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Abstract: Densely urbanized areas, with a low percentage of green vegetation, are highly exposed 
to Heat Waves (HW) which nowadays are increasing in terms of frequency and intensity also in the 
middle-latitude regions, due to ongoing Climate Change (CC). Their negative effects may combine 
with those of the UHI (Urban Heat Island), a local phenomenon where air temperatures in the 
compact built up cores of towns increase more than those in the surrounding rural areas, with 
significant impact on the quality of urban environment, on citizens health and energy consumption 
and transport, as it has occurred in the summer of 2003 on France and Italian central-northern 
areas. In this context this work aims at designing and developing a methodology based on 
aero-spatial remote sensing (EO) at medium-high resolution and most recent GIS techniques, for 
the extensive characterization of the urban fabric response to these climatic impacts related to the 
temperature within the general framework of supporting local and national strategies and policies 
of adaptation to CC. Due to its extension and variety of built-up typologies, the municipality of 
Rome was selected as test area for the methodology development and validation. First of all, we 
started by operating through photointerpretation of cartography at detailed scale (CTR 1: 5000) on 
a reference area consisting of a transect of about 5x20 km, extending from the downtown to the 
suburbs and including all the built-up classes of interest. The reference built-up vulnerability 
classes found inside the transect were then exploited as training areas to classify the entire territory 
of Rome municipality. To this end, the satellite EO HR (High Resolution) multispectral data, 
provided by the Landsat sensors were used within a on purpose developed "supervised" 
classification procedure, based on data mining and “object-classification” techniques. The 
classification results were then exploited for implementing a calibration method, based on a typical 
UHI temperature distribution, derived from MODIS satellite sensor LST (Land Surface 
Temperature) data of the summer 2003, to obtain an analytical expression of the vulnerability 
model, previously introduced on a semi-empirical basis. 

Keywords: HR satellite remote sensing; urban fabric vulnerability; UHI & heat waves;  
landsat & MODIS sensors; LST & urban heating; segmentation & objects classification;  
data mining; feature extraction & selection; stepwise regression & model calibration 
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1. Introduction 

During the last decades, despite the slow increase in monthly average temperatures and 
precipitation, many regions around the world have experienced extreme climate-related events like 
HW, heavy rainfall, droughts and fires, as most noticeable phenomena linked to CC [1].  The 
climate simulations reinforce the long-term prediction of the trends increase in the number and 
intensity of these phenomena related to extremes of climate variability [2, 3]. On cities such 
phenomena have a bigger impact not only for the highest concentration of inhabitants but also for 
their accentuation arising from alterations of the local thermal response and of the hydrological 
cycle, typical of many conurbations with high population densities, lack of green space and 
concentration of built-up and sealed areas, also in synergy with other impact factors (pollution, 
anthropogenic heat inputs, ...).  Here as vegetated and evaporating soil surfaces are replaced by 
impervious, low albedo paving and building materials,  the reduction in the latent heat flux and 
parallel increase in the sensible heat leads to the formation of the typical UHI's related to the spatial 
distribution of thermal response [4], with local maxima of LST (Land Surface Temperature) of the 
most dense areas of urban fabric rising several degrees over that of the rural surroundings [5, 6, 7, 8]. 
These concomitant factors may negatively affect the urban environment quality increasing at same 
time the impact of these climate extrema phenomena on citizen’s life level and health, particularly in 
coincidence with HW, which are currently considered an emerging environmental health concern 
due to growing number of the linked fatalities [9, 6].  In fact the recent HW phenomena (i.e.  in 
2003, 2010  and  2015)   are estimated to have resulted in an increasing number of victims, 
especially among the elderly and those suffering from specific diseases in various parts of the world 
and also in the countries of 'Europe bordering the Mediterranean. Here during the HW event of the 
summer of 2003, warmer than the past 500 years, for several days the average daily temperatures 
have been higher by various degrees compared with those of previous years, and the values in the 
months of July and August grew up to 10 ° above the average, with a maximum in France and in 
Italian central and northern areas[10]. These factors have had a major impact on the health of citizens 
in Europe, with increase in deaths (over 50,000) attributable to these extreme meteo-climatic events 
(Figure 1) , concentrated mainly in the cities[11, 2]. In order to prevent and minimize these potential 
negative consequences of these extreme events related to the CC, there are ongoing activities of 
analysis and research to support interventions and policies concerning mitigation and adaptation in 
urban areas[12],  even in the context of Smart Cities nationals and EU research programs. 

In this context, the present research work aimed at developing methods for the morphological 
and typological urban settlements characterization related to these climate aspects associated to the 
temperature and hydrology (HW, UHI, water cycle, radiative balance,...). In particular the focus was 
on the evaluation of contribution to the local LST increase from typological, geometric and structural 
aspects of the city urban fabric whose development is subject to decision-makers policies and 
administrative planning in the context of local and national mitigation strategies and adaptation to 
CC [13].  In this context, since innovative spatially explicit approaches are increasingly required for 
obtaining suitable information and for assessing the expected impacts of these meteo-climatic factors 
[14],  here the recent aero-spatial remote sensing techniques at medium (i.e. NASA MODIS dual 
satellite system with daily and night acquisition capability) and high (HR) ground resolution (i.e. 
Landsat  and Sentinel 2 operated respectively by NASA and ESA within the European Copernicus 
program) integrated by GIS (Geographical Information Systems) and object analysis techniques 
were proposed for methodology development, with the goal of improving the standardization and 
operative aspects, repeatability as well as validation capability of implemented models.  In 
particular, taking into account that on Rome the typical UHI LST distributions usually occur during 
the nights,  in summer, as in other towns  of Mediterranean basin [15, 16], the basic idea was to use 
the related TIR frames detected by MODIS sensors during the 2003 summer, in coincidence with the 
well-established HW situation  [11], for supporting a physically based evaluation of the specific 
contribution from urban fabric built-up to the temperature spatial patterns. In this perspective the 30 
m. Landsat HR (High Resolution) multispectral data were preliminary processed through object 
classification and data mining procedures to assess the distribution of built-up morpho-typologies 
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over the entire territory of the Rome municipality on the basis of  training classes found within the 
transect area and characterized  for their temperature response in the preliminary 
photointerpretation step.  

Although the VHR  (Very High Resolution) satellite ( i.e. WorldView, QuickBird, RapidEye,..) 
remote sensing techniques (multispectral spatial resolution between 1 and 5 m.),  working  on 
commercial basis and based on  user specific acquisition request , have been frequently employed 
to map  the fine scale spectral heterogeneity of materials usually present within urban settlements 
[17, 18],  due to their favorable spatial/spectral and operative features, also the 30 m. HR 
multispectral data, systematically provided by Landsat family satellite platforms and made freely 
available to the user under form of historical series starting since the early 80’s, have been widely 
exploited in many other remote sensing applications for characterizing the metropolitan areas. For 
instance the Landsat multispectral data have been used for retrieving the  urban  LUCC (Land Use 
Cover Changes)  classes and the concentration of impervious surfaces [19, 20], by means of 
vegetation indices or aerial photos[21, 22],  while others authors dealt with supervised classification 
algorithms testing on urban areas using different approach including the per pixel and object 
oriented ones [18, 23].  

The Landsat family satellite HR sensors are conceived for systematic acquisitions of reflectance 
data in seven acquisition bands from 180x180 Km. tiles over entire Earth surface with typical GSR 
(Ground Sampling Resolution) of 30 m.  Starting from the  ETM+ on board of Landsat 7 satellite 
launched on 2000, the GSR was improved by adding a panchromatic channel at 15 m. Thus in the 
implemented methodology developed on the basis of previous results [24, 25], these panchromatic 
data having higher GSR were used in synergy with the related multispectral ones with the goal of 
improving the detection capability of the finer scale textural features of urban fabric.      

