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Abstract: The radar sensor described realizes healthcare monitoring capable of detecting subject 
chest-wall movement caused by cardiopulmonary activities, and wirelessly estimating the 
respiration and heartbeat rates of the subject without attaching any devices to the body. No 
conventional Doppler only can capture Doppler signatures because of a lack of bandwidth 
information with noncontact sensors. In contrast, we take full advantages of impulse radio ultra-
wideband (IR-UWB) radar to achieve low power consumption and convenient portability, with a 
flexible detection range and desirable accuracy. A noise reduction method based on improved 
ensemble empirical mode decomposition (EEMD) and a vital sign separation method based on 
continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-noise ratio (SNR) 
in order to acquire accurate respiration and heartbeat rates. This noncontact healthcare sensor 
system proves the commercial feasibility and considerable accessibility of using compact IR-UWB 
radar for emerging biomedical applications. Compared with traditional contact measurement 
devices, experimental results utilizing a 2.3 GHz bandwidth transceiver, demonstrate 100% similar 
results. 

Keywords: impulse radio ultra-wideband (IR-UWB) radar; noncontact; short-range; vital signs; 
ensemble empirical mode decomposition (EEMD); continuous-wavelet transform (CWT) 

 

1. Introduction 

Radar sensors have been widely used in a number of applications since the 1930s [1], from 
primary vehicle speed measurement to advanced air-defense and marine radars, all of which are 
usually developed for ranging, targeting, or tracking moving subjects at large distances. Due to its 
noninvasive and noncontact properties, short-range radar has been an appealing approach in 
healthcare applications since the 1970s, when the first short-range non-invasive radar for respiration 
measurement was introduced [2]. Based on the principle of electromagnetic backscattering [3], radar 
is capable of wirelessly detecting both chest-wall movements caused by respiration and extremely 
small heart beats. Conventional medical devices like an electrocardiograph (ECG) and respiration 
belt rely on electrodes alone and an inductive plethysmograph, respectively, which make subjects 
uncomfortable, and may even worsen the quality of physiological measurements. In long-term 
monitoring (i.e., for obstructive sleep / coma subjects), an alarm connected to a radar processor can 
be triggered to either wake the subject or send a message to the subject’s nursing assistants so that 
they can take measures immediately to avoid possible danger or accidents [4]. In contrast, wearable 
devices require that the subject be attached to electric poles twisted together with several wires for 
heartbeat monitoring or a vacuum belt for respiratory monitoring during sleep, which may have a 
negative impact on sleep quality [5]. 

Ultra-wideband (UWB) radar is a technology used for transmitting electromagnetic waves 
spread over a large bandwidth (normally larger than 500MHz). Typically, most UWB radars transmit 
via large bandwidth over short pulse periods, usually on the order of a nanosecond, or even a 
picosecond; we generally refer to this type of UWB signalling as impulse radio UWB (IR-UWB) radar 
[6-8]. This has gained popularity in social and military applications in through-wall imaging, ground 
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penetrating radar, detection of moving targets, and so on owing to its high penetrability and high 
range resolution [9]. These characteristics make IR-UWB radar attractive for noncontact vital sign 
detection because it is capable of measuring absolute distance while carrying more vital sign 
information [10-13]. Other than IR-UWB radar, continuous-wave (CW) radar is a basic type of radar 
used to detect phase information related to Doppler shift due to a moving chest wall. CW radar falls 
into three subcategories basically: single-tone, stepped frequency CW (SFCW), and frequency-
modulated CW (FMCW) [14]. Each type of radar has its specific advantages. Single-tone CW radar 
also has a simple system architecture considering high-level chip integration [15,16], though it carries 
no absolute distance information. On the other hand, FMCW radars can obtain range information [17] 
but normally require quite a large bandwidth and more sophisticated signal processing to realize 
accurate relative displacement measurements. Comprehensively taking the complexity of signal 
processing and power consumption into consideration, IR-UWB radar seems to be a better option for 
further applications. In addition, with the advancement of system integration chip technologies, 
nano-scale UWB impulse radar transceiver chips have been developed in recent years, realizing 
superfast sampling rate reaching around 39 GS/s with low-power consumption [18], which makes 
them more attractive for mobile, portable, and even handheld applications in future trends. 

