic filter to remove the background clutter; this can be performed by subtracting the mean from 
the matrix	[23] ࡾ. Let ݐ)ݎ, ߬)	represent the received signal; then the signal after clutter suppression 
can be expressed as: 

 0
0

1( , ) ( ( )) ( ) ( , ) lim ( , )
T

v v T
x t a s t r r t r t dt

T
τ τ τ τ τ τ

→∞
= − − = −  . (2) 

The DC component	ݎ଴(߬)	is blocked by subtracting the average of all samples in fast-time. 
According to (2) we can obtain the ideal signal without any stationary background as below: 

 0( , ) ( ( )) ( sin(2 ) sin(2 ))v v v r r h hy t a s t a s f t f tτ τ τ τ τ τ π τ π= − = − − − . (3) 

In order to estimate the respiratory frequency ௥݂ 	and heartbeat frequency	 ௛݂, the Fourier transform 
of (3) is performed in slow-time: 

 2( , ) ( , ) ,j ftY f Y f v e dvπτ
+∞

−∞

=  . (4) 

After simplifying using the Bessel series [21], the spectrum in slow-time is expressed as below: 

 ( , ) ( )v kl r h
k l

Y f a G f kf lfτ δ
+∞ +∞

=−∞ =−∞

= − −  . (5) 

We can observe from (5) that the spectrum of the signal in the slow-time index is a discrete 
function which consists of the respiratory rate	 ௥݂ , heartbeat rate	 ௛݂	and a train of harmonics. The 
amplitude ܩ௞௟	is related to the fast-time, and it controls the amplitude of each intermodulation 
product for a frequency of	݂ = ݇ ௥݂ + ݈ ௛݂. 
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3. Detection Algorithm 

Facing the problems of interference from the environment, Wang et al proposed a combined 
method in [27], consisting of several general methods to extract periodic signals from noise and 
clutter, and they also concluded that the performance improvement is not satisfied by using only one 
method.  

In this section, we propose and elaborate on a detection method combining noise reduction 
based on EEMD with a separation method based on the CWT. In noncontact vital sign detection, 
higher SNR improvement is required. Therefore, EEMD is introduced to improve the SNR; after 
denoising, a separation algorithm based on CWT is used to extract weak heartbeat signals from echo 
signals. Figure 2 shows the signal processing block diagram. 

 
Figure 2. Flowchart of the proposed detection method. 

Generally, a finite impulse response (FIR) filter can be used for cancelling noise and passing a 
given frequency bandwidth. Since the amplitude of respiration is much larger than the amplitude of 
heartbeats, observing and separating the two events is possible [11]. Therefore, a traditional 
processing method using a band-pass FIR filter to separate the vital signs is introduced in Figure 3. 
According to prior knowledge that the normal heartbeat rate varies from 60 to 100 beats/min (about 
1.0–1.6 Hz), in order to obtain the heartbeat signal, the frequency window is set to be 0.65–3.0 Hz. To 
reject out-of-band noise and to obtain the respiration signal, a low-pass elliptic FIR filter is applied. 
Comparative experiments between the proposed method and the traditional FIR filtering method are 
presented in Section 5.1. 

Clutter 
Suppression FIR Filter Separation

Respiration

Heartbeat
 

Figure 3. Traditional FIR filtering method. 

3.1. Clutter Suppression Algorithm 

In a static environment, the clutter from the background can be considered as DC component 
and removed by subtracting the mean from the matrix ࡾ	[࢓,࢔]	in (1) in both rows and columns. To 
suppress the background of a stationary target and the antenna crosstalk effect, summing and 
averaging amplitudes along fast-time range bins identifies the strength of the clutter, and owing to 
periodic amplitude cancellation, ݐ)ݔ, ߬)	contains little information about vital signs. This is simplified 
by referring to ݔ௠,௡ , denoting the n-th slow-time sample of the m-th range bins. In the fast-time 
domain, the detection range is divided into M bins. To obtain the position of the target, the ideal 
number of range bins is calculated as described below: 

 
2

, ,
1 1

1arg max( ),
N N

m n m n
m

n n

v x x
N= =

 = − 
 

   (6) 

where ݊ = 0,1, …ܰ − 1	represents the number of pulses, and ݉ = 0,1, … ܯ, − 1	is the number of 
range bins in fast-time.	ݒ denotes the selected vital signs bin between 0-M-1. Finally, the slow-time 
signal ݔ௩,௡	is the vital sign signal we require. 