In the subsequent calibration/validation  step a statistical analysis by means of regression 
modeling was carried out through the exploitation of  LST distributions corresponding to know  
HW periods  in summer 2003 (Figure 1) and the  local nocturnal UHI maxima, frequently 
occurring over Rome [11] , as told before. In such a way we were able to assess the impact of both 
these phenomena often acting in synergy to deteriorate the urban microclimate conditions.  The 
HW and UHI phenomena affect the LST distribution which may be derived from thermal infrared 
(TIR) remotely sensed images having an important role urban studies due to the potentially 
large-area and  repetitive nature of their coverage. Besides the local topography and impervious 
soil surfaces concentration [8],  numerous RS-based UHI studies have suggested the dependence of 
spatial patterns of intra-city LST, from various attributes of urban area of interest like population 
[26], land use/cover [27], vegetation coverage [28], anthropogenic heat and urban fabric features [26]. 
The TIR data are acquired from different polar and geostationary platforms e.g. Landsat,  
Terra/Aqua MODIS, Terra, ASTER, NOAA AVHRR and Meteosat MVIRI.  Although the Landsat 
sensors are able to detect only the LST diurnal distribution through the TIR acquisition channel 
(~10-12 ) at 60 m. of GSR, ac cording to similar applications [26, 29], in this study the Terra MODIS 
sensor was selected since it is able to provide nighttime data for studying the nocturnal LST 
distribution, typical of UHI of Rome and others European cities.  MODIS LST products (MYD11A1- 
MODIS/Aqua Land Surface Temperature and Emissivity Daily L3 Global 1 km Grid SIN) even with 
lower spatial resolution (1 Km.), are particularly suitable for the LST product due their easy 
availability, global coverage  and high calibration accuracy based on multiple 

thermal and spectral bands for  properly taking into account the atmospheric effects (split 
window water-vapor atmospheric correction)  and emissivity  of earth surfaces; furthermore 
validation of version 3 standard products from Terra MODIS  data shows that their accuracy is 
better than 1 C° in the range from -10 to +50 C° [30, 31].  
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Figure 1 -  Mortality and temperature trends in Rome area during the HW periods 
(reddish windows) of the summer 2003 (Michelozzi et al., 2005)  

 

 
 

 

 

2. Materials and Methods  

2.1. Area of interest 

The Rome territory is located in the central  Italy (Figure 2) , characterized by Mediterranean 
climate and  annual daily mean temperature  of 20°, with its 1.287 Kmq and about 2.875.000 
inhabitants it represents the biggest municipality in terms of area and population at European level. 
Although the Rome municipality includes many protected and green areas, parks and rural 
landscapes, the huge concentration of historical monuments and cultural heritage coupled with 
pronounced urban sprawl of the recent decades and consequent widening of transportation network 
and infrastructures, often without an appropriate  planning,  increase the urbanized zones 
potentially subjected to impacts and pressures deriving from urban environment quality 
deterioration arising from ongoing CC and anthropogenic factors. 

Although with an average maximum temperature above 30 ° C, the Roman summer was 
already very hot, in the last decades it has undergone further transformations with a demonstrable 
increase in the frequency and intensity of  HW  and due to temperature levels (day and night) 
rising, consequent uncomfortable conditions of malaise for human health. The center of Rome is, 
roughly, 25 km from the Tyrrhenian coast. In summer, the moderating influence of the Tyrrhenian 
Sea is more noticeable on the western slopes of the city, thanks to the local characteristic wind from 
west to east inhibiting the excessive heat of summer afternoons and relieving discomfort. The 
situation is different at the center, only partially achieved by this air flow due to heavy urbanization, 
with temperatures which can record up to 3-4 ° C higher than the western side. Even warmer is the 
eastern districts, which happens almost entirely without a suitable air circulation. 

The average annual precipitation was around 692 mm to the end of the 80s. Current value rose 
to about 750 mm. During the summer, the combination of humidity and high temperatures 
combined with a modest infiltration of fresh air from the north is the spark that frequently bursts 
storms of intensity almost unknown in the past. 
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2.2. Photointerpretation and training areas  

The initial goal of the work was the photointerpretation-based characterization of the various 
areas of the transect, homogeneous from the urbanistic point of view and previously identified and 
delimited on the basis of the existing road network and cartography at appropriate scale (Figure 3). 
The work was accomplished by assigning to each polygonal area the quantitative attributes derived 
from the building type and density and from the vegetation/permeable surfaces presence, linked to 
their hydrological and thermal potential response to the HW and UHI. This approach aimed at the 
evaluation of a numerical index of vulnerability (NVI) for each of the areas, including the 
cumulative effect of these three main factors related to urban fabric features and estimated with 
theirs relative scores preliminarily introduced on a semi-empirical basis. Starting from preexisting 
knowledge and specific urbanistic studies on the urban areas of interest [13, 32, 33], three reference 
variables were defined: typology and compactness, related specifically to built-up portion of the area 
and the permeability of the surrounding surfaces. For each of them, on the basis of different relative 
weights, increasing degrees of partial vulnerability (scores) were assigned through photo 
interpretation methods. Finally, the NVI estimation for each area of the transect, was derived by 

Figure 2 - Area of interest including the Rome municipality territory and M1-L built up classes (coloured polygonals) 
within the transect derived from photointerpretation methodology (see next chapter). The various vector features were 
superimposed to orto-rectified B/W panchromatic channel of the Landsat ETM+ frame exploited for object classification 
procedures.   
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summarizing the partial contributions arising from the three variables scores. The 285 polygonal of 
urban residential areas found in the transect, previously identified using the road network, were 
thus characterized by photo-interpretation approach in terms of the prevalent buildings typology 
within 11 predefined types and related compactness level, as the number of floors and mean 
width/density of contiguous streets, in addition, their percentage of permeable surfaces, In order to 
assess the global thermal response as NVI (Numerical Vulnerability Index) of the urban fabric areas 
inside the transect the quantitative contribution of the three parameters was evaluated in term of 
intensity levels (score) within a fixed scale of a linear model defined by relative weights (Table 1)  
and empirically introduced to account for their specific impact in term of local temperature 
augmentation and related uncertainty: 
1. predominant type of buildings within 11 types defined and characterized on the basis of 

previous studies and knowledge [32], grouped within 6  score classes as reported in Table 2;  
2. compactness of the urban fabric, 4 classes: high, medium-high, medium-low, low, with relative 

scores  as reported in Table 1;  
3. presence of permeable surfaces, 3 classes: low, medium, high, with relative scores as shown in 

Table 1.  vegetation included, was also visually estimated.  

 

 

 

 

 

Table 1- Urban fabric parameters and related score classes for NVI assessment 

 The 11 building typologies were associated with the relative photo-interpreted levels of 
compactness, for a total of 11 “morpho-types” (Table 3) classes (M1_L) found in the transect (Figure 
2 3), with a summed score in the range from 7 to 45, which synthesizes the specific partial thermal 
response of built-up and building fraction (Figure 3, b). Subsequently, for each area in the transect, 
the scores within the 11 morpho-type classes was added to the corresponding score referring to the 
permeability parameter, obtaining a distribution of NVI rightly increasing going from suburbs to the 
more vulnerable downtown  zones (Figure 3, a). Thus the NVI was calculated according to a simple 
linear semi-empirical model, that is, by performing the arithmetic sum of the partial contributions of 
the class levels corresponding to each of the three photo-interpreted features as specific vulnerability 
factors appropriately scaled according to the relative weight as reported in Table 1 and 3. 

 

 

 

 

 

 

 

 

 

 

Class n. 1 2 3 4 5 6 
max 
score % 

Typology 2 4 6 8 10 20 20 

Compactness 5 10 20 35     35 

Permeability 1 20 45       45 

M1_L
class Score Pol. n. 
A 7 3 
B 12 55 
C 16 17 
D 18 5 
E 22 54 
F 26 6 
G 28 19 
H 30 11 
I 37 3 
L 43 65 
M 45 47 

n Typology  class score 
1 palazzina 1 2 
2 villino 1 2 
3 linea 2 4 
4 schiera 2 4 
5 palazzona 3 6 
6 spontaneo 3 6 
7 blocco 4 8 
8 semi-intensivo 5 10 
9 intensivo 5 10 
10 articolato 6 20 
11 torre 6 20 

Table 3 - Urban fabric built-up morpho-typologies 

and related score classes. 

Table 2 - Building typologies and related score 

classes 
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 These NVI index values, 
calculated with a maximum of 100, 
were displayed with shades of 
color from green to red as shown 
in the upper part of Figure 2. Here 
a first consideration can be derived 
by observing that the NVI highest 
values concentrate mainly on the 
left side of the transect 
corresponding to the city center 
where there are still some 
exceptions arising in the green 
areas and city parks. The NVI 
distribution appears to have 
rightly a negative gradient going 
from the center to the periphery. 
Obviously this result is mostly 
determined by the parameters 
relating to impervious surfaces 
and compactness that have similar 
trends except for some peripheral 
areas subject to special or intensive 
urban deployment. 