Since the 21st century, significant research has been performed on noncontact monitoring of vital 
signs of a subject through IR-UWB radar systems [19-26]. In [23] the mathematical modelling of the 
received waveforms was presented considering the magnitudes of different breathing harmonics and 
intermodulation, and then non-invasive monitoring of breathing and heartbeat rates was realized 
using an independent complex generator and sampler, which inevitably made the system heavy. To 
decrease the weight of the radar system, Khan et al. made it feasible to monitor the vital signs of a 
non-stationary human using an IR-UWB transceiver chip, but this work did not optimize the 
complete implementation procedures from the signal mathematical model to the experimental results 
under practical scenarios [24]. Moreover, Huang et al. utilized another kind of UWB radar to monitor 
infant respiration, but made no reference to heartbeat detection [25]. Typically, in relaxed human 
beings, the heart can experience heart displacements of 0.6 mm and respiration displacements are 
between 12 mm and several centimeters, depending on the person [26]. However, the spectrum of 
the detected signal contains several harmonics of the breathing signal that can be much stronger than 
the frequency component of the heartbeat signal [23]. Therefore, it is much more difficult to extract 
heartbeat signals from complicated radar echo signals. In this paper, the breathing rate and heartbeat 
frequency are detected remotely and are separated based on a one time-frequency analysis method 
which combines ensemble empirical mode decomposition (EEMD) with continuous-wavelet 
transform (CWT). The proposed method can increase the signal-to-noise ratio (SNR) to a certain 
degree compared with the traditional filtering method [11]. 

The remainder of this paper is organized as follows. Section 2 presents a mathematical model of 
vital signs. The signal processing techniques used to detect the respiration and heart rates are 
presented in Section 3. We describe the proposed IR-UWB sensor system and the experimental setup 
in Section 4. In Section 5, Experimental results and comparisons are presented. Section 6 concludes 
this paper. 

2. Mathematical Model of Vital Sign 

By observing the changes in the propagating time delay of the echo signal from a subject, we can 
detect the range remotely. When the transmitted pulse illuminates a human subject, part of it is 
reflected back to the radar because of the high reflectivity of the body [19]. 

For further digital signal processing, the received waveforms are measured at discrete instants 
in slow-time ݐ  = ݊ ௦ܶ (݊ = 0,1, … ܰ − 1) , where ௦ܶ  is the effective pulse repetition time and ܰ 
discrete-time sequences are stored after the received signal is sampled. In fast time, ߬  is the 
propagation fast-time of the electromagnetic wave.  ௙ܶ is the sampling period in fast-time, and ݉ =0,1, … , ܯ − 1 are the fast-time sampling points. Let (ݐ)ݏ represent the transmitted signal. The discrete 
signal can be expressed as an ܯ × ܰ matrix ࡾ, the elements of which are [23]: 
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where  ܽ݅ and ߬݅ are the amplitude and propagation time delay of static target ݅ in fast-time and  ܽݒ is the amplitude. ߬௩(ݐ) is the propagation time delay of object reflection in fast-time. 
In a static environment, the clutter can be considered as a DC-component in the slow-time 

direction. From (1) it is clear that background clutter does not depend on slow-time ݐ. Thus, we can 
use basic filter to remove the background clutter, which can be done easily by subtracting the mean 
from the matrix ࡾ   [23]. Let ݐ)ݎ, ߬) represent the received signal; then the signal after clutter 
suppression can be expressed as: 

 0
0

1( , ) ( ( )) ( ) ( , ) lim ( , )
T

v v T
x t a s t r r t r t dt

T
τ τ τ τ τ τ

→∞
= − − = −  . (2) 

The DC component ݎ଴(߬) is blocked by subtracting the average of all samples in fast-time. 
According to (2) we can obtain the ideal signal without any stationary background as below: 

 0( , ) ( ( )) ( sin(2 ) sin(2 ))v v v r r h hy t a s t a s f t f tτ τ τ τ τ τ π τ π= − = − − + . (3) 

In order to estimate the respiratory frequency ௥݂  and heartbeat frequency  ௛݂, the Fourier transform 
of (3) is performed in slow-time: 