3.2. Noise Reduction Method Based on Improved EEMD Algorithm 

The purpose of the EMD procedure is to decompose the time series into a superposition of its 
intrinsic sub-signals (mode function) with well-defined instantaneous frequencies, which are called 
intrinsic mode functions (IMFs). 
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where ܿ௜, ݅ = 1,… ,ܰ denotes ܰ IMFs and ݎ௡ denotes the residue. An IMF is a function that satisfies 
two conditions: (i) the number of extrema and the number of zero crossing must be equal or differ at 
most by one; (ii) the mean value of the upper and lower envelopes is zero everywhere. Each of the 
IMFs represents the oscillation mode present in the data set with different time scale properties. The 
number of extrema in each IMF is decreased as the IMF order increases and the corresponding 
spectral supports are decreased accordingly [28]. Each IMF is estimated with an iterative process 
called sifting. The sifting process consists of five major steps as follows [29]: 

1. The maxima and minima of signal (ݐ)ݔ	are identified. 
2. The upper and lower envelops are obtained respectively by interpolating the set of maximal and 

minimal points using cubic spines. 
3. Computing the mean of the two envelops the mean is designated as ݉ଵ then subtraction of the 

mean from the original signal yields ℎଵ = (ݐ)ݔ − ݉ଵ, where ℎଵ is the first component presenting 
difference between the signal (ݐ)ݔ	and ݉ଵ. 

4. Verifying whether or not ℎଵ	satisfies the conditions for being an IMF. If ℎଵ	is not the first IMF, 
treating ℎଵ	as the original signal (ݐ)ݔ, steps 1-3 are repeated to yield mean ݉ଵଵ	and ℎଵଵ = (ݐ)ݔ −݉ଵଵ, testing whether or not ℎଵଵ	satisfies the two conditions for being an IMF again, if ℎଵଵ	is not 
an IMF, steps 1-3 are repeated ݇	 times to yield mean ݉ଵ௞	 and ℎଵ௞ = (ݐ)ݔ − ݉ଵ௞  until ℎଵ௞	satisfies the two conditions. The first IMF ܿଵ = ℎଵ௞	is generated. 

5. Subtraction of the ܿଵ from the original signal to yield ݎଵ = (ݐ)ݔ − ܿଵ , where ݎଵ	is the residue, 
treating ݎଵ	as the original signal (ݐ)ݔ, steps 1-4 are repeated to yield the second IMF ܿଶ; repeating 
this step, the rest of the IMFs of the original signal (ݐ)ݔ  are generated, this process can be 
represented by the following formula: 

 

1 2 2

2 3 3

1n n n

r c r

r c r

r c r−

− =
− =

− =


. (8) 

In 2011, a variation of the EEMD algorithm was proposed that provides an exact reconstruction 
of the original signal and a better spectral separation of the modes, with a lower computational cost 
[30]. Regarding EEMD [31], it defines the “true” IMF components (notated as ܨܯܫ෫ henceforth) as 
the means of the corresponding IMFs obtained via EMD over an ensemble of trials generated by 
adding different realizations of white noise of finite variance to the vital sign signal. Taking full 
advantage of the IMF components, the improved method used to reduce noise based on the improved 
EEMD algorithm is shown in Figure 4. 

After denoising, the echo signal ݔ[݊] = -obtained by (6) can be rewritten for the n-th slow	௩,௡ݔ
time: 

 
1

~
[ ] ,

K

k

k

x n IMF
=

=  (9) 

without the residue; on the other hand, we can choose several (not all) of the ܨܯܫ෫ s from ݇ =1,… ,  .to reconstruct out ideal echo signal	ܭ
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Figure 4. Noise reduction method based on improved EEMD algorithm [28]. 