 

 

 

 

 

2.3. Data mining and supervised classification 

The objective of this stage was the assessment of the distribution of the urban 
morpho-typologies found within the transect over entire territory of the Rome municipality through 
supervised classification integrated methodologies on purpose implemented. The automatic land 
use/cover classification of urban areas using remotely sensed digital  imagery is a particularly 
challenging task due to their high spectral heterogeneity arising from the mixing of natural and 
impervious artificial surfaces delimiting urban 3-D elements, like buildings, infrastructures, roads, 
and parking lots whose spectral responses may be generally too similar to be suitably separated 
using only the limited information derived from single pixels of the remotely sensed multispectral 
raster images. Therefore often additional information, are required for improving the discrimination 
of these land covers by the classifier, to this end the object-based schemas respects to those 
pixel-based, provide a more effective way to derive and integrate into the classification process other 
kind of data related to morphology and  context of  the contiguous pixels groups, suitably 
extracted from the same imagery, exploiting also their higher robustness against mis-registration 
between different input raster layers. In this context to increase the effectiveness of spectral 
classification semi-automatic approaches, many authors successfully exploited the object-based 
image analysis methods for properly describing and quantifying the typical spatial heterogeneity of 
urban land covers using the HR/VHR remotely sensed data [17, 34, 35]. These objects classification 
approaches in the supervised schemas allowed them to better discriminate multi-pixels ground 

Figure 3 - Detailed transect distribution of the 11 classes of 
partial vulnerability of the urban fabric morpho-types M1_L ( 
b ) and overall vulnerability NVI ( a ). In overlay panchromatic 
channel of Landsat ETM+ acquired on 7/27/2003. 

a) 

b) 
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land-use patches containing a variable mix of different built materials, infrastructures and natural 
land cover features but pertaining to the same land-use (i.e. urbanistic class) category [36], on the 
basis of a subset of limited training object preliminarily characterized through visual interpretation 
or in situ data. These patches (objects) including a variable number of pixels having different 
spectral signatures work as pre-defined object boundaries, preliminarily obtained through 
segmentation algorithms based on predefined spectral and geometric parameters (i.e. 
scale/dimension, spectral homogeneity, convexity,..). Therefore in order to suitably utilize the 
increasing  amount of  the spectral and contextual information provided by the object approach 
and improved satellite sensors in terms of spatial resolution,  number of acquisition channels and 
radiometry,  in our case various data mining methods were exploited to properly handle the 
different spectral and textural components  (features) extracted from the Landsat ETM+ 
multispectral data under form of spectral indices (SI) and used as independent variables ( 70 features 
) in the subsequent modelling and classification steps as detailed below. In our classification schema 
a pixel-based and object-based method were integrated with the objective to obtain more  accurate 
result  in the context of urban and suburban landscapes of Rome municipality using Landsat HR 
imageries under form of normalized spectral indices as described in the following paragraphs. 

2.3.1. Data processing schema and object classification 

The classification procedure implemented with the goal of recognizing the M1_L built up 
classes over the Rome municipality encompass various interconnected processing steps as described 
in this paragraphs. This classification has been carried out using a supervised approach on the basis 
of the results of photointerpretation at transects levels which have been extended to entire municipal 
territory using the Landsat ETM+ EO multispectral data as main input. The Figure 4 shows the logic 
schema of the entire processing and classification procedure where the processes and data are 
symbolically indicated and linked together. In particular, as reported here, first of all the EO data 
primary input (LDS8) are processed (PRO) to derive the three spectral normalized indices (SIL) 
suitable to minimize the atmospheric and illumination noise effects (see next paragraph) and used as 
inputs for the subsequent steps [37]. The three indices multilayer was exploited for a segmentation 
step [38], tuned according to the photo-interpretation constraints for obtaining a vector layer of 3478 
polygonal (POL) covering the entire territory of Rome. For each of them, the set of 70 independent 
variables (spectral and textures from GLCM) were extracted from the three indices layer as 
polygonal attributes. 

 The layer containing the 285 polygonal of the transect (CAM), classified by means of 
photointerpretation approach was overlaid to that obtained from segmentation (POL).  
Subsequently various GIS tools and local majority analysis (TRA) were exploited to recognize  104 
segmented polygonal sample (POLA), enough pure and complete to be used as training areas for 
morpho-types M1_L classification of the remaining segmented urbanized polygonal areas. These 
formers were selected (URB) among  all segmented polygonal on the basis of the presence at least of 
the 10 % of urban pixel (POLU) as threshold, using the results of a per pixel Maximum Likelihood 
(ML) supervised classification (CLS) of urban areas (RAS), previously obtained from the Landsat 7 
ETM+  multispectral image. The  rough evaluation of  of the  accuracy  of this  result  has been 
performed  on the basis of comparison  with the  CLC 2006 (Corinne Land  Cover) urban 
thematic layer  with  an agreement of  about  85%.  The final morpho-types M1_L (POLC) 
classification (OBC) of the urbanized areas (POLU),  including  those to be used as training set,  
was performed using the previously selected  algorithms and  reduced  spectral features input  
data set,  the results including 1539 classified object polygonal are displayed in Figure 4. These 
algorithm and data reduction  techniques were  previously selected (DMA) among the most 
effective [39], on the basis of the results in terms of overall accuracy (ACC) and ER values obtained 
using the training set within the comprehensive selection method. In the next paragraphs firstly the 
features implementation and train data extraction were widely described then the selection 
processes referring to feature reduction and object classification by means of data mining algorithms 
were explained too.   
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2.3.2. Features and training data 

The characterization of thermal response of the urban fabric in the urbanized areas of the entire 
municipality territory was therefore accomplished by means of a supervised object-classification  
procedure, on purpose developed, using the Landsat ETM+ multispectral data and the morfo-types 
classes distribution obtained in the transect by mean of photointerpretation methods. Considering 
that the Landsat 7 ETM+, starting from the middle of 2003,  suffered from the SLC (Scan Line 
Corrector) subsystem failure which determined degradation of images acquired after the end of 
May, with introduction of  some gaps  without useful data [40, 41], more dense  at  borders,  one 
of the last  good frames acquired on 18 of March 2003, before the SLC damage was processed for the 
morpho-typologies distribution assessment through object-classification procedure.  Such an 
approach  allowed us to extend the knowledge about  urban fabric thermal response gained by 
means of photointerpretation  methods  on  polygonal (objects)  of  the transect  to  the other  
3400 polygonal objects  previously obtained  by  means of semiautomatic segmentation  and  
covering  the  entire  territory of interest. This was accomplished through advanced clustering 
data mining algorithms [18, 35], using the 70 spectral-spatial variables suitably extracted from 
Landsat reflectance data, mostly under form of devoted spectral indices and including those more 
linked to local textural ( Zhang et al. 2014) content as proxy of  built-up compactness, introduced in 
the previous paragraphs [37].  

Figure 4 – Data processing and Object classification  schema of urban fabric morpho-types sensible to  HW and UHI 
effects in the municipality of Rome 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2016            doi:10.20944/preprints201608.0202.v1 

 

http://dx.doi.org/10.20944/preprints201608.0202.v1


 10 of 27 

 

First of all, to reduce the basic variables number in view of the subsequent object-oriented/data 
mining approach trying to maintain their useful information contents,  the 30 m. TOA (Top Of 
Atmosphere) reflectance signals acquired in the six bands were transformed into three normalized 
spectral indices (SI), more linked to spectral properties of the natural (i.e. vegetation,…) and artificial 
surfaces of interest  [43] and, at same time, to reduce the noise contribution associated to the 
varying  topography and atmosphere: 

 

NDVI=(R4-R3 )/(R4+R3)           (1) 

 

NBUI=(R6-R5  )/(R5+R6 )         (2)   

 

NDGI=(R3-R2 )/(R2+R3 )          (3) 

 

where, according to Landsat ETM+ sensor spectral configuration, Rn state for reflectance in the 
nth acquisition band. Bands n. 1,2,3 are respectively the RGB visible channels,  while the remaining 
indicate those in  NIR (4) and SWIR (5,6) ranges.    