 2( , ) ( , ) ,j ftY f Y f v e dvπτ
+∞

−∞

=  . (4) 

After simplifying using the Bessel series [21], the spectrum in slow-time is expressed as below: 

 ( , ) ( )v kl r h
k l

Y f a G f kf lfτ δ
+∞ +∞

=−∞ =−∞

= − −  . (5) 

It is clear from (5) that the spectrum of the signal in the slow-time index is a discrete function 
which consists of the respiratory rate ௥݂, heartbeat rate ௛݂ and a train of harmonics. The amplitude ܩ௞௟ is related to the fast-time, and it controls the amplitude of each intermodulation product for a 
frequency of ݂ = ݇ ௥݂ + ݈ ௛݂. 

3. Detection Algorithm 

In this section, we propose and elaborate on the detection method combining noise reduction 
method based on EEMD with a separation method based on the CWT for impulse UWB signal 
modules. 

Facing the problems of moving interference from the environment, the combined methods are 
proposed in [27], which include several ordinary methods of extracting periodic signal from noise 
such as using an adaptive line enhancer (ALE), blind source separation, empirical mode 
decomposition (EMD), etc., and [27] concludes that the effect is not obvious when using one method 
of the mentioned methods. In sensing a human subject outdoors in [27], it is necessary to remove 
interference continuously, so ALE is added to reduce the Gaussian noise signal of the detected 
respiration adaptively. However, for the remotely sensing of vital signs including not only respiration 
but also heartbeat, higher SNR improvement is required. Therefore, EEMD is introduced to improve 
the SNR, and then, after denoising, a separation algorithm based on CWT is proposed for extracting 
weak heartbeat signals from echo signals. Figure 1 shows the signal processing block diagram. 

 
Figure 1.Flowchart of the proposed detection method. 

Generally, a finite impulse response (FIR) filter can be used for cancelling noise and passing a 
given frequency bandwidth. Since the amplitude of respiration is much larger than that of a heartbeat, 
it is easy to observe periodic waves from the baseband output [11]. Therefore, a traditional processing 
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method using a band-pass FIR filter to separate the vital signs is introduced as showed in Figure 2. 
According to prior knowledge that the normal heartbeat rate varies from 60 to 100 beats/min (about 
1.0–1.6 Hz), in order to obtain the heartbeat signal, the frequency window is set to be 0.65–3.0 Hz. To 
reject out-of-band noise and to obtain the respiration signal, a low-pass elliptic FIR filter is applied. 
Comparative experiments between the proposed method and the traditional FIR filtering method are 
presented in Section 5.1. 

 
Figure 2. Traditional FIR filtering method. 

3.1. Clutter Suppression Algorithm 

In a static environment, the clutter from the background can be considered as DC component 
and can be removed easily by subtracting the mean from the matrix ࢔] ࡾ,  in (1) in both rows and [࢓
columns. To suppress the background of a stationary target and the antenna crosstalk effect, 
summing and averaging amplitudes along fast-time range bins identifies the strength of the clutter, 
and owing to periodic amplitude cancellation, ݐ)ݔ, ߬) contains little information about vital signs. 
This is simplified by referring to ݔ௠,௡, denoting the n-th slow-time sample of the m-th range bins. In 
the fast-time domain, the detection range is divided into M bins. To obtain the position of the target, 
the ideal number of range bins is calculated as described below: 

 
2

, ,
1 1

1arg max( ),
N N

m n m nm n n
v x x

N= =

 = − 
 

   (6) 

where ݊ = 0,1, … ܰ − 1 represents the number of pulses, and ݉ = 0,1, … , ܯ − 1 is the number of 
range bins in fast-time. ݒ denotes the selected vital signs bin between 0-M-1. Finally, the slow-time 
signal ݔ௩,௡ is the vital sign signal we require. 

3.2. Noise Reduction Method Based on Improved EEMD Algorithm 

The purpose of the EMD procedure is to decompose the time series into a superposition of its 
intrinsic sub-signals (mode function) with well-defined instantaneous frequencies, which are called 
intrinsic mode functions (IMFs). 