3.3. Separation Method Based on the Continuous-Wavelet Transform 

First, we introduce the signal analysis methods, from the frequency analysis method of Fourier 
transform (FT) to time-frequency methods like the short time Fourier transform (STFT) and CWT, all 
of which are variations of the FT. Like the FT, the CWT uses inner products to measure the similarity 
between a signal and an analysis function. In the FT, the analyzing functions are complex 
exponentials	݁ି௝ఠ௧. The resulting transform is a function of a single variable, ω. In the STFT, the 
analysis functions are windowed complex exponentials,	(ݐ)ݓ݁௝ఠ௧, and the result is a function of two 
variables. The STFT coefficients,	ܨ(߱, ߬), represent the match between the signal and a sinusoid with 
angular frequency ω in an interval of a specified length centered at ߬. In the CWT, the analysis 
function is a wavelet, ψ. The CWT compares the signal to shifted and compressed or stretched 
versions of a wavelet. Stretching or compressing a function is collectively referred to as dilation or 
scaling and corresponds to the physical notion of scale. By comparing the signal to the wavelet at 
various scales and positions, we obtain a function of two variables. If the wavelet is complex-valued, 
the CWT is a complex-valued function of scale and position. If the signal is real-valued, the CWT is a 
real-valued function of scale and position. For a scale parameter, ܽ > 0, and position, ܾ	, the CWT 
of signal ݂(ݐ) is: 

 
1( , ; ( ), ( )) ( ) ( ) ,t b

C a b f t t f t dt
aa

ψ ψ
∞ ∗

−∞

−=   (10) 

where	∗	denotes the complex conjugate. Not only do the values of scale and position affect the CWT 
coefficients; the choice of wavelet also affects the values of the coefficients. The parameters ܽ and  ܾ account for the scaling parameter and translation parameter of the mother wavelet respectively. 
Scaling and shifting of the mother wavelet produces son wavelets. The scaling factor controls the 
frequency of the son wavelets; the higher the scale, the lower is the frequency and vice versa. Wavelet 
coefficients are calculated from the convolution of son wavelets and the signal [32]. 

After denoising, it is very difficult to extract a heartbeat signal from an echo signal owing to the 
overlap of dominated respiration amplitude. CWT is used because of their ability to find the energy 
of the desired frequency interval. Wavelet provides excellent time resolution for rapid events such as 
heartbeats and good frequency resolution for slower events such as respiration. 

The  noise can be reduced effectively after summing the remaining ܨܯܫ෫s.

Repeat last step until the obtained residue is no longer feasible to be decomposed, the final 
residue satisfies: R ݊ = ݔ ݊ − ∑ ෫௞௄௞ୀଵܨܯܫ . And ݔ ݊ = ∑ ෫௞ܨܯܫ + ܴ ݊ .௄௞ୀଵ

For ݇ = 2,… ௞ݎ :calculate the ݇-th residue	,ܭ, ݊ = ௞ିଵݎ ݊ − ෫௞ܨܯܫ ݊ , define the (݇ + 1)-th 
mode as:	ܨܯܫ෫௞ାଵ ݊ = ଵூ ∑ ଵܦܯܧ ௞ݎ ݊ + ௞ܦܯܧ ௜ݓ ݊ .ூ௜ୀଵ

Decompose realizations ݎଵ ݊ + ଵܦܯܧ ௜ݓ ݊ , ݅ − 1,… ,  until the first EMD mode and	,ܫ
define second mode: ܨܯܫ෫ଵ ݊ = ଵூ ∑ ଵܦܯܧ ଵݎ ݊ + ଵܦܯܧ ௜ݓ ݊ .ூ௜ୀଵ

Execute  EMD method, obtain their first modes: ܨܯܫ෫ଵ ݊ = ଵூ ∑ ௜,ଵܨܯܫ ݊ூ௜ୀଵ . Calcute the first 
residue: ݎଵ ݊ = ݔ ݊ − ෫ଵܨܯܫ ݊ .

Generate ݔ௜ ݊ = ݔ ݊ + ௜ݓ ௜[݊], whereݓ ݊ ݅ = 1, . . ܫ 	are different realizations of white 
Gaussian noise.

Input signal ݔ[݊]

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 November 2016                   doi:10.20944/preprints201608.0206.v3

Peer-reviewed version available at Sensors 2016, 16, 2025; doi:10.3390/s16122025

http://dx.doi.org/10.20944/preprints201608.0206.v3
http://dx.doi.org/10.3390/s16122025


 7 of 18 

 

The Morlet wavelet is chosen as the mother wavelet to detect the frequencies in received 
denoised signals and then estimate the amplitude at each detected frequency. The Morlet wavelet is 
the most frequently used in practice because its simple numerical implementation and because the 
vanishing of the third-order differentiation of its phase can also simplify the computation [33]. The 
wavelet transform of a signal ݂(ݔ) with respect to a mother wavelet ݃(ݐ) is 