The NDVI (Normalized Difference Vegetation Index) derived from red and NIR (Near Infrared)  
reflectance signals characterizing the photosynthetic vegetation, was designed for more effectively 
capturing their spatial and temporal changes.  It was widely used for vegetal ecosystems 
monitoring, in particular  it was exploited for usefully assessing various important biophysical 
parameters of plants linked to their biomass, productivity and health  and for studying grasslands 
and rangelands since the early applications of the satellite EO, starting from the late of the 1970 [44]. 
According to various authors who subsequently employed this index as proxy of  impervious 
surface density [21, 45], and of surface emissivity for assessing the LST distribution at urban level  
[46,  29,  Lin & Zhang, 2011), in  our approach the NDVI was exploited directly as proxy of the 
previously introduced permeability variable and in synergy with the others variable/features for 
objects characterizing in terms of built up typology and density variables using also the related 
textural features.  Although the NBUI index is less common than NDVI, it was successfully 
exploited for enhancing the specific spectral responses of building and artificial surfaces detected by 
remote sensors [37, 43], while the remaining index NDGI was introduced to recover the green 
spectral response fraction considering the high reflectance of urbanized infrastructures in the visible 
range and taking advantage from its normalized ratio formulation.  The cover of polygonal objects 
spreading over entire municipality territory has been obtained from these three-indices raster layer 
through the M. Baatz segmentation algorithm [35], using an appropriate combination of  the related 
input parameters (i.e. scale,  color and compactness) preliminarily tuned to produce objects enough 
compatible  in term of  size  with those previously found into the transect using the visual 
estimation. 

 Thus, following the object oriented typical approach the features extraction has been 
accomplished using both the three indices layer (30 m. GSR) and the ETM+ panchromatic channel 
(15 m. GSR) for providing to each segmented polygonal object its own attributes synthetizing the 
spectral and textural features of the corresponding areas to be used as independent variables in the 
following  supervised classification procedures. In addition to the usual spectral amplitude, mean, 
mode,  standard deviation, sum and ratio also the three first moment GLCM (Gray Level 
Co-occurrence Matrix)  dissimilarity, entropy and homogeneity [45] have been extracted from  the 
four raster layers (three  indices + panchromatic)  at different GSR using a 3x3 kernel window and 
predefined offset vector. The ratio variable was calculated only for the three indices layer as pixels 
sum of fractions of the current component while the amplitude include the intensity difference 
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between maximum and minimum reflectance signal within every polygonal object. The table n. 4  
shows the inventory of the nine features/variables extracted for every polygonal object  using  the 
available raster layers, including those referring to GLCM domain which have been introduced with 
the objective to better capture the local texture features of the urban fabric. In particular the three 
GLCM variables are dissimilarity (Dis) , entropy (Ent) and homogeneity (Hom) and the related pixel 
values were derived through the respective formulations: 

 

Dis = ∑ ∑ pij
D-1
j=1

D-1
i=1 (݅ − ݆)       (4) 

Ent = -∑ ∑ pij
D-1
j=1

D-1
i=1 	logpij       (5) 

Hom = ∑ ∑ ௣೔ೕଵା(௜ି௝)మD-1
j=1

D-1
i=1         (6) 

 
where the pij is the normalized number of intensity co-occurrences within the kernel,  i and j 

indices indicate the gray level (intensity of the component)  considered  while D is their range 
corresponding to the dimension of the related GLCM  square matrix derived from the number of 
intensity levels considered.  The values of these GLCM variables have been firstly calculated at 
pixel level using the adopted kernel and offset vector while their mean over polygonal object area 
was then assumed for the related feature variable.  Dis is a measurement of the intensity difference 
between the elements of the GLCM and it is high when the kernel region has a high contrast (i.e. 
repetitive high building strips and related shadows characterizing dense urban fabric areas). The Ent 
variable measures the local disorder in the distribution of pixel intensities, it increases as they don’t 
happen in regular patterns and many GLCM elements have small values. Hom assumes higher 
values for smaller differences in the GLCM and little differences in local intensity pattern. 
N. Variables Domain Description 

1 amplitude Polygon (Max-Min) Local contrast  

2 dissimilarity Poly(GLCM) 
Linked to the intensity contrast of 
repetitive patterns in  the region of 
interest 

3 entropy Poly(GLCM) Linked to disordered intensity patterns  
in  the region of interest 

4 homogeneity Poly(GLCM) Linked to flattened intensity patterns  
in  the region of interest.  

5 mean Polygon average  
6 mode Polygon mode 
7 ratio Polygon normalized component  
8 std-dev Polygon standard deviation 
9 sum Polygon sum of components  

Table 4 - Feature variables extracted from the raster layers and associated to segmented polygonals objects    

As you can see in table 4, the nine variables were derived from each of the three normalized 
indices stiched in the 30 m. GRS raster layer, while only eight (ratio excluded) have been calculated 
from the panchromatic channel. 

These raster layers have been exploited for assessing the three raster GLCM features which 
were then averaged for every polygonal object. The obtained set of 35 variables has been doubled by 
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adding their normalized versions for a total of 70 feature variables assessed as attributes of 
polygonal objects. The objective of the subsequent object classification supervised process was to 
assess the distribution of the M1_L classes over entire Rome municipality using suitable training 
data set derived the results obtained in the transect sub-area and the above EO-derived 70 feature 
independent variables.  This former was a critical stage of the implemented methodology since the 
selection of the training areas in the polygonal cover obtained from segmentation on basis of those 
employed in the transect wasn’t easy, in fact these formers, being delimited by road network they 
weren’t generally exactly coincident with the results of automatic segmentation. Thus in order to 
overcome this difficulty first of all the segmented polygonal crossing those photo-interpreted in the 
transect were identified using the available GIS topological overlay tools, then for each of them a 
table of the related M1_L classes area percentages in the transect was produced in order to allow the 
evaluation of the predominant cover class. Finally only the segmented polygonal having a majority 
class percentage higher than a predefined threshold (mainly up to 70%, 40% for two less populated 
classes) were retained as training areas. 

The Figure 5 shows the cover of the selected training set as colored M1_L classes obtained from 
the segmented polygonal for a total of 104 areas within or adjacent to the transect.  These training 
areas were obtained by overlaying  and spatial processing of the segmented polygonal and the 285 
transect polygonal of the 11 morpho-types classes (table 3, Figure 2)  assumed to be representative 
of the thermal response of the urban fabric in the Rome municipality. Considering the heterogeneity 
of residential areas which include different percentage of built-up mainly characterized by high 
reflectances in visible bands, in order to improve the characterization at municipality level of the 

urban polygonal objects, 
a per pixel classification 
using standard algorithm 
(ML)  was introduced in 
order to recognize the 
internal urbanized pixels 
and to allow a 
preliminarily selection of 
the object polygonal 
based on a percentage 
threshold of their 
built-up surface (Figure 4 
– URB process)  for 
subsequent obect 
classification step. The 
accuracy was assessed by 
means of the confusion 
matrix and 
photointerpretation 
results previously 
obtained for the transect 
areas, with  a reached 
value bigger than 80 % in 
term of overall accuracy 
(OA).    

 

 

 

 

Figure 5 - Urban fabric moprpho-types distribution of training areas 
within the transect selected from segmented polygonal objects using GIS 
analysis in overlay to NBUI index distribution at municipality level. 
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2.3.3. Features and algorithm selection 

First of all, five typical machine learning algorithms were preliminarily selected for supervised 
object  classification taking into account their different capabilities and performance in various 
situation of noise,  limited class samples and outliers presence in input data: C4.5 (decision tree) ,  
C-SVC (Support Vector Machine- discrete class, continuous input),  Knn (K-nearest neighbors),  
ANN (Artificial Neural Network), RnTr (Random Forest Tree).  Decision Tree allows to implement 
easy to interpret classification models by hierarchically splitting the data set [48, 49]. This algorithm 
selects the best subset of attributes based on an entropy measure and organizes the classes in a 
decision tree rule-based structure. Each node of the tree relates to a split in the feature space which is 
always orthogonal to its axes. Support Vector Machines, more often used in the per-pixel 
classification context, is a sophisticated non-parametric supervised statistical learning technique, 
robust against outliers, that estimates a hyperplane in the feature space that minimizes 
misclassifications [49, 50]. The k-nearest neighbor algorithm (Knn) is a method for classifying objects 
based on closest training examples in an  n-dimensional features space. When given an unknown 
feature pattern the classifier searches the pattern space for the k training tuples that are closest to the 
unknown one [50]. The ANN non parametric algorithms are based on the neural network concepts 
and work without assumptions about input data distribution and independency. They learn from 
the training dataset and build relationships (networks) between input (features ) and output nodes 
(classes) through hidden neurons layer connection weights modulation, a critical issue may be the 
amount of training occurrences which may be critical in our context  (Wieland et al., 2014). 