 
1

( ) ,
n

i n
i

x t c r
=

= +  (7) 

where ܿ௜, ݅ = 1, … , ܰ denotes ܰ IMFs and ݎ௡ denotes the residue. An IMF is a function that satisfies 
two conditions: (i) the number of extrema and the number of zero crossing must be equal or differ at 
most by one; (ii) the mean value of the upper and lower envelopes is zero everywhere. Each of the 
IMFs represents the oscillation mode present in the data set with different time scale properties. The 
number of extrema in each IMF is decreased as the IMF order increases and the corresponding 
spectral supports are decreased accordingly [28]. Each IMF is estimated with an iterative process 
called sifting. The sifting process consists of five major steps as follows [29]: 

1. The maxima and minima of signal (ݐ)ݔ are identified. 
2. The upper and lower envelops are obtained respectively by interpolating the set of maximal and 

minimal points using cubic spines. 
3. Computing the mean of the two envelops the mean is designated as ݉ଵ then subtraction of the 

mean from the original signal yields ℎଵ = (ݐ)ݔ − ݉ଵ, where ℎଵ is the first component presenting 
difference between the signal (ݐ)ݔ and ݉ଵ. 

4. Verifying whether or not ℎଵ satisfies the conditions for being an IMF. If ℎଵ is not the first IMF, 
treating ℎଵ as the original signal (ݐ)ݔ, steps 1-3 are repeated to yield mean ݉ଵଵ and ℎଵଵ = (ݐ)ݔ −݉ଵଵ, testing whether or not ℎଵଵ satisfies the two conditions for being an IMF again, if ℎଵଵ is not 
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an IMF, steps 1-3 are repeated ݇ times to yield mean ݉ଵ௞ and ℎଵ௞ = (ݐ)ݔ − ݉ଵ௞  until ℎଵ௞ satisfies the two conditions. The first IMF ܿଵ = ℎଵ௞ is generated. 
5. Subtraction of the ܿଵ from the original signal to yield ݎଵ = (ݐ)ݔ − ܿଵ , where ݎଵ is the residue, 

treating ݎଵ as the original signal (ݐ)ݔ, steps 1-4 are repeated to yield the second IMF ܿଶ; repeating 
this step, the rest of the IMFs of the original signal (ݐ)ݔ  are generated, this process can be 
represented by the following formula: 

 

1 2 2

2 3 3

1n n n

r c r
r c r

r c r−

− =
− =

− =


. (8) 

In 2011, a variation of the EEMD algorithm was proposed that provides an exact reconstruction 
of the original signal and a better spectral separation of the modes, with a lower computational cost 
[30]. Regarding EEMD [31], it defines the “true” IMF components (notated as ܨܯܫ෫ henceforth) as 
the means of the corresponding IMFs obtained via EMD over an ensemble of trials generated by 
adding different realizations of white noise of finite variance to the vital sign signal. Taking full 
advantage of the IMF components, the improved method used to reduce noise based on the improved 
EEMD algorithm is shown in Figure 3. 

After denoising, the echo signal ݔ[݊] = -௩,௡ obtained by (6) can be rewritten for the n-th slowݔ
time: 

 
1

~
[ ] ,

K

k
k

x n IMF
=

=  (9) 

without the residue; on the other hand, we can choose several (not all) of the ܨܯܫ෫ s from ݇ =1, … ,  .to reconstruct out ideal echo signal ܭ

 
Figure 3. Noise reduction method based on improved EEMD algorithm [28]. 

3.3. Separation Method Based on the Continuous-Wavelet Transform 

First, we introduce the signal analysis methods, from the frequency analysis method of Fourier 
transform (FT) to time-frequency methods like the short time Fourier transform (STFT) and CWT, all 

The  noise can be reduced effectively after summing the remaining ܨܯܫ෫s.