 
1( , , ( ), ( )) ( ) ( ) ,

2
iwS a f t t a F w G aw e dwττ ψ

π
=   (11) 

where (ݓ)ܨ	is the Fourier transform of the signal, ܽ > 0	is a wavelet scale parameter, and ݅ is the 
imaginary unit. ߬ ∈  is the complex conjugate of the Fourier	(ݓ)∗ܩ is a translation parameter and	܀
transform of ݃(ݐ). Given the spectrum of an ideal vital sign signal ݂(ݔ), namely ܻ(݂, ߬)	in (5), the 
simplified expression is 

 ( ) 2 ( ).kl r h
k l

F w G f kf lfπ δ
+∞ +∞

=−∞ =−∞

= − −   (12) 

The Morlet wavelet transform of ݂(ݔ)	is 

 

( , ) ( ) ( ( ))

( ) ( ))

kl M r h
k l

kl M r r h h
k l

S a a f G G a kf l f

a f G G a f a f

τ τ

τ

+∞ +∞

=−∞ =−∞

+∞ +∞

=−∞ =−∞

= +

= +

 

 
 (13) 

The explicit expression of a Morlet wavelet in time domain and frequency domain, respectively, are 

 

2

0 b2

b

1( )
t

j f t fg t e e
f

π

π

−
=  (14) 

 
2 2

b 0( )

b

1( ) f f fG f e
f

π

π
− −=  (15) 

where ௕݂  is the bandwidth parameter of the mother wavelet, ଴݂  is the center frequency of the 
wavelet, and ݐ is the time. The center frequency depicts the ensemble characteristics of the wavelet, 
and the bandwidth parameter controls the shape of the wavelet. The Fourier transform of the mother 
wavelet function corresponding to scale ܽ	is given by following equation 

 
1( ) ( )M

t
g t g

a aδ δ
=   (16) 

 
2 2

b 0( )

b

( ) f a f f
M

a
G f e

f
π δδ

π
− −=   (17) 

where ߜ is the sampling period. The value of the ܩ௔(݂) will reaches a peak when ݂ܽߜ = ଴݂. The 
value of the localized frequency component of the signal can be retrieved as follows 

 

0 0

0 0

s
r

r r

s
h

h h

f f f
f

a a

f f f
f

a a

δ

δ

 = =

 = =


 (18) 

where ௦݂	 denotes the sampling frequency. From (18), we can conclude that the ௥݂  and ௥݂ 
correspond to each specific wavelet scale ܽ௥ and ܽ௛, with known ଴݂ and ௦݂. 

To simplify the computation, we usually discretize the wavelet scale ܽ , using the dyadic 
representation ܽ = 2௠  which is also called the dyadic wavelet transform (DWT). The sampling 
frequency of the received signal is 65 Hz, roughly equal to the dyadic 6, represented as	 ௦݂ = 2଺. On 
the other hand, we select the dyadic representation of the center frequency as ଴݂ = 2଼, which is an 
empirical value; this is usually chosen to be two orders of magnitude larger than the sampling 
frequency. The dyadic representation of wavelet scale of respiration signal can be referred to as 
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2
2 2 2ra −
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which is displayed on a wavelet scale of 16. Usually, this is an estimated empirical value. Using the 
same estimation method, we can select the preferred coefficient of 12 as the heartbeat wavelet scale. 
Therefore, there is no need to compute the wavelet transform at all scales. A rough approximation of 
the scales ܽ௥	and	ܽ௛ may be read from the Fourier transform of the wavelet signal, or derived from 
a prior knowledge. As showed in Figure 5, the scale of 16 represents the ideal frequency of 0.22 Hz 
with an SNR of 3.15 dB and an amplitude of 30.26 dB below 0.65 Hz. Between the heartbeat filtering 
bands from 1.0-3.0 Hz, the peak frequency of 1.25 Hz on a scale of 12 can be filtered with an amplitude 
of 18.41 dB. If we select these two scales as the ideal CWT scales for separating the vital signs, 
estimated accuracy reaches a relatively high level. 

 

Figure 5. Normalized amplitudes and SNRs of different scales in terms of corresponding peak 
frequency based on prior knowledge. 