The Random Forest classifier consists of a group of decision trees induced with different 
sub-sets of the training data. Each tree of the forest casts a vote for the class to which a given analysis 
unit (in this case, a given segment) should be associated [50, 51]. The class with most votes is the one 
associated to the segment.  

The high dimensionality of the extracted features used as EO-derived input data (i.e. our 70 
variables) is potentially affected by a variable level of noise and mutual correlation of the 
components whose specific contribution may be irrelevant or even detrimental (introducing 
confusion) in object classification task by means of a particular algorithm. Thus an integrated 
approach for data reduction and algorithm selection was implemented for improving classes 
detection and processing efficiency [17], using the previously assessed polygonal training set. 
Initially the entire training data set containing the feature attributes and related class label for the 104 
polygonal was processed in order to assess the accuracy in term of error–rate (ER) derived 
parameter (1-overall accuracy/100)  for each of the algorithm above introduced.  Subsequently 
only the randomly selected 70% of the data set was exploited for training phase while the test was 
carried out on remaining samples to evaluate the algorithm overtraining weakness. These last 
process was repeated three times and the results mean was retained as more representative ER on 

the basis of cases sampling increase (Table 
5).  

 

In table 6 was reported the confusion 
matrix obtained from the classification 
result of C4.5 applied to the training set.  
The  related overall accuracy (OA) as the 
fraction of number of correctly labeled 
objects (evidenced in bold along the 
principal diagonal)  is 0,6538 while the 

corresponding error rate (ER) is 0,3462. The 
specific accuracy is varying for each class 
and drops to 0 for C and D (missed) classes.  

The following repetitive classification trials of the random selection of 30% of the training set by 

Trial Train 
size 

Test 
size 

Error 
Rate 

O.A. 

1 72 32 0,6875 0,3125 

2 72 32 0,7188 0,2812 

3 72 32 0,6563 0,3437 

0,6875 0,3124 

Table 5 - Train/test trials results and related mean (last line). 
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means of the same C4.5 algorithm, suitably trained with the remaining input data, produced the ER 
results  included in table 6, with  related average in the last line.  As you can observe, the 65% OA, 
obtained with the entire training data set, decreases to less than 30%, in case of repetitive train/test 
classification trials using respectively the 70% and 30% of the training data, while the number of 
undetected classes rises until 5 (Table 7).   

 
M1_L 
class  

L B C M F G E I H D A Sum 

L 6 0 0 2 2 0 1 1 0 0 0 12 
B 0 20 0 0 2 0 1 0 1 0 0 24 
C 0 0 0 0 3 0 1 0 4 0 0 8 
M 0 1 0 4 0 2 0 0 0 0 0 7 
F 0 0 0 0 6 1 1 0 0 0 0 8 
G 0 0 0 0 0 3 1 0 0 0 0 4 
E 0 1 0 0 0 0 15 2 1 0 0 19 
I 0 0 0 1 0 0 0 3 0 0 0 4 
H 0 0 0 0 0 1 0 0 8 0 0 9 
D 0 2 0 0 1 0 0 0 0 0 2 5 
A 0 1 0 0 0 0 0 0 0 0 3 4 

Sum 6 25 0 7 14 7 20 6 14 0 5 104 

Table 6 - Confusion matrix derived from object classification of training set using C4.5 decision tree 
algorithm. 

 

The above described two phases tests were then carried out using the others algorithms above 
introduced. Then, according to general data-mining approach, two different  methods for input 
data reduction were applied to the training set: 
• the  transformation of data to a lower dimensionality by means of the PCA (Principal 

Component Analysis) data transformation [52]; 
• the selection of most significant features, termed feature selection, using different statistical 

techniques: Fischer; Run Filt; Step. 

The output of the PCA transformation of the original 70 features data set were uncorrelated 
components retaining a decreasing portion of the global variance, as depicted in figure 6.  As you 
can see here, more than 90% of variance of the initial data set is preserved if we consider the first 21 
PCA components instead of the original 70 variables. While the PCA transform input feature by 
mixing them on the basis of their mutual correlation, the feature selection methods allow to select a 
features subset from the original set without any transformation, and maintains the physical 
meanings of the original features. Even if, in this sense, feature selection is superior in terms of better 
readability and interpretability, here, in addition to the standard ones, we tried to apply in sequence 
these two approach (i.e. the feature selection was applied also to the PCA components). Starting 
from the feature attributes of the 104 polygonal in the training set whose dimensionality makes 
impossible the selection by means of the usual manual approach on the basis of visual comparison of 
distribution and multidimensional scatter plots, three techniques representative of the automatic 
continuous feature selection for for classification labelling were exploited.  Thus the Fisher, Runfilt 
and Stepdisk [17,52, 53], were then introduced with the aim to select a smaller subset of input  data  
minimizing their redundancy and maximizing relevance to the target scope, such as the suitable 
class labeling, in classification. The first two methods are based on the filter model which is 
independent from the subsequent learning algorithm and considers only the general characteristics 
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of the training data such as distance, consistency, dependency and information content for assessing 
the input feature quality. STEPDISC (Stepwise  Discriminant  Analysis)  exploits  a discriminant 
analysis criterion. Others approach (wrapper, embedded) include the specific classifier algorithm in 
input feature selection and weren’t considered here since this step was in any case performed 
subsequently in our procedure. The feature selection step was applied also to the subset of the 
selected PCA components. Ultimately all combinations relating to five different algorithms, two 
training/test approach and feature selection techniques were tested for assessing their global 
accuracy in term of ER (O.A.) values which are arranged in the two following tables n. 7 and 8.  In 
particular, the first table n. 7 includes the results obtained using  the  features of  training set 
while the second one shows the ER’s assessed for the subset of the first 21 PCA components, 
containing an amount higher than 90% of the original explained variance (Figure 5). 

The first two lines of table n. 7 report the ER values obtained from classification of the training 
set using the five algorithms above introduced with all 70 features. The first one refers to the entire 
data set  (all-70)  while the second include the result for the related train/test approach (all-T). 
Similarly, in the following two row,  the result of the feature selection using the Fisher filtering 
method are reported respectively for the selected data set including the first most relevant 35 
components (35) and related train/test evaluations (35-T). The same schema is repeated for the 
remaining features selection methods applied here and in the subsequent table referring to PCA 
components. The “Feature n.” columns (corresponding to different three selection techniques) of the 
two tables indicate the number of selected components while the T suffix state for train/test 
evaluation. All the resulting ER values are reported with a following number in brackets which 
indicates the missed classes (null accuracy ) in classification,  except  those  corresponding to 
detection of all the classes without brackets.  Due to its structural overfitting aptitude some not 
significant results corresponding to RnTr algorithm aren’t included. The most relevant ER values 
referenced in the following are shown in bold digit. In general the number of the selected 
descriptors/features with different methods is depending on their relevance/correlation with the 
training classes distribution assessed trough ANOVA analysis and F-test on the basis of predefined 
threshold. 

In our case a number of selected features corresponding approximately to one half of the 
original one was adopted in order to provide reduction factor (50%) for enough effective 

performance evaluation of 
the various combination 
of selection techniques 
and algorithms.   As 
shown in the two first 
rows of table n. 7, 
although the ER obtained 
by  C-SVC algorithm 
seems the best (lowest) in 
classifying  the complete 
training set,  its relative 
performance significantly 
decreases in test case 
(all-T second row) , in 
which all the results 
happen poor, with a 
relevant number (5 on 

average) of missed classes.  