Repeat last step until the obtained residue is no longer feasible to be decomposed, the final 
residue satisfies: R ݊ = ݔ ݊ − ∑ ෫௞௄௞ୀଵܨܯܫ . And ݔ ݊ = ∑ ෫௞ܨܯܫ + ܴ ݊ .௄௞ୀଵ

For ݇ = 2, … , ௞ݎ :calculate the ݇-th residue ,ܭ ݊ = ௞ିଵݎ ݊ − ෫௞ܨܯܫ ݊ , define the (݇ + 1)-th 
mode as: ܨܯܫ෫௞ାଵ ݊ = ଵூ ∑ ଵܦܯܧ ௞ݎ ݊ + ௞ܦܯܧ ௜ݓ ݊ .ூ௜ୀଵ

Decompose realizations ݎଵ ݊ + ଵܦܯܧ ௜ݓ ݊ , ݅ − 1, … ,  until the first EMD mode and ,ܫ
define second mode: ܨܯܫ෫ଵ ݊ = ଵூ ∑ ଵܦܯܧ ଵݎ ݊ + ଵܦܯܧ ௜ݓ ݊ .ூ௜ୀଵ

Execute  EMD method, obtain their first modes: ܨܯܫ෫ଵ ݊ = ଵூ ∑ ௜,ଵܨܯܫ ݊ூ௜ୀଵ . Calcute the first 
residue: ݎଵ ݊ = ݔ ݊ − ෫ଵܨܯܫ ݊ .

Generate ݔ௜ ݊ = ݔ ݊ + ௜ݓ ௜[݊], whereݓ ݊ ݅ = 1, . . ܫ  are different realizations of white 
Gaussian noise.

Input signal ݔ[݊]
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of which are variations of the FT. Like the FT, the CWT uses inner products to measure the similarity 
between a signal and an analysis function. In the FT, the analysing functions are complex 
exponentials ݁ି௝ఠ௧. The resulting transform is a function of a single variable, ω. In the STFT, the 
analysis functions are windowed complex exponentials, (ݐ)ݓ݁௝ఠ௧, and the result is a function of two 
variables. The STFT coefficients, ܨ(߱, ߬), represent the match between the signal and a sinusoid with 
angular frequency ω in an interval of a specified length centred at ߬ . In the CWT, the analysis 
function is a wavelet, ψ. The CWT compares the signal to shifted and compressed or stretched 
versions of a wavelet. Stretching or compressing a function is collectively referred to as dilation or 
scaling and corresponds to the physical notion of scale. By comparing the signal to the wavelet at 
various scales and positions, we obtain a function of two variables. If the wavelet is complex-valued, 
the CWT is a complex-valued function of scale and position. If the signal is real-valued, the CWT is a 
real-valued function of scale and position. For a scale parameter, ܽ > 0, and position, ܾ , the CWT 
of signal ݂(ݐ) is: 

 
1( , ; ( ), ( )) ( ) ( ) ,t bC a b f t t f t dt

aa
ψ ψ

∞ ∗

−∞

−=   (10) 

where ∗ denotes the complex conjugate. Not only do the values of scale and position affect the CWT 
coefficients; the choice of wavelet also affects the values of the coefficients. 

After denoising, it is very difficult to extract a heartbeat signal from an echo signal owing to the 
overlap of dominated respiration amplitude. CWTs are used because of their ability to find the energy 
of the desired frequency interval. Wavelets provide excellent time resolution for rapid events such as 
heartbeats and good frequency resolution for slower events such as respiration. 

The Morlet wavelet [32] is chosen as the mother wavelet to detect the frequencies in received 
denoised signals and then estimate the amplitude at each detected frequency. The Morlet wavelet is 
the most frequently used in practice because its simple numerical implementation and because the 
vanishing of the third-order differentiation of its phase can also simplify the computation [33]. The 
wavelet transform of a signal ݂(ݔ) with respect to a mother wavelet ݃(ݐ) is 

 
1( , , ( ), ( )) ( ) ( ) ,

2
iwS a f t t a F w G aw e dwττ ψ

π
∗=   (11) 

where (ݓ)ܨ is the Fourier transform of the signal, ܽ > 0 is a scale parameter, ߬ ∈  is a translation ܀
parameter and (ݓ)∗ܩ is the complex conjugate of the Fourier transform of ݃(ݐ). Given the spectrum 
of an ideal vital sign signal ݂(ݔ), namely ܻ(݂, ߬) in (5), the simplified expression is 