The application of the Morlet wavelet decomposes the signal into a series of components and for 
each decomposition levels, the coefficients can be either set to zero or reduced in magnitude, so that 
a particular feature of the signal is affected upon reconstruction. The high-frequency (HF) 
components are used for heartbeat signal recovery and the low-frequency (LF) ones for respiration 
recovery. Finally, a moving average filter is applied to each signal; thus, the heartbeat and respiration 
signals are reconstructed. The signal processing for recovering ideal signals can be summarized as in 
Figure 6. 

 
Figure 6. Flowchart of the separation method using the Morlet CWT. 
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4. Radar System and Experimental Setup 

4.1.  Radar System 

The design of the sensor is based on a fully integrated nano-scale radar transceiver chip, which 
has a low power consumption, flexible dynamic range and configurable output frequency [35]. The 
pulse generator used to transmit a narrow Gaussian pulse signal like the one depicted in Figure 7 (a), 
with a 2.3-GHz output frequency band as showed in Figure 7 (b). After enhancement by the power 
amplifier, the signal is emitted by Vivaldi transmitting antennas as shown in Figure 8. In the receiver, 
the reflected echo is first received by the receiver antennas and then magnified by a low-noise 
amplifier (LNA). Next, the signal containing vital sign information is sampled by a high-speed 
sampler. Finally, the digital signal is transferred to a MATLAB processor on a computer with a slow-
time frequency of about 65 Hz [36]. 

 
(a) 

 
(b) 

Figure 7. Transmitted signal in the time domain and frequency domain. (a) Pulse generator time 
domain output; (b) Pulse generator output spectra. 

 
Figure 8. IR-UWB radar system. 

4.2. Experimental Setup 

Figure 9 shows the experimental setup of the radar used for measurement. The volunteer is a 22-
year-old healthy male sitting in a chair and breathing regularly while medical devices simultaneously 
monitored him, at a distance of around 0.3 m as shown in Figure 9(a). The specifications for the 
measurement are given in Table 1. The radar has an average power of 55 ߤWatts, which complies 
with FCC regulations for consumer electronics in the band of 2.3 GHz at the center frequency of 6.8 
GHz [FCC 1993]. This means that this radar system does not harm subjects when operating. In 
addition, all experimental processes and configurations were undertaken with the consent of the 
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subjects before beginning, and all subjects agreed to cooperate with us to ensure smooth execution of 
the experiments. 

In order to evaluate the performance of the radar system, we applied a comprehensive sports 
medicine tool (DynaMap Suite – SA7925, Thought Technology Ltd., Montreal West, Canada) in 
Figure 9(b), as the measurement reference that can monitor several medical indices consisting of ECG, 
HR, IBI, and respiration, etc., using BioGraph Infiniti Software to capture and export the respiratory 
data and ECG data. 

 
(a) (b) 

Figure 9. Experimental setup. (a) Experimental scenario; (b) The radar sensor and DynaMap Suite. 

Table 1. Specifications for the measurement. 

Parameters Specifications 
Center Frequency 6.8 GHz 

Bandwidth 2.3 GHz 
Distance between antennas and the target 0.3 m 

Target’s stance Sitting on a chair 
Power consumption 120 mW 
Mean output power 55 ߤW 

Peak-to-peak output amplitude 0.69 V 

5. Results 

5.1. SNR Comparison of FIR Filter and Proposed Method 

Figure 10(a) refers to the original vital signs obtained after clutter suppression. From the 
respiration waveforms in Figures 10(b) and 10(c), estimating the respiration rates is possible since 
their peaks and valleys are quite obvious, but the respiration signal in Figure 10(c) has a more legible 
tendency and more defined signatures than that in Figure 10(b) in the time domain. On the other 
hand, owing to lower reflected energy, the heartbeat waveforms in Figure 10(d) have peak-peak 
values of just about 0.2 mV, and the waveform obtained using the FIR filter displays an irregular sign 
without any unambiguous heartbeat tendency, whereas the heartbeat waveforms in the decomposed 
results are stable and regular in Figure 10 (e). Above all, the proposed method works better than the 
traditional FIR method in sensing vital signs. 
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(a) 

 
(b) 

 
(c)

(d) (e)

Figure 10. Comparison of results using the FIR filter and the proposed method. (a) The original 
waveforms obtained after clutter suppression; (b) Respiration waveforms obtained via the FIR band-
pass filter; (c) Respiration waveforms obtained via the proposed method; (d) Heartbeat waveforms 
obtained via the FIR band-pass filter; (e) Heartbeat waveforms obtained via the proposed method. 