The results of the C4.5  classifier improve with the feature subset selected using the Fisher and 
Step techniques even in the train/test trials,  while those obtained by the Knn algorithm with Fisher 

Features n. C4.5 C-SVC Knn ANN RnTr 
all -70 0,3462 (2) 0,1635 0,5192 (1) 0,4519 (6)   

Sel. Tech. all-T 0,7188 (5) 0,7292(5) 0,7500(5) 0,6875(5) 0,7917 (5)

Fisher 
 

35 0,3365 (1) 0,3462 0,4615 0,5000(6)   
35-T 0,7396 (6) 0,7396(5) 0,6563 (3) 0,7604 (7) 0,7188 (4)

RunFilt 
 

35 0,3558 (2) 0,3173 0,4712 0,5192 (6)   
35-T 0,7396 (6) 0,6563(4) 0,6979 (3) 0,7500 (8) 0,7396 (4)

Step 
 

35 0,3365 (2) 0,3077 0,5192 (2) 0,5192 (5)   

35-T 0,6250(5) 0,7292(4) 0,6667 (3) 0,6875 (8) 0,7604 (3)

Table 7 - ER values obtained from classification of the  original and reduced 
training data sets   
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selected data set might represent an optimal trade-off between the minor ER value and number of 
missed classes, 

 both with selected 
dataset (no missed 
classes) and  in 
train/test trial.  The test 
results of Table 8 
obtained with Pc21, 
PCA-compressed data 
set at the 90% of 
explained variance, are 
generally a bit poorer 
than the corresponding 
values of table 7, except 
for the ER values 
derived for the Step 
selection using the Knn 
classifier which 
outperform also that 

related to Pc21 compressed dataset lowering at same time the missed classes number.  Finally, 
considering the ER values/missed classes numbers obtained using the different selection techniques 
on the entire data set and the capability to be robust against overtraining by means of the train/test 
approach, firstly the 35-features data set derived through Fischer method and Knn classifier were 
exploited for  the  subsequent classification step of the global dataset of  the 3478 polygonal 
objects, covering the entire municipal area.  From the results reported in table 7, due to their 
performance in terms of ER / missed classes amount and/or robustness against overtraining, two 

additional classifiers, namely C4.5 and 
C-SVC respectively with Fisher-selected 
and all features, were also considered.  
These three alternative M1_L 
distributions indicated as KnnF (Knn  
classifier with features Fisher selection) , 
C4.5S (C4.5 with Stepwise selection)  
and C-SVC ( using all features), 
obtained  from the above classification 
algorithms were preliminarily selected. 
The obtained thematic map referring to 
the former C-SVC is reported in Figure 
7. The in depth evaluation for refining 
their selection  was performed in the 
subsequent LST based calibration phase 
through their corresponding numerical 
sliced counterparts indicated 
respectively  as  KnnFN, C4.5SN and 
C-SVCN and obtained by assigning the 
relative class scores included in table 3.     

 

 

 

Table 8 - ER values obtained from classification of the PCA- compressed and reduced 

training data sets   

C4.5 C-SVC Knn ANN RnTr 
Pc21 0,4423 (4) 0,4808(1) 0,5288 (1) 0,5769 (7)   

Sel. Tech. Pc21-T 0,7813 (6) 0,7477(6) 0,7917(7) 0,7292(7) 0,8333 (5)

Fisher 
 

10 0,4519 (5) 0,5385(4) 0,5288(1) 0,6154(8)   
10-T 0,8021 (6) 0,6563(7) 0,7708 (6) 0,7813 (8) 0,8021 (4)

RunFilt 
 

10 0,4231 (2) 0,5577(4) 0,5481 0,6154 (7)   
10-T 0,7604 (6) 0,6354(7) 0,7604 (3) 0,8021 (8) 0,6979 (4)

Step 
 

10 0,4615 (2) 0,5577(5) 0,5192 0,6442 (8)   

10-T 0,7604(7) 0,7396(7) 0,8125(7) 0,8125 (8) 0,7917 (7)
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Figure 6 - PCA components and the related  cumulative  
normalized amount of the explained variance  
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Figure 7 - M1_L classes  distribution on Rome municipality territory obtained by means of the 
implemented supervised object classification procedure through  C-SVC algorithm using the  
transect training areas. 

 2.4. HW and UHI Thermal calibration 

Although a preliminary NVI distribution at municipality level might be obtained from the 
numerical distributions of M1_L urban fabric partial vulnerability classes, provided by object 
classification procedure, and corresponding NDVI  as permeability proxy,  it will be affected by 
some uncertainties arising from the  use the best M1_L distribution within the three previously 
selected, which optimize different aspects.   Even if the photointerpretation approach allowed us to 
assess the NVI realistic distribution over transect area, based on the preceding identification of the 
11 partial vulnerability M1_L classes related to the urban fabric variables (typology and 
compactness)  and  permeability of the related  ground surfaces, the relative weights between 
these different factors exploited in the related semi empirical model are assumed without a 
sufficiently robust physical basis.    

In order to better address these weaknesses of the photointerpretation based approach, the 
basic idea was to exploit the LST distributions measured in HW and UHI condition for a physically 
based model calibration.  Given that the HW and UHI synergy reflects on the LST distribution as 
the main measurable effect, it is assumed as dependent variable of a multivariate regression model 
whose independent variables have to be selected within the most significant of all the previously 
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extracted object features.  The three M1_L numerical distributions, previously obtained from the 
classification procedure were added with the local altimetry to the independent variables data set 
before the selection for a total of 74 independent variables of a multivariate model to be optimized 
by selecting the more significant variables using step-wise regression statistical methods.  All the 
(dependent and  independent ) model variables at polygonal level were arranged to provide a 
unique data set for the 1539 classified urban objects which was then exploited for variable selection 
and model calibration  using the stepwise regression methods as described in the following.   In 
this perspective, two typical LST distributions of Rome nocturnal UHI, captured by MODIS polar 
satellite sensor in the summer 2003 (Figure 8), were selected as input  to the  physically based 
calibration  method of the urban fabric vulnerability M1_L model, previously introduced on 
empirical basis. The LST distributions refer to the HW period of July 2003 (Figure 1) and are reported 
in the figure 8 (left and right pictures).   Here you can see how the night LST distribution in the 
leftmost and rightmost images exhibit local UHI maxima in correspondence of the town center while 
the central diurnal image of the 16-7-2003 is characterized by a diffuse cloud cover which decrease 
the detected radiant temperature over land.  Although the cloud presence has decreased in 
coincidence of the  night acquisition ( right image ) some  mist residuals have remained on the  
right borders of the municipality corresponding to mountains areas and coinciding with colder 
patch.            

In the following graph of figure 9  the bi-spectral plot of the two night LST distribution of  12 
and 16 July 2003 within the polygonal objects corresponding to different  M1_L  classes are 
reported. Here you can see how the unreliable lowest temperatures corresponding mainly to these 
residual cloudiness affect the distributions,  in particular  that of  the 16-07 which required a 
preventive selection of the cloud free and most reliable polygonal areas to be used in variable 
selection. 

  The objective of the stepwise methods introduction here was to assess a regression model by 
selecting only the most relevant variables within those available (74) and possibly including as few 
variables as possible because each irrelevant regressors decreases the precision of the estimated 
model coefficients and predicted values.  In such a way both the selection of the most appropriate 

variables including those related to the 
previous NVI transect model and 
estimate of the related weights 
(coefficients of regression model) were 
achieved on the basis of the LST 
distributions. In the stepwise method the 
variables selection for the regression 
model is carried out by successively 
adding (forward) or removing 
(backward) variables based solely on the 
t-statistics of their estimated regression 
coefficients [54]. The stepwise option lets 
you either begin with no variables in the 
model and proceed forward (adding one 
variable at a time), or start with all 
potential variables in the model and 
proceed backward (removing one 
variable at a time) based on the 
previously selected thresholds for the 
coefficients. In the table n. 9 a synthesis 
of the results obtained through 
backward (Bck) and forward (Frw) 
stepwise regression application with the 

two above described LST distributions is reported. The number of selected variables (N° var.) with 

Table 9 - Backward (Bck) and forward (Frw) stepwise results for 

multivariate regression models of  the two night LST 

distribution on Rome territory during the  HW of 2003 

LST-12-07-2003 LST-16-07-2003 
Bck Frw Bck Frw 

Sig. Lev. 0,1 0,0001 0,1 0,0001 
N° var. 16 8 16 8 
C4.5SN   0,013969 0,010265 0,006966 
C-SVCN 0,011381 0,021581   0,014668 
KnnFN         
NDVI -0,08302 -0,05773   -0,03563 
NzNDVI     -7,964   