 ( ) 2 ( ).kl r h
k l

F w G w kw lwπ δ
+∞ +∞

=−∞ =−∞

= − −   (12) 

The Morlet wavelet transform of ݂(ݔ) is 

 

( , ) ( ) ( ( ))

( ) ( ))

kl M r h
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kl M r r h h
k l
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a f G G a w a w

τ τ

τ

+∞ +∞
∗
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+∞ +∞
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=−∞ =−∞
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 
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where 
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σ

ε
πσ

ε

−

−− ∗

= +

= +

 (14) 

is the Morlet wavelet whose frequency and width are denoted by the centre frequency of the mother 
wavelet ݓ଴ and ߪ. From [34], the instantaneous frequency on the scale ܽ of the Morlet transform is ݓ௥ and ݓ௛. 
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where ݓ௦ denotes the sampling frequency. The frame size of the input signal must be a multiple of 2௡, where ݊ is the number of levels. Using this dyadic scales presentation, the sampling frequency 
of the received signal is 65 Hz, roughly equal to the dyadic 6, representing 2଺. On the other hand, we 
select the dyadic representation of the center frequency as 8. For vital signs containing respiration 
and heartbeat components, the dyadic number of the former can be referred to as ܽ௥ =2଼ × 2଺ 2ିଶ = 2ଵ଺⁄ , which is displayed as a coefficient of 16. Moreover, the heartbeat scales can be 
obtained via the same representation, but not in a constant number because of the weak amplitude 
and deep interference caused by noise. Therefore, we can only obtain an approximate range from 
scales 11 to 14, within which we can obtain the preferred coefficient 12. Therefore, there is no need to 
compute the wavelet transform at all scales. A rough approximation of the scales ܽ௥ and ܽ௛ may be 
read from the Fourier transform of the signal, or derived from a priori knowledge. Then, more precise 
values of ܽ௥ and ܽ௛  can be calculated iteratively using ridge extraction in [33]. The numbers of 
coefficients we choose may change along with the variance of breathing or heart rate according to 
(15).  

The application of the Morlet wavelet decomposes the signal into a series of components and for 
each decomposition levels, the coefficients can be either set to zero or reduced in magnitude, so that 
a particular feature of the signal is affected upon reconstruction. The high-frequency (HF) 
components are used for heartbeat signal recovery and the low-frequency (LF) ones for respiration 
recovery. Finally, a moving average filter is applied to each signal; thus, the heartbeat and respiration 
signals are reconstructed. The signal processing proposed for recovering ideal signals can be 
summarized as in Figure 4. 

 
Figure 4. Flowchart of the separation method using the Morlet CWT. 

4. Radar System and Experimental Setup 

4.1.  Radar System 

The design of the sensor is based on an impulse radar NVA series 661 (Novelda, Norway) fully 
integrated nano-scale radar transceivers with low power consumption. It also provides flexible 
control of key parameters such as pulse repetition frequency (PRF), sampling rate, and samplers per 
frame. The chip (NVA6201) employs a novel technology called “continuous time binary value” 
(CTBV), which can solve some of the main problems of traditional sampling methods by excluding 
the demand for a high-resolution ADC while realizing the impressive time resolution of modern 
digital circuits. The sampling chain is realized using inherent gate-delays resulting in a rate of about 

Smooth the recovered signals.

Select the coefficients number 12 for heartbeat recovery and 16 for respiration recovery, 
and then systhesize them respectively.

Define scales for continuous analysis dyadically, and then wavelet analyze

Choose function Morlet as mother wavelet, and select 10 as the wavelet parameter

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 September 2016         doi:10.20944/preprints201608.0206.v2 

 

  

http://dx.doi.org/10.20944/preprints201608.0206.v2


 8 of 15 

 

39 GS/s for a single frame, which consists of a maximum 512 samples. See for example [35] for an 
introduction to the implemented sampling technology. 

(a) (b) 

Figure 5. Transmitted signal in the time domain and frequency domain. (a) Pulse generator time 
domain output; (b) pulse generator output spectra. 