The SNR criterion depends on the performance and detection precision system required, in other 
words, prior information can be used to determine a reasonable SNR for recognizing the respiration 
and heartbeat rate so reference vital signs signals are necessary to determine the unstable SNR 
standard. For qualitative analysis, the SNR of the vital signs signal is redefined in the frequency 
domain [37]. If the respiration rate is estimated as the frequency	 ௠݂௔௫	of the peak in the frequency 
spectrum, the SNR is calculated as below: 
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where B = 0.016	Hz is the resolution in periodogram estimation, which is determined by the number 
of FFT point and the sampling frequency we demand. SNR calculations for respiration and heartbeat 
rates are shown in Table 2. The SNR improvement for respiration detection by the method described 
in this paper is 7.59 dB; moreover, the SNR improvement for heartbeat signals is 4.82 dB. Higher SNR 
is of vital importance for radar systems helping to decrease the false alarm probability; this is 
especially significantly for medical monitoring applications. In addition, higher SNR can contribute 
to improving detection accuracy in more complex environments, and increasing the detection range, 
which can help IR-UWB radar to adapt in many different environments and even to different human 
postures. 

Table 2. SNR of respiration and heartbeat signal using FIR filter and the proposed method. 

Parameters 
Radar 

FIR Proposed Method 

Respiration SNR 4.44 dB 12.03 dB 
Heartbeat SNR -53.52 dB -48.70 dB 

5.2. Detection Performance of Proposed Method 

First, we denoised the signal and then separated the vital signs using the CWT method. As 
Figure 11 shows, it can be seen from the enlarged view that the noise attached to the signal has been 
removed after denosing processing using an algorithm based on EEMD. Then, we used the Morlet 
wavelet to analyse the denoised signal and chose the scale of 12 to synthesize the respiration signal 
and 16 scale for the heartbeat signal effectively. The results of signal separation presented in Figure 
12, from which we observe that accurate respiration signal waveforms and exact heartbeat signal 
waveforms can be obtained. Finally, the examples of 20 s of an extracted heartbeat signal and ECG 
reference signal are compared in Figure 13(a), and 120 s of an extracted respiration signal and 
respiration reference signal are compared in Figure 13(b). 

(a) (b) 

Figure 11. Performance of noise reduction. (a) Comparison of original vital sign signal with the 
denoised signal; (b) Noise removed after denoising processing. 
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Figure 12. Performance of separation. 

 
(a) 

 
(b) 

Figure 13. Extracted signals compared with reference signals. (a) Extracted heartbeat signal and ECG 
reference signal; (b) Extracted respiration signal and respiration reference signal. 

The results show that heartbeat signals superimposed on respiration signals can be decomposed 
with clear peaks corresponding well to the ECG, and decomposed respiration results also show a 
high consistency with the reference signal. Therefore, the proposed method realizes comparable 
detection performance to professional medical device with a high conformance to healthcare indices. 
Additionally, the respiration rate and heartbeat rate can be calculated simply after tracking peaks in 
the frequency domain or zero-crossings in time domain with low relative error since they have big 
amplitudes and long duration. 

Next, we focus on evaluating the ability to extract the weak heartbeat when the subject is 5 m 
away. In facilitating the heartbeat separation, it is obvious that larger-distance detection places a 
limitation on the detection of such weak signals in Figure 14(a); hence it is necessary to denoise to in 
order to find useful heartbeat signals. Figure 13(b) presents a chaotic waveform in the time domain 
and a high side lobe spectrum, which illustrates that the FIR processing in this case failed owing to 
poor SNR and indistinguishable peaks. On the other hand, the heartbeat waveform obtained using 
the proposed method has a sine-like tendency, and more apparently, the high resolution in frequency 
domain in Figure 14(c). The reference heartbeat is about 1.42 Hz, which represents ideal detection 
accuracy. 
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(a) 

 
(b) 

 
(c) 

Figure 14. Comparison of results using the FIR filter and the proposed method to recover heartbeat 
waveforms 5 m away from the detector. (a) Original signal waveform and the denoised waveform; 
(b) Heartbeat signal waveform extracted using the FIR filter and its spectrum; (c) Heartbeat waveform 
extracted using the proposed method and its spectrum. 