NzPan_mode  0,0000001  0,0000001

R2 0,477 0,38 0,362 0,28 

R2adj 0,472 0,377 0,354 0,276 
n. samp. 1534 1534 1262 1262 
F 869,912 1176,056 442,863 611,608 
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related significance level (Sig. lev.) of t- statistics threshold used for inclusion/exclusion and the 
estimated coefficients for the most significant of them in the assessed multivariate models are 
included in the table. The polygonal samples have been selected trying to exclude the clouds 
artifacts and according to a temperature threshold (285 T°) compatible with reliable summer (see 
x-LST value of graph on Figure 8) land values.  As reported in Table 9, both the C4.5SN and 
C-SVCN independent variables derived from M1_L are relevant in explaining the LST spatial 
distribution especially in models obtained from the forward stepwise method, which include the 
NDVI index and a minor number of independent variables (8) for the LST distribution detected in 
two different dates during the HW period. Finally the R2 correlation levels ranging from 0.472 to 
0,27,  and F/p-value parameters are also included to highlight the models significance. Although the 
four models contain different  independent variables here firstly we focused on  those  previously 
introduced for estimating  NVI at transect level related  to urban fabric  features and  soil 
permeability.  Since these formers, namely   the M1_L numeric distributions and NDVI (or its 
derived normalized versions ), as soil permeability proxy,  are selected in all models their 
importance in determining the  thermal response  of urban fabric was confirmed .  First of all  it 
should be evidenced that the  both  C4.5SN and C-SVCN  numerical  urban fabric partial 
vulnerability distribution  have been  retained in the estimated models while the KnnF variable, 
despite its good statistical performance with variables selection, didn’t agree enough with the 
considered HW-UHI LST patches.  The  increasing contribution of  urban fabric M1_L 
distributions to temperature rise is evidenced by the related coefficient  sign which maintain  
positive  in  all  models while  the opposite sign  corresponding to NDVI  is  related to cooling 
effects arising from the permeability and vegetation increase.   In agreement with the general 
indications in our case although the estimated models using the backward method exhibit higher 
correlation coefficients (Table 9) they include more numerous significant independent variables 
which make difficult the physical explanation of their connection with the LST distribution. Thus 
given that the forward procedure is generally retained more suitable to provide an initial screening 
of the candidate variables within a large group and also for its robustness against the  
multicollinearity and outliers problems (Miller, 2002)  the corresponding results are considered for 
the M1_L distribution selection. In Table 10 and 11 all  the independent variables of  the complete 
models selected via forward stepwise for the Rome night LST distribution of the 12 and  16  July 
2003 are reported. 

 

 In addition to M1_L numeric 
distributions previously introduced, the 
others independent variables included 
are referenced using the internal names 
with standard suffixes and prefixes 
assigned by the segmentation and data 
mining software packages previously 
exploited in features extraction and 
object classification.  In particular the 
numeric suffixes 0, 1, 2  indicates the 

three  previously introduced spectral 
indices( respectively NDVI,  NBUI 
and NDGI), while  the prefixes rp, nz, 
pnz  state correspondingly  for  
polygonal average,  normalized 
polygonal average and panchromatic 
normalized polygonal average. The 

variables rp_ratio_2 and  rp_ratio_0 state respectively for the normalized responses of  NDGI and 
NDVI indices, pnz_rode and nz_rode_1  refer  correspondingly to the normalized mode related to 

Variable Coef. std t(1529) p-value 
Intercept 297.430.196 0.529670 561.538.321 0.000000
C4.5SN 0.013969 0.005345 2.613.432 0.009052
rp_ratio_2 12.252.723 0.608251 20.144.190 0.000000
rp_mean_0 -0.057728 0.003120 -18.503.385 0.000000
nz_ratio_0 5.478.326 0.748758 7.316.554 0.000000
C-SVCN 0.021581 0.003839 5.622.098 0.000000
pnz_rode 0.000000 0.000000 -5.186.027 0.000000
rp_aude_1 0.004156 0.000760 5.465.880 0.000000
nz_rode_1 0.000000 0.000000 4.634.898 0.000004

Table 10 - Regression model obtained by means of the forward 

stepwise variable selection for the LST night distribution of 

16-07-2003. 
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panchromatic band and NBUI.  The NBUI polygonal amplitude (rp_aude_1) was included also in 
this model. 

 

The selected variables for  the 
model of the night LST distribution 
captured by MODIS sensor on the 
12-07-2003, as the previous one,  
comprise the same two M1_L numeric 
distributions,  polygonal means of the 
NDVI and NBUI indices,  and 
panchromatic channel normalized 
mode (pnz_rode).  Differently from 
the model referring to the LST 
distribution of the more cloudy night  
of 16-07-2003,  other variables were 
included namely the normalized 
amplitude of NDGI (nz_rtude_2), the 
polygonal mode of panchromatic 
channel (prp_mode) and the NDVI 

GLCM entropy (rp_eopy_1).  In both the models the forward selection included the two M1_L  
C4.5-SN and C-SVCN numeric distributions referring to urban fabric features previously assessed 
by means of photointerpretation methods. In addition also the NDVI related rp_mean_0 and 
pnz_rode  polygonal variables were selected in both the LST models. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - LST distribution on Rome municipality acquired by MODIS sensor in 12-7-2003 at 21.30 ( a 
) and in 16-7-2003 at 09.30 ( b ) and 21.30 ( c ). 

 

 

 

 

Variable Coef. std t(1253) p-value 
Intercept 303.454.833 0.740549 409.770.309 0.000000
C4.5-SN 0.006966 0.005457 1.276.643 0.201965
rp_mean_1 -0.020506 0.001413 -14.514.235 0.000000
rp_mean_0 -0.035626 0.002516 -14.160.640 0.000000
pnz_rode 0.000000 0.000000 -7.614.581 0.000000
nz_rtude_2 0.706314 0.143912 4.907.956 0.000001
prp_mode -0.007164 0.001757 -4.077.290 0.000048
rp_eopy_1 0.000900 0.000231 3.904.598 0.000099
C-SVCN 0.014668 0.003932 3.730.728 0.000199

Table 11 - Regression model obtained by means of the forward 

stepwise variable selection for the LST night distribution of 

12-07-2003. 

Rome  Rome  Rome  

a) b) c) 
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Figure 9 - Bi-spectral plot of 16-07-2003 vs 12-07-03 LST (T°) inside the segmented polygonal objects 
whose M1_L class obtained using the C-SVC classifier is indicated using different point symbols. The 
detailed graph on the lower right side refer to the qualitative distribution in the interval of the 
16-07-2003 LST, selected to avoid cloud noise effects.  

 

 