The pulse generator used to transmit the narrow Gaussian pulse signal depicted in Figure 5 (a) 
has a derivative of approximation of 11, with a 2.3-GHz output frequency band as showed in Figure 
5 (b). After enhancement by the power amplifier, the signal is emitted by Vivaldi transmission 
antennas shown in Figure 6. In the receiver, the reflected echo is first received by the receiving 
antennas and then magnified by a low-noise amplifier (LNA). Next, the signal containing the vital 
sign information is sampled by a high-speed sampler with a fixed offset in sequence with a fast-time 
sampling frequency of about 39 GHz. Finally, the digital signal is transferred to a MATLAB processor 
on a computer with a slow-time frequency of about 65 Hz. The total energy consumed during one 
measurement is less than 120 mW [36]. 

 
Figure 6. NVA661 nano-scale IR-UWB Radar. 

4.2. Experimental Setup 

Figure 7 shows the experimental setup of the radar used for measurement. The volunteer was a 
22-year-old healthy male sitting in a chair and breathing regularly while medical devices 
simultaneously monitored him, at a distance of around 0.3 m as shown in Figure 7(a). The 
specifications for the measurement are given in Table 1. 

In order to evaluate the performance of the radar system, we applied a comprehensive sports 
medicine tool (DynaMap Suite – SA7925, Thought Technology Ltd., Montreal West, Canada) as 
showed in Figure 7(b), as the measurement reference which can monitor several medical indices 
consisting of ECG, HR, IBI, and respiration, etc., using BioGraph Infiniti Software to capture and 
export the respiratory data and ECG data. 
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(a) (b) 

Figure 7. Experimental setup. (a) Experimental scenario; (b) the radar sensor and DynaMap Suite. 

Table 1. Specifications for the measurement. 

Parameters Specifications 
Centre Frequency 6.8 GHz 

Bandwidth 2.3 GHz 
Distance between antennas and the target 0.3 m 

Target’s stance Sitting on a chair 
Power consumption 120 mW 
Mean output power -12.6 dBm 

Peak-to-peak output amplitude 0.69 V 

5. Results 

5.1. SNR Comparison of FIR Filter and Proposed Method 

Figure 8(a) refers to the original vital signs obtained after clutter suppression. From the 
respiration waveforms in Figures 8(b) and 8(c), it is easy to read the respiration rates since their peaks 
and valleys are quite obvious, but the respiration signal in Figure 8(c) has a more legible tendency 
and more defined signatures than that in in Figure 8(b) in the time domain. On the other hand, owing 
to lower reflected energy, the heartbeat waveforms in Figure 8(d) have peak-peak values of only just 
about 0.2 mV, and the waveform obtained using the FIR filter displays an irregular sign without any 
unambiguous heartbeat tendency, whereas the heartbeat waveforms in the decomposed results are 
stable and regular in Figure 8 (e). Above all, the proposed method works better than the traditional 
FIR method in sensing vital signs. 
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(b) (c)

(d) (e)

Figure 8. Comparison of results using the FIR filter and the proposed method. (a) The original 
waveforms obtained after clutter suppression; (b) respiration waveforms obtained via the FIR band-
pass filter; (c) respiration waveforms obtained via the proposed method; (d) heartbeat waveforms 
obtained via the FIR band-pass filter; (e) heartbeat waveforms obtained via the proposed method. 

The SNR criterion depends on the performance and detection precision system required, in other 
words, prior information can be used to determine a reasonable SNR for recognizing the respiration 
and heartbeat rate so reference vital signs signals are necessary to determine the unstable SNR 
standard. For qualitative analysis, the SNR of the vital signs signal is redefined in the frequency 
domain [37]. If the respiration rate is estimated as the frequency ௠݂௔௫ of the peak in the frequency 
spectrum, the SNR is calculated as below: 
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where B = 0.016 Hz is the resolution in periodogram estimation, which is determined by the number 
of FFT point and the sampling frequency we demand. SNR calculations for respiration and heartbeat 
rates are shown in Table 2. The SNR improvement for respiration detection by the method described 
in this paper is 7.59 dB; moreover, the SNR improvement for heartbeat signals is 4.82 dB. Higher SNR 
is of vital importance for radar systems helping to decrease the false alarm probability; this is 
especially significantly for medical monitoring applications. In addition, higher SNR can contribute 
to improving detection accuracy in more complex environments, and increasing the detection range, 
which can help IR-UWB radar to adapt in many different environments and even to different human 
postures. 
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Table 2. SNR of respiration and heartbeat signal using FIR filter and the proposed method. 