For further validation under various conditions, we pursued experiments in which we examined 
three subjects (a 13-year-old teenager, a 30-year-old thin woman, and a 56-year-old obese man) sitting 
at 0.2-, 1.5-, and 3.0-m distances, respectively. These subjects had different radar cross sections (RCS); 
usually, however, the process of capturing and re-radiating power is very complicated and each 
subject has the time-varying vital signs. Therefore, there is no need to test all three distances on all 
three subjects. If we can determine the heartbeat rate of an elderly obese man at the farthest distance, 
we can be sure that a trial with the young teenager subject would obtain better detection performance, 
because it is more difficult to penetrate the correspondingly deeper fat distribution. In contrast, 
testing this with an energetic young person enables accurate measurement of larger changes in 
movement of the chest. By locating the different range bins in fast-time, we can identify the locations 
of subjects using power-spectrum density analysis; each original signal at three different locations 
can then be captured. Figure 15 shows the corresponding processing results after obtaining the 
respective original echoes, from which the amplitudes of vital signs are seen to decrease with 
increasing range. In addition, we can estimate the respiration rate and heartbeat rate. Experimental 
results based on EEMD and CWT demonstrate reliable detection accuracy. 
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(a) (b) 

Figure 15. Detection results with different subjects at different distances. (a) Extracted respiration 
signals and frequency spectra; (b) Extracted heartbeat signals and frequency spectra. 

 

6. Conclusions 

This paper describes a method for short-range vital sign sensing using IR-UWB radar that only 
eliminates the trade-off of low power consumption and system complexity versus affordable price, 
but also carries more range information owing to the benefits of UWB. When radar operates, clutter 
caused by indoor static objects and antenna crosstalk is common and very serious. In this case, the 
SNR of the echo signal is so low that it is difficult to extract vital sign signals from complicated 
background clutter and noise. In order to minimize the signals of interest, several methods were used 
to improve SNR in this study. The proposed method involves sequential clutter removal, denoising 
based on EEMD and separation based on CWT. Compared with the traditional FIR filtering method, 
the SNR of the extracted respiration and heartbeat signals were raised by 7.59 dB and 4.82 dB, 
respectively. Moreover, experimental results illustrate that respiration and heartbeat signals can be 
extracted accurately under different conditions. 

This system can measure heartbeats based on the proposed method. On this basis, the system 
can be used in smart home healthcare, which is becoming very popular. As health-monitoring 
technologies advance further, we envision monitoring people’s vital signs including breathing and 
heartbeat signals, especially those of sleeping children or the elderly. These patients can use this 
information to enhance their health-awareness. In addition, the resulting beats can be used to 
compute emotion-dependent features which can be fed to a machine-learning emotion classifier. 
These advantages allow us to build machines that enable smart homes that can react to our moods 
and adjust lighting or music accordingly. Moreover, this also allows filmmakers to benefit from better 
tools to evaluate user experiences. Advertisers can learn of customers’ reaction immediately. We 
believe that this will be a trend in the future [39]. In addition, owing to the range resolution and low-
frequency penetration of UWB, we can also use it to extend our senses, enabling us to detect vital 
signs through walls or behind the closed doors. 

Non-contact measurement of vital signs using IR-UWB marks an important step towards 
monitoring accurate respiration and heartbeat rates. However, it has some limitations, which are left 
for future work as mentioned above. 

 

1 Sleeping monitoring puts forward higher requirements for real-time signal processing. 
Additionally, the influence of the orientation of a non-stationary human body with changeable 
sleeping positions must be considered, which is of vital significance to long-term monitoring. 
Therefore, further work will include an improved algorithm based on the one proposed, 
enabling it to adjust to the non-stationary human subjects. 
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2 To recognize emotions, we must measure minute variations in each individual heartbeat’s length 
[40]. However, extracting individual heartbeats from radar signals involves multiple challenges. 
Obtaining such accuracy is particularly difficult in the absence of sharp features that identify the 
beginning or end of a heartbeat. 

3 When faced with a non-metallic wall, a fraction of the radar signal travels into the wall, reflects 
off objects and humans, and returns to the detector imprinted with the signature of what is inside 
a closed room. By capturing these reflections, we can estimate vital signs like breathing and 
heartbeats. However, this is difficult because the signal power after traversing the wall twice 
(into and out of the room) is reduced by three to five orders of magnitude [41]. Weak heartbeat 
signals are so weak that using the previous methods cannot extract them accurately. 
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