3. Results and discussion 

A semi-empirical linear model of thermal vulnerability of urban areas, based on built up 
characteristics and presence of permeable surfaces/vegetation was firstly  implemented in order to 
quantitatively estimate the contribution of the urban fabric features related to temperature extrema 
regional meteo-climatic phenomena even in synergy with the well-known UHI local anomalies. The 
built up features focused for this purpose have been the  building/infrastructure typology  and  
compactness  which were further characterized in term of  classes and  related numerical 
grades/scores on the basis  of preexisting  knowledge and studies  on the various urban areas of 
Rome.  This semi-empirical model was applied to a 5x20 km transect test area through its 
preliminarily road-delimited residential urbanistic homogeneous areas, using  mainly an on 
purpose developed  photointerpretation method of large scale detailed cartography.  In such a 
way  the preliminary distribution of thermal vulnerability M1_L classes (Figure 2) and related 
scores coming only from urban fabric was produced. The association of the  numerical scores 
assigned to M1_L distribution with those derived from photo-interpreted permeable surface 
percentages for each of the previously introduced residential areas allowed us to obtain a 
preliminary and qualitatively reliable, thermal vulnerability distribution under form of  NVI 
(Numerical Vulnerability Index) at transect level (Figure 2).  Trying to extend these preliminaries 
results obtained in the transect area to entire municipality of Rome a  semi-automatic methodology 
based on the remotely sensed data exploitation was conceived with the goal to detect  the  different  
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M1_L classes on the basis of their  spectral and textural  features increasing at same time  the 
efficiency, reliability, generality  and applicability of the method. The implemented methodology 
consists in a original procedure based on integration between per pixel and object supervised 
classification steps working on polygonal objects preliminarily obtained for the entire municipal 
territory using a widely used multispectral segmentation algorithm.  In addition to panchromatic 
channel three normalized spectral indices derived from Landsat ETM+ multispectral images were 
exploited as basic input data, with the objective to enhance the vegetation and built up typical 
reflectance responses, minimizing at same time the noise contribution from atmosphere and 
illumination sharp variations from cast shadows of buildings. In particular the usual NDVI linked to 
vegetation density was introduced as robust proxy of area permeability while NBUI was retained 
more linked to built-up typology and compactness. To improve the discrimination of these different 
fundamental characteristics of urban fabric, in particular those linked to built-up 
typology/compactness, also the spectral texture related indices derived from GLCM obtained from 
multispectral and panchromatic data were also included. In such a way a total of 70 independent 
variables were assessed for each of the 3400 polygonal areas obtained from segmentation and 
covering the entire municipality territory.  A training set of 104 areas was then extracted from these 
polygonal by overlaying  them with those exploited in the photointerpretation of transect features 
and using spatial GIS analysis to evaluate the majority M1_L univocal class of each of them. This 
step was very problematic, especially for some M1_L classes represented by too small and 
fragmented areas at transect level which often spread over different segmented polygonal without 
any prevalent class area percentage. It should be underlined also that some of these difficult classes 
are less representative, due their typologies (i.e. tower) including too few examples, important only 
for their architectural particularity. The training set of these segmented labeled polygonal and 
related attribute values of 70 variables was exploited to select both the best data-mining algorithms 
and related feature selection/compression strategies on the basis of their performance in term 
different accuracy and train suitability parameters. Following the general data-mining approach to 
deal with a big amount of input information,  three classification algorithms and related input data 
handling strategies were selected according to their capabilities to optimize different aspects,  let’s 
say the classification accuracy in term of O.A. / ER,  the number of  missed  M1_L classes and the 
robustness against overtraining. The subsequent object classification by means of the selected 
combination of algorithms and related preprocessed features has been carried out on those 
segmented polygonal including an urban pixel percentage greater than 10%. The urban pixel 
distribution was previously assessed by means of an usual per pixel supervised classification using 
transect training areas, with a general agreement respect to comparable official thematic maps of 
urban areas (i.e. Urban Atlas, CLC 2006) provided  by EEA(European Environment Agency)  .  
According to the NVI semi-empirical linear model used at transect level,  to quantitatively assess 
the thermal vulnerability for the entire territory of interest,  the obtained distributions of M1_L built 
up classes were  transformed into their numerical counterparts using the table 3 and associated 
with NDVI index polygonal average,  as effective proxy  of permeable surface percentages.  
Conversely, to rightly address the remaining ambiguities about the best M1_L distributions and the 
subjectivity of model weights which have been previously introduced on the basis of rough 
knowledge of building material used for different typologies in town districts, a more physically 
based approach, based on the real UHI night LST distribution captured by MODIS satellite sensors 
during a HW situation was implemented. Thus four models for 12-07-2003 and 16-07-2003 LST 
distributions were assessed using the three obtained M1_L numerical distribution, altimetry and the 
70 polygonal attributes as independent variables input which were then selected by means of 
backward and forward stepwise regression procedures. From the resulting statistical parameters 
reported in table 9, it happens that all the estimated models give a noticeable contribution to 
variance of the LST spatial distribution with adjusted correlation (R2adj ) going from 0,47 to 0,28 and 
confidence level higher than 99%. The results of backward stepwise procedures include models with 
a greater number of independent variables and higher correlation than those obtained by means of 
forward ones.  Due perhaps to less cloud cover the number of cloud-free polygonal referring to LST 
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distribution of 12 July is increased respect to that of 16 July with consequent improvement of 
correlation and confidence level of the related models.  Both the C4.5SN and C-SVCN distributions, 
as positive contributions to temperature rise ( positive coefficients),  were included in the models 
assessed through stepwise procedures while the KnnFN was excluded like altimetry. The NDVI 
index ( always with  rightly negative coefficients) and normalized  mode referring to panchromatic 
channel (NzPan_mode) with very small positive coefficient  contributed significantly to the LST 
spatial variance.  In the forward model of the 12 July (table 11) the NDVI and NBUI polygonal 
mode (rp_mean_0, rp_mean_1)  and  panchromatic mode ( prp_mode)  provide  negative 
contribution to the LST rise  while the positive ones come from M1_L distribution, C4.5-SN and 
C-SVCN (more statistically significant),  normalized panchromatic mode ( pnz_rode) and finally 
from the GLCM entropy derived from NBUI ( rp_eopy_1).  The NBUI negative contribution could 
be associated to refrigerating effect from dense street shadows linked to photo-interpreted 
compactness level while the GLCM entropy could arise from the disordered built up concentration, 
especially in older city districts lacking of wind and air circulation cooling effects. 

Various commercial and open sources packages and software were suitably exploited in 
integrated way for data processing following the above reported general schema. In particular the 
ERDAS-Imagine and ENVI commercial suites were used for EO and raster data processing while 
spatial analysis based mainly on vector coverages have been performed by means of ARC-GIS 
distributed by ESRI inc. and Q-GIS open source tools. Finally TerraView-Geodma and Tanagra 
freely available software platforms and the commercial E-Cognition package, supported the 
segmentation and object classification steps development.       

4. Conclusion 

The urban heating and the formation of the UHI are typical features of the urban land 
transformation that are of interest across various science disciplines since they involve a broad suite 
of important biophysical changes of land surface, linked to urban sprawl and impacting on human 
health, ecosystem function, environment quality, local weather and, possibly, on the global CC 
characterized by also the rise of  HW  phenomena, as one of the most relevant effect at regional 
scales.  The cities may be considered sensible areas to HW exposure as one of the CC impacts, their 
vulnerability assessment in terms of social and physical factor should be spatially assessed and 
possibly addressed to improve their resilience in the framework of local and national adaptation 
strategies. In this context the suitable spatial assessment of the thermal behavior of the different 
urban fabrics is an indispensable knowledge for designing the effective urban regeneration, recover, 
restoration and development. These activities are widely pursued by local administrations and city 
architects within their planning and management duties in the perspective of the environmental 
quality improving and energy saving within the general sustainability policies and EU framework of 
mitigation and adaptation strategies against the CC.  Thus this work was focused on the 
implementation of an innovative methodology based on the integration of satellite multispectral and 
multiplatform remote sensing techniques in order to suitably support the extensive and operative 
characterization of the urban fabric thermal responses to UHI and HW, on the basis of its geometric 
and typological parameters, coupled with the presence of permeable soil/vegetation.  Eleven  
typologies/compactness different classes of thermal response related to Rome urban fabric, were 
previously  defined and recognized within a  road-delimited  blocks of  5X20 Km transect test 
area, using photointerpretation methods. They were then successfully detected over the entire 
territory of Rome using an on purpose developed automatic procedure, based on the ETM+ remotely 
sensed HR multispectral data and supervised object classification approach, optimized by means of 
data mining methods. This procedure includes innovative and original solutions for both 
classification algorithm selection and optimization of features selection/compression, in addition it 
includes the synergy of per pixel and objects supervised classification approaches to improve the 
detection and characterization of urbanized areas based on spectral and texture features.    
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Finally the physically-based extensive calibration/validation  of the thermal vulnerability 
model of urban fabric, previously introduced on a semi-empirical basis at transect level, was 
originally accomplished  by means of the LST night distributions detected by MODIS polar 
satellites sensors  during  the  HW  phenomena of the summer 2003 and documented by the 
historical series of meteorological and satellite data available, in conjunction with  UHI condition, 
clearly evidenced in the processed frames.  In such a way the effective contribution of  
typology/compactness built-up classes to temperature rise was confirmed and quantified like the 
mitigation effect of vegetation as proxy of permeable soil  through  NDVI. From the stepwise 
regression analysis also the NBUI spectral index,  exploited  by  various authors as proxy of  
urban density,  seemed to be able to capture the probably cooling effect provided by tall buildings 
shadow.  Finally  also various spectral and textural  features derived from the panchromatic 
channel at 15 m. of GRS,  happened significantly correlated  with  LST through opposite 
contributions  to be  further  analyzed in term of their physical meaning and  link with  urban  
fabric  parameters in a future work. Despite its established importance in LST distribution, the 
altimetry was non included within the more significant independent variables selected by stepwise 
algorithms, maybe for its too low variation range and  perhaps also  for uncertainties introduced in 
the GIS based selection of the training areas using the road-delimited transect stock areas. This 
former remains a critical passage in the developed procedure which will require further refinement 
to be better addressed using, for instance, a preliminary segmentation before the photointerpretation 
step.  

Considering the dramatically augmented availability of the HR multispectral and SAR data 
provided by increasing number of operative satellite remote sensing missions and more and more 
suitable for characterizing the increasingly heterogeneous, complexes and wide urban areas [55], the 
preliminary results obtained in the present work may provide a robust contribution for developing 
advanced  applications to face the growing needs of decision support knowledge about the 
different urban processes which more and more impact on citizen life and threatened urban 
environment, exploiting the big amount of  geo-information and data provided by the remote 
sensing techniques, continuously improved not only in terms of spatial/spectral resolution and 
radiometry of sensors,  but also in temporal coverage capability,  innovative platforms (i.e. 
microsatellites, drones,…) and  biophysical parameters detected ,  in conjunction with data mining 
and clustering algorithms advances. 
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