Parameters 
Radar 

FIR Proposed Method 

Respiration SNR 4.44 dB 12.03 dB 
Heartbeat SNR -53.52 dB -48.70 dB 

5.2. Detection Performance of Proposed Method 

First, we denoised the signal and then separated the vital signs using the CWT method. As 
Figure 9 shows, it can be seen clearly from the enlarged view that the noise attached to the signal has 
been removed after denosing processing using an algorithm based on EEMD. Then, we used the 
Morlet wavelet to analyse the denoised signal and chose the 12nd scale to synthesize the respiration 
signal and 16th scale for the heartbeat signal effectively. The results of signal separation presented in 
Figure 10, from which we observe that accurate respiration signal waveforms and exact heartbeat 
signal waveforms can be obtained. Finally, the examples of 20 s of an extracted heartbeat signal and 
ECG reference signal are compared in Figure 11(a), and 120 s of an extracted respiration signal and 
respiration reference signal are compared in Figure 11(b). 

(a) (b) 

Figure 9. Performance of noise reduction. (a) Comparison of original vital sign signal with the 
denoised signal; (b) noise removed after denoising processing. 

 
Figure 10. Performance of separation. 
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(a) (b) 

Figure 11. Extracted signals compared with reference signals. (a) Extracted heartbeat signal and ECG 
reference signal; (b) extracted respiration signal and respiration reference signal. 

The results show that heartbeat signals superimposed on respiration signals can be decomposed 
with clear peaks corresponding well to the ECG, and decomposed respiration results also show a 
high consistency with the reference signal. Therefore, the proposed method realizes comparable 
detection performance to professional medical device with a high conformance to healthcare indices. 
Additionally, the respiration rate and heartbeat rate can be calculated simply after tracking peaks in 
the frequency domain or zero-crossings in time domain with low relative error since they have big 
amplitudes and long duration. 

For further validation under various conditions, Figure 12 shows the sensor results for three 
subjects at 0.2-, 1.5-, and 3.0-m distances, from which the amplitudes of vital signs are seen to decrease 
with increasing range. Experimental results utilizing the IR-UWB radar sensor demonstrate reliable 
detection accuracy. 

(a) (b) 

Figure 12. Detection results with different subjects at different distances. (a) Extracted respiration 
signals and frequency spectra. (b) Extracted heartbeat signals and frequency spectra. 

6. Conclusions 

This paper describes a new application of an IR-UWB radar sensor and method for non-contact 
detection of the vital signs of human subjects. In most previous studies, CW Doppler radar was used 
for detecting vital signs of human subjects within a range band carrying no absolute distance 
information. We applied IR-UWB technology to vital sign sensing applications, which not only 
eliminates the trade-off of low power consumption and system complexity versus affordable price, 
but also carries more vital sigh information owing to the benefit of UWB. 
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When the radar operates, the interferences caused by indoor targets and antennas crosstalk are 
common and very serious and. In this case, the SNR of an echo signal is low, which makes it difficult 
to extract respiration signals from complicated background noise. In order to minimize the clutter 
caused by environmental objects, several methods were used to improve the SNR in this study. 
Proposed signal processing methods involving clutter removal, denosing based on EEMD and 
separating based on CWT, proceeding sequentially, increase the SNR for respiration and heartbeat 
by 7.59 dB and 4.82 dB, respectively, compared with the traditional FIR filter method. Moreover, 
experimental results illustrate that respiration and heartbeat signals can be extracted well. 

In future work, more biomedical parameters like HR and HRV will be tested together to check 
the feasibility of our proposed medical sensor system and detection methods. In addition, the 
influence of orientation of a non-stationary human body must be considered, which is of vital 
significance to long-term monitoring. Body motion noise reduction is a difficulty as noted in [38], 
which used two opposite radars to eliminate the effect of noise. Therefore, further work will include 
an improved algorithm based on the one proposed, enabling it to adjust to the non-stationary human 
subjects. 